1
|
Han Y, Wang S, Xiang Y, Chang L, Wang X, Ren S, Guo F, Li T, Liu Z, Li Y. Cannabidiol inhibits transient receptor potential canonical 4 and modulates excitability of pyramidal neurons in mPFC. Front Pharmacol 2024; 15:1431758. [PMID: 39611176 PMCID: PMC11603362 DOI: 10.3389/fphar.2024.1431758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive compound derived from the cannabis plant, has been extensively studied for its potential therapeutic effects on various central nervous system (CNS) disorders, including epilepsy, chronic pain, Parkinson's disease, and stress-related neuropsychiatric disorders. However, the pharmacological mechanisms of CBD have not been fully elucidated due to the complexity of their targets. In this study, we reported that the transient receptor potential canonical 4 (TRPC4) channel, a calcium-permeable, non-selective cation channel, could be inhibited by CBD. TRPC4 is highly abundant in the central nervous system and plays a critical role in regulating axonal regeneration, neurotransmitter release, and neuronal network activity. Here, we used whole-cell electrophysiology and intracellular calcium measurements to identify the inhibitory effects of CBD on TRPC4, in which CBD was found to inhibit TRPC4 channel with an IC50 value of 1.52 μM TRPC4 channels function as receptor-operated channels (ROC) and could be activated by epinephrine (EP) via G proteins. We show that CBD can inhibit EP-evoked TRPC4 current in vitro and EP-evoked neuronal excitability in the medial prefrontal cortex (mPFC). These results are consistent with the action of TRPC4-specific inhibitor Pico145, suggesting that TRPC4 works as a functional ionotropic receptor of CBD. This study identified TRPC4 as a novel target for CBD in the CNS and suggested that CBD could reduce the pyramidal neuron excitability by inhibiting TRPC4-containing channels in the mPFC.
Collapse
Affiliation(s)
- Yujun Han
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuting Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Xiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liuliu Chang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xian Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shimin Ren
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tianyu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Department of Anesthesiology, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- School of Medicine, Anesthesia and Brain Function Research Institute, Tongji University, Shanghai, China
| | - Zhiqiang Liu
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yang Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Chernoff CS, Hynes TJ, Schumacher JD, Ramaiah S, Avramidis DK, Mortazavi L, Floresco SB, Winstanley CA. Noradrenergic regulation of cue-guided decision making and impulsivity is doubly dissociable across frontal brain regions. Psychopharmacology (Berl) 2024; 241:767-783. [PMID: 38001266 DOI: 10.1007/s00213-023-06508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
RATIONALE Win-paired stimuli can promote risk taking in experimental gambling paradigms in both rats and humans. We previously demonstrated that atomoxetine, a noradrenaline reuptake inhibitor, and guanfacine, a selective α2A adrenergic receptor agonist, reduced risk taking on the cued rat gambling task (crGT), a rodent assay of risky choice in which wins are accompanied by salient cues. Both compounds also decreased impulsive premature responding. OBJECTIVE The key neural loci mediating these effects were unknown. The lateral orbitofrontal cortex (lOFC) and the medial prefrontal cortex (mPFC), which are highly implicated in risk assessment, action selection, and impulse control, receive dense noradrenergic innervation. We therefore infused atomoxetine and guanfacine directly into either the lOFC or prelimbic (PrL) mPFC prior to task performance. RESULTS When infused into the lOFC, atomoxetine improved decision making score and adaptive lose-shift behaviour in males, but not in females, without altering motor impulsivity. Conversely, intra-PrL atomoxetine improved impulse control in risk preferring animals of both sexes, but did not alter decision making. Guanfacine administered into the PrL, but not lOFC, also altered motor impulsivity in all subjects, though in the opposite direction to atomoxetine. CONCLUSIONS These data highlight a double dissociation between the behavioural effects of noradrenergic signaling across frontal regions with respect to risky choice and impulsive action. Given that the influence of noradrenergic manipulations on motor impulsivity could depend on baseline risk preference, these data also suggest that the noradrenaline system may function differently in subjects that are susceptible to the risk-promoting lure of win-associated cues.
Collapse
Affiliation(s)
- Chloe S Chernoff
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychology, Downing Site, University of Cambridge, Cambridge, UK.
| | - Tristan J Hynes
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, Downing Site, University of Cambridge, Cambridge, UK
| | - Jackson D Schumacher
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shrishti Ramaiah
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Dimitrios K Avramidis
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of Concordia, Montreal, QC, Canada
| | - Leili Mortazavi
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Stan B Floresco
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
4
|
Gholami Ahmadabadi K, Zendehdel M, Vazir B, Asghari A, Babapour V. Possible effects of the central adrenergic and dopaminergic receptors on hypophagia induced by neuromedin S in neonatal layer-type chicks. Gen Comp Endocrinol 2022; 321-322:114032. [PMID: 35331741 DOI: 10.1016/j.ygcen.2022.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/13/2022] [Accepted: 03/19/2022] [Indexed: 11/30/2022]
Abstract
The current study was aimed to determine the possible effects of the central adrenergic and dopaminergic receptors in neuromedin S (NMS)-induced hypophagia in neonatal layer-type chickens. In the first experiment, control solution, and NMS (0.25, 0.5, and 1 nmol), were injected (intracerebroventricular (ICV)) in chickens. In the second experiment, birds were injected with a control solution,SCH23390 (D1receptor antagonist, 5 nmol), NMS (1 nmol), and a combination of the SCH23390 + NMS. Experiments 3-11 were similar to experiment 2, except that chickens were injected withAMI-193 (D2receptor antagonist, 5 nmol), NGB2904(D3receptor antagonist, 6.4 nmol), L-741,742(D4receptor antagonist, 6 nmol), 6-OHDA(6-hydroxydopamine, 2.5 nmol),Prazosin(α1receptor antagonist, 10 nmol),Yohimbine(α2receptor antagonist, 13 nmol),Metoprolol(β1receptor antagonist receptor, 24 nmol),ICI 118,551 (β2receptor antagonist, 5 nmol),SR 59230R (β3 receptor antagonist, 20 nmol) instead ofSCH23390. Then, cumulative food intake was recorded at 30, 60, and 120 min following the injection. According to the results, food intake was significantly decreased after ICV injection of NMS in a dose -dependent manner (P < 0.05). Also, the co-injection of the SCH23390 + NMS significantly attenuated NMS-induced hypophagia (P < 0.05). The co-administration of AMI-193 + NMS significantly reduced NMS- induced hypophagia (P < 0.05). In addition, the co-injection of ICI 118,551 + NMS and 6-OHDA + NMS considerably decreased NMS-induced food consumption (P < 0.05). However, NGB2904, L-741742, Prazosin, Yohimbine, Metoprolol and SR 59230R had no effect on hypophagia induced by NMS (P > 0.05). These results demonstrated thatNMS- induced hypophagia might be mediated by D1/D2 dopaminergic andβ2adrenergic receptors in neonatal layer-type chickens.
Collapse
Affiliation(s)
- Kourosh Gholami Ahmadabadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Bita Vazir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahamd Asghari
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
5
|
Śmiałowska M, Zięba B, Domin H. A role of noradrenergic receptors in anxiolytic-like effect of high CRF in the rat frontal cortex. Neuropeptides 2021; 88:102162. [PMID: 34062382 DOI: 10.1016/j.npep.2021.102162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
Corticotropin releasing factor (CRF) is a neuropeptide widely distributed in the brain as a hormonal modulator and neurotransmitter. The best known behavioral function of CRF is activation of stress and anxiety via the hypothalamus and limbic structures but the role of CRF in the cortex is still poorly understood. Our previous studies have shown anxiolytic-like effects of high doses of CRF injected into the Fr2 frontal cortex and involvement of CRF1 receptors (R) in that effect. These results seemed to be controversial as most other studies suggested anxiogenic and not anxiolytic effects of CRF1R stimulation. Since stress is associated with adrenergic system, in the present study, we focused on participation of alpha1 and alpha2 or beta adrenergic receptors in the anxiolytic-like effect of CRF. Moreover, we verified whether these effects of CRF in the Fr2 were really connected with CRF1R. Male Wistar rats were bilaterally microinjected with CRF in a dose of 0.2 μg/1 μl/site or with the specific agonist of CRF1R, stressin 1 (0.2-0.0125 μg/1 μl/site) into the Fr2 area. The elevated plus maze (EPM) test was performed 30 min later to assess the anxiolysis. An involvement of noradrenergic receptors in the CRF induced anxiolytic-like effect in the Fr2 was studied by pretreatment with the alpha1 antagonist prazosin, alpha2 agonist clonidine, alpha2 antagonist RS 79948 or beta antagonist propranolol, 20-30 min before CRF. The influence on anxiety was assessed in the EPM test. The results show that anxiolytic behavior after CRF microinjection into the Fr2 area seems to be mainly connected with the CRF1R activation because a similar effect was observed after stressin 1 administration and it was blocked by CRF1R antagonist. The results observed after administration of noradrenergic ligands indicated that anxiolytic effects of CRF in the Fr2 engaged the alpha1 and alpha2 adrenergic receptors but not beta receptors.
Collapse
Affiliation(s)
- Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna street, Poland.
| | - Barbara Zięba
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna street, Poland
| | - Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna street, Poland
| |
Collapse
|
6
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
7
|
Perez de la Mora M, Hernandez-Mondragon C, Crespo-Ramirez M, Rejon-Orantes J, Borroto-Escuela DO, Fuxe K. Conventional and Novel Pharmacological Approaches to Treat Dopamine-Related Disorders: Focus on Parkinson's Disease and Schizophrenia. Neuroscience 2019; 439:301-318. [PMID: 31349007 DOI: 10.1016/j.neuroscience.2019.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
The dopaminergic system integrated by cell groups distributed in several brain regions exerts a modulatory role in brain. Particularly important for this task are the mesencephalic dopamine neurons, which from the substantia nigra and ventral tegmental area project to the dorsal striatum and the cortical/subcortical limbic systems, respectively. Dopamine released from these neurons operates mainly via the short distance extrasynaptic volume transmission and activates five different dopaminergic receptor subtypes modulating synaptic GABA and glutamate transmission. To accomplish this task dopaminergic neurons keep mutual modulating interactions with neurons of other neurotransmitter systems, including allosteric receptor-receptor interactions in heteroreceptor complexes. As a result of its modulatory role dopaminergic mechanisms are involved in either the etiology or physiopathology of many brain diseases such as Parkinsońs disease and schizophrenia. The aim of this work is to review some novel and conventional approaches that either have been used or are currently employed to treat these diseases. Particular attention is paid to the approaches derived from the knowledge recently acquired in the realm of receptor-receptor interactions taking place through multiple dopamine heteroreceptor complexes in the plasma membrane. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Miguel Perez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Minerva Crespo-Ramirez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Rejon-Orantes
- Pharmacobiology Experimental laboratory, Faculty of Medicine, Universidad Autónoma de Chiapas
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Devoto P, Flore G, Saba P, Scheggi S, Mulas G, Gambarana C, Spiga S, Gessa GL. Noradrenergic terminals are the primary source of α 2-adrenoceptor mediated dopamine release in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:97-103. [PMID: 30472147 DOI: 10.1016/j.pnpbp.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022]
Abstract
In various psychiatric disorders, deficits in dopaminergic activity in the prefrontal cortex (PFC) are implicated. Treatments involving selective augmentation of dopaminergic activity in the PFC primarily depend on the inhibition of α2-adrenoreceptors singly or in combination with the inhibition of the norepinephrine transporter (NET). We aimed to clarify the relative contribution of dopamine (DA) release from noradrenergic and dopaminergic terminals to DA output induced by blockade of α2-adrenoreceptors and NET. To this end, we assessed whether central noradrenergic denervation modified catecholamine output in the medial PFC (mPFC) of rats elicited by atipamezole (an α2-adrenoreceptor antagonist), nisoxetine (an NET inhibitor), or their combination. Intraventricular administration of anti-dopamine-beta-hydroxylase-saporin (aDBH) caused a loss of DBH-positive fibers in the mPFC and almost total depletion of tissue and extracellular NE level; however, it did not reduce tissue DA level but increased extracellular DA level by 70% in the mPFC. Because noradrenergic denervation should have caused a loss of NET and reduced NE level at α2-adrenoceptors, the actual effect of an aDBH-induced lesion on DA output elicited by blockade of α2-adrenoceptors and NET was evaluated by comparing denervated and control rats following blockade of α2-adrenoceptors and NET with atipamezole and nisoxetine, respectively. In the control rats, extracellular NE and DA levels increased by approximately 150% each with 3 mg/kg atipamezole; 450% and 230%, respectively, with 3 mg/kg nisoxetine; and 2100% and 600%, respectively, with combined atipamezole and nisoxetine. In the denervated rats, consistent with the loss of NET, nisoxetine failed to modify extracellular DA level, whereas atipamezole, despite the lack of NE-induced stimulation of α2-adrenoceptors, increased extracellular DA level by approximately 30%. Overall, these results suggest that atipamezole-induced DA release mainly originated from noradrenergic terminals, possibly through the inhibition of α2-autoreceptors. Furthermore, while systemic and local administration of the α2-adrenoceptor agonist clonidine into the mPFC of the controls rats reduced extracellular NE level by 80% and 60%, respectively, and extracellular DA level by 50% and 60%, respectively, it failed to reduce DA output in the denervated rats, consistent with the loss of α2-autoreceptors. To eliminate the possibility that denervation reduced DA release potential via the effects at dopaminergic terminals in the mPFC, the effect of systemic administration of the D2-DA antagonist raclopride (0.5 mg/kg IP) on DA output was analyzed. In the control rats, raclopride was found to be ineffective when administered alone, but it increased extracellular DA level by 380% following NET inhibition with nisoxetine. In the denervated rats, as expected due to the loss of NET, raclopride-alone or with nisoxetine-increased DA release to approximately the same level as that observed in the control rats after NET inhibition. Overall, these results suggest that noradrenergic terminals in the mPFC are the primary source of DA released by blockade of α2-adrenoreceptors and NET and that α2-autoreceptors, and not α2-heteroreceptors, mediate DA output induced by α2-adrenoceptor blockade.
Collapse
Affiliation(s)
- Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience, INN, Section of Cagliari, Italy.
| | - Giovanna Flore
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giovanna Mulas
- Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Saturnino Spiga
- Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy; National Research Council, CNR, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
9
|
Asari Y, Ikeda Y, Tateno A, Okubo Y, Iijima T, Suzuki H. Acute tramadol enhances brain activity associated with reward anticipation in the nucleus accumbens. Psychopharmacology (Berl) 2018; 235:2631-2642. [PMID: 29951769 DOI: 10.1007/s00213-018-4955-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tramadol is an analgesic with monoamine reuptake inhibition and μ-opioid receptor activation. Although tramadol has been widely used for treatment of various pain conditions, there is controversy over the risk of abuse potential. We examined the effects of tramadol on the reward system in humans using functional magnetic resonance imaging (fMRI) to assess the potential of tramadol for drug abuse or dependence. METHODS A randomized, double-blind, placebo-controlled, crossover study was conducted for 19 healthy adults under tramadol or placebo. In association with subjective mood questionnaires, monetary incentive delay (MID) task was performed to assess the neural response to reward anticipation during fMRI. Subjective mood measures and blood oxygenation level-dependent (BOLD) signal during gain and loss anticipation were compared between tramadol and placebo. RESULTS Tramadol significantly reduced anxiety (Z = - 2.513, p = 0.012) and enhanced vigor (Z = - 2.725, p = 0.006) compared with placebo. By Mood Rating Scale, tramadol provoked contented (Z = - 2.316, p = 0.021), relaxed (Z = - 2.236, p = 0.025), and amicable feelings (Z = - 2.015, p = 0.044) as well as increased alertness (Z = - 1.972, p = 0.049) and contentedness domains (Z = - 2.174, p = 0.030) compared with placebo. Several brain regions including nucleus accumbens (NAc) were activated during gain anticipation in the MID task under both tramadol and placebo. Tramadol increased the %BOLD signal change in NAc at +¥500 cue significantly more than the placebo (Z = - 2.295, p = 0.022). CONCLUSION Tramadol enhances the reward system and thereby may have abuse potential or precipitate drug abuse in human.
Collapse
Affiliation(s)
- Yuki Asari
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Yumiko Ikeda
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Takehiko Iijima
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
10
|
Maia TV, Conceição VA. Dopaminergic Disturbances in Tourette Syndrome: An Integrative Account. Biol Psychiatry 2018; 84:332-344. [PMID: 29656800 DOI: 10.1016/j.biopsych.2018.02.1172] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/04/2018] [Accepted: 02/25/2018] [Indexed: 12/28/2022]
Abstract
Tourette syndrome (TS) is thought to involve dopaminergic disturbances, but the nature of those disturbances remains controversial. Existing hypotheses suggest that TS involves 1) supersensitive dopamine receptors, 2) overactive dopamine transporters that cause low tonic but high phasic dopamine, 3) presynaptic dysfunction in dopamine neurons, or 4) dopaminergic hyperinnervation. We review evidence that contradicts the first two hypotheses; we also note that the last two hypotheses have traditionally been considered too narrowly, explaining only small subsets of findings. We review all studies that have used positron emission tomography and single-photon emission computerized tomography to investigate the dopaminergic system in TS. The seemingly diverse findings from those studies have typically been interpreted as pointing to distinct mechanisms, as evidenced by the various hypotheses concerning the nature of dopaminergic disturbances in TS. We show, however, that the hyperinnervation hypothesis provides a simple, parsimonious explanation for all such seemingly diverse findings. Dopaminergic hyperinnervation likely causes increased tonic and phasic dopamine. We have previously shown, using a computational model of the role of dopamine in basal ganglia, that increased tonic dopamine and increased phasic dopamine likely increase the propensities to express and learn tics, respectively. There is therefore a plausible mechanistic link between dopaminergic hyperinnervation and TS via increased tonic and phasic dopamine. To further bolster this argument, we review evidence showing that all medications that are effective for TS reduce signaling by tonic dopamine, phasic dopamine, or both.
Collapse
Affiliation(s)
- Tiago V Maia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Vasco A Conceição
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Gálosi R, Petykó Z, Kállai V, Tóth A, Ollmann T, Péczely L, Kovács A, Berta B, Lénárd L. Destruction of noradrenergic terminals increases dopamine concentration and reduces dopamine metabolism in the medial prefrontal cortex. Behav Brain Res 2018; 344:57-64. [PMID: 29454007 DOI: 10.1016/j.bbr.2018.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023]
Abstract
Effects of destroyed noradrenergic (NE) innervation in the medial prefrontal cortex (mPFC) were examined on dopamine (DA) content and metabolism. Six-hydroxy-DOPA (6-OHDOPA) or 6-hydroxy-dopamine (6-OHDA) in combination with a potent DA reuptake inhibitor GBR 12935 or 6-OHDA were injected bilaterally into the mPFC in separate groups of animals. In addition, GBR 12935 or vehicle was injected into the mPFC in two other groups of animals as control experiments. NE and DA concentrations from postmortem tissue of the mPFC were measured using HPLC with electrochemical detection. In addition, extracellular NE, DA and DOPAC levels were determined using in vivo microdialysis after the 6-OHDA lesion in combination with GBR 12935 pretreatment in the mPFC. Using reverse microdialysis of alpha-2-adrenoreceptor antagonist yohimbine, we tested the remaining activity of NE innervation and the extracellular concentration of DA and DOPAC. NE and DA concentrations from postmortem tissue of the mPFC showed that 6-OHDOPA lesion reduced NE concentration to 76%, which was a non-significant alteration, however it enhanced significantly DA concentration to 186% compared to vehicle. After 6-OHDA lesion with GBR 12935 pretreatment, concentration of NE significantly decreased to 51% and DA level increased to 180%. 6-OHDA lesion without GBR 12635 pretreatment decreased NE concentration to 23% and DA concentration to 67%. In the microdialysis experiment, after 6-OHDA lesion with GBR 12935 pretreatment, extracellular NE levels were not detectable, whereas extracellular DA levels were increased and DOPAC levels were decreased compared to controls. Reverse microdialysis of yohimbine demonstrated that the residual NE innervation was able to increase NE level and DA levels, but DOPAC concentration remained low after lesion of the NE terminals. These findings suggest that the damage of NE innervation in the mPFC may alter extracellular DA level due to a reduced DA clearance.
Collapse
Affiliation(s)
- Rita Gálosi
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary.
| | - Zoltán Petykó
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary; Molecular Neuroendocrinology Research Group, University of Pécs, Szentágothai Research Center, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Attila Tóth
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary; Molecular Neuroendocrinology Research Group, University of Pécs, Szentágothai Research Center, Pécs, Hungary
| |
Collapse
|
12
|
Sánchez-Soto M, Casadó-Anguera V, Yano H, Bender BJ, Cai NS, Moreno E, Canela EI, Cortés A, Meiler J, Casadó V, Ferré S. α 2A- and α 2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands. Mol Neurobiol 2018; 55:8438-8454. [PMID: 29552726 DOI: 10.1007/s12035-018-1004-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/07/2018] [Indexed: 01/12/2023]
Abstract
The poor norepinephrine innervation and high density of Gi/o-coupled α2A- and α2C-adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D2-like receptor ligands, such as the D3 receptor agonist 7-OH-PIPAT and the D4 receptor agonist RO-105824, to α2-adrenoceptors in cortical and striatal tissue, which express α2A-adrenoceptors and both α2A- and α2C-adrenoceptors, respectively. The affinity of dopamine for α2-adrenoceptors was found to be similar to that for D1-like and D2-like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α2A- and α2C-adrenoceptors. Their ability to activate Gi/o proteins through α2A- and α2C-adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α2-adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α2A- and α2C-adrenoceptors was nearly identical to its binding to the crystallized D3 receptor. Therefore, we provide conclusive evidence that α2A- and α2C-adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D2-like receptor ligands, which calls for revisiting previous studies with those ligands.
Collapse
Affiliation(s)
- Marta Sánchez-Soto
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Hideaki Yano
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Brian Joseph Bender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Antoni Cortés
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Jens Meiler
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Biomedicine, University of Barcelona, Barcelona, Spain.
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|