1
|
Hoogenboom WS, Rubin TG, Ambadipudi K, Cui MH, Ye K, Foster H, Elkouby E, Liu J, Branch CA, Lipton ML. Evolving brain and behaviour changes in rats following repetitive subconcussive head impacts. Brain Commun 2023; 5:fcad316. [PMID: 38046094 PMCID: PMC10691880 DOI: 10.1093/braincomms/fcad316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/26/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023] Open
Abstract
There is growing concern that repetitive subconcussive head impacts, independent of concussion, alter brain structure and function, and may disproportionately affect the developing brain. Animal studies of repetitive subconcussive head impacts are needed to begin to characterize the pathological basis and mechanisms underlying imaging and functional effects of repetitive subconcussive head impacts seen in humans. Since repetitive subconcussive head impacts have been largely unexplored in animals, we aimed to characterize the evolution of imaging, behavioural and pathological effects of repetitive subconcussive head impacts in awake adolescent rodents. Awake male and female Sprague Dawley rats (postnatal Day 35) received 140 closed-head impacts over the course of a week. Impacted and sham-impacted animals were restrained in a plastic cone, and unrestrained control animals were included to account for effects of restraint and normal development. Animals (n = 43) underwent repeated diffusion tensor imaging prior to and over 1 month following the final impact. A separate cohort (n = 53) was assessed behaviourally for fine motor control, emotional-affective behaviour and memory at acute and chronic time points. Histological and immunohistochemical analyses, which were exploratory in nature due to smaller sample sizes, were completed at 1 month following the final impact. All animals tolerated the protocol with no overt changes in behaviour or stigmata of traumatic brain injury, such as alteration of consciousness, intracranial haemorrhage or skull fracture. We detected longitudinal, sex-dependent diffusion tensor imaging changes (fractional anisotropy and axial diffusivity decline) in corpus callosum and external capsule of repetitive subconcussive head impact animals, which diverged from both sham and control. Compared to sham animals, repetitive subconcussive head impact animals exhibited acute but transient mild motor deficits. Repetitive subconcussive head impact animals also exhibited chronic anxiety and spatial memory impairment that differed from the control animals, but these effects were not different from those seen in the sham condition. We observed trends in the data for thinning of the corpus callosum as well as regions with elevated Iba-1 in the corpus callosum and cerebral white matter among repetitive subconcussive head impact animals. While replication with larger study samples is needed, our findings suggest that subconcussive head impacts cause microstructural tissue changes in the developing rat brain, which are detectable with diffusion tensor imaging, with suggestion of correlates in tissue pathology and behaviour. The results point to potential mechanisms underpinning consequences of subconcussive head impacts that have been described in humans. The congruence of our imaging findings with human subconcussive head impacts suggests that neuroimaging could serve as a translational bridge to advance study of injury mechanisms and development of interventions.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Clinical Investigation, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Todd G Rubin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Kamalakar Ambadipudi
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Min-Hui Cui
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Henry Foster
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Esther Elkouby
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Jinyuan Liu
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Craig A Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, NewYork, NY 10032, USA
| |
Collapse
|
2
|
Deshetty UM, Periyasamy P. Potential Biomarkers in Experimental Animal Models for Traumatic Brain Injury. J Clin Med 2023; 12:3923. [PMID: 37373618 DOI: 10.3390/jcm12123923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted disorder that has become a significant public health concern worldwide due to its contribution to mortality and morbidity. This condition encompasses a spectrum of injuries, including axonal damage, contusions, edema, and hemorrhage. Unfortunately, specific effective therapeutic interventions to improve patient outcomes following TBI are currently lacking. Various experimental animal models have been developed to mimic TBI and evaluate potential therapeutic agents to address this issue. These models are designed to recapitulate different biomarkers and mechanisms involved in TBI. However, due to the heterogeneous nature of clinical TBI, no single experimental animal model can effectively mimic all aspects of human TBI. Accurate emulation of clinical TBI mechanisms is also tricky due to ethical considerations. Therefore, the continued study of TBI mechanisms and biomarkers, of the duration and severity of brain injury, treatment strategies, and animal model optimization is necessary. This review focuses on the pathophysiology of TBI, available experimental TBI animal models, and the range of biomarkers and detection methods for TBI. Overall, this review highlights the need for further research to improve patient outcomes and reduce the global burden of TBI.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Eyolfson E, Bhatt D, Wang M, Lohman AW, Mychasiuk R. Paternal exposure to exercise and/or caffeine and alcohol modify offspring behavioral and pathophysiological recovery from repetitive mild traumatic brain injury in adolescence. GENES, BRAIN, AND BEHAVIOR 2021; 20:egbb12736. [PMID: 33876557 DOI: 10.1111/gbb.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022]
Abstract
Only recently has the scope of parental research expanded to include the paternal sphere with epidemiological studies implicating stress, nutrition and alcohol consumption in the neurobiological and behavioral characteristics of offspring. This study was designed to determine if paternal exposure to caffeine, alcohol and exercise prior to conception would improve or exacerbate offspring recovery from adolescent repetitive mild traumatic brain injury (RmTBI). Sires received 7 weeks of standard drinking water, or caffeine and ethanol and were housed in regular cages or cages with running wheels, prior to being mated to control females. At postnatal day 40, offspring were administered RmTBI or sham injuries and were assessed for post concussive symptomology. Post-mortem quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess gene expression in the prefrontal cortex (PFC), nucleus accumbens (NAc) and changes in telomere length. Additionally, enzyme-linked immunosorbent assay (ELISA's) were run on serum to detect levels of cytokines, chemokines and sex hormones. Paternal experience did not improve or exacerbate RmTBI behavioral outcomes. However, female and male offspring displayed unique responses to RmTBI and paternal experience, resulting in changes in physical, behavioral and molecular outcomes. Injury and paternal exercise modified changes in female offspring, whereas male offspring were affected by paternal exercise, caffeine and alcohol treatment. Additionally, paternal experience and RmTBI modified expression of many genes in the PFC, NAc, telomere length and levels of sex hormones. Although further exploration is required to understand the heterogeneity that exists in disease risk and resiliency, this study provides corroborating evidence that paternal experiences prior to conception influences offspring development.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Dhyey Bhatt
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melinda Wang
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Alexander W Lohman
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Couture V, Delisle S, Mercier A, Pennings G. The other face of advanced paternal age: a scoping review of its terminological, social, public health, psychological, ethical and regulatory aspects. Hum Reprod Update 2021; 27:305-323. [PMID: 33201989 DOI: 10.1093/humupd/dmaa046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is a global tendency for parents to conceive children later in life. The maternal dimension of the postponement transition has been thoroughly studied, but interest in the paternal side is more recent. For the moment, most literature reviews on the topic have focused on the consequences of advanced paternal age (APA) on fertility, pregnancy and the health of the child. OBJECTIVE AND RATIONALE The present review seeks to move the focus away from the biological and medical dimensions of APA and synthesise the knowledge of the other face of APA. SEARCH METHODS We used the scoping review methodology. Searches of interdisciplinary articles databases were performed with keywords pertaining to APA and its dimensions outside of biology and medicine. We included scientific articles, original research, essays, commentaries and editorials in the sample. The final sample of 177 documents was analysed with qualitative thematic analysis. OUTCOMES We identified six themes highlighting the interdisciplinary nature of APA research. The 'terminological aspects' highlight the lack of consensus on the definition of APA and the strategies developed to offer alternatives. The 'social aspects' focus on the postponement transition towards reproducing later in life and its cultural dimensions. The 'public health aspects' refer to attempts to analyse APA as a problem with wider health and economic implications. The 'psychological aspects' focus on the consequences of APA and older fatherhood on psychological characteristics of the child. The 'ethical aspects' reflect on issues of APA emerging at the intersection of parental autonomy, children's welfare and social responsibility. The 'regulatory aspects' group different suggestions to collectively approach the implications of APA. Our results show that the field of APA is still in the making and that evidence is lacking to fully address the issues of APA. The review suggests promising avenues of research such as introducing the voice of fathers of advanced age into the research agenda. WIDER IMPLICATIONS The results of this review will be useful for developing policies and preconception health interventions that consider and include prospective fathers of advanced age.
Collapse
Affiliation(s)
- Vincent Couture
- Faculty of Nursing, Université Laval, Québec G1V 0A6, Canada
- Research Center of the CHU de Québec-Université Laval, Québec G1L 3L5, Canada
| | - Stéphane Delisle
- Research Center of the CHU de Québec-Université Laval, Québec G1L 3L5, Canada
| | - Alexis Mercier
- Faculty of Nursing, Université Laval, Québec G1V 0A6, Canada
| | - Guido Pennings
- Department of Philosophy and Moral Sciences, Bioethics Institute Ghent, Ghent University, Gent 9000, Belgium
| |
Collapse
|
5
|
To XV, Nasrallah FA. A roadmap of brain recovery in a mouse model of concussion: insights from neuroimaging. Acta Neuropathol Commun 2021; 9:2. [PMID: 33407949 PMCID: PMC7789702 DOI: 10.1186/s40478-020-01098-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Concussion or mild traumatic brain injury is the most common form of traumatic brain injury with potentially long-term consequences. Current objective diagnosis and treatment options are limited to clinical assessment, cognitive rest, and symptom management, which raises the real danger of concussed patients being released back into activities where subsequent and cumulative injuries may cause disproportionate damages. This study conducted a cross-sectional multi-modal examination investigation of the temporal changes in behavioural and brain changes in a mouse model of concussion using magnetic resonance imaging. Sham and concussed mice were assessed at day 2, day 7, and day 14 post-sham or injury procedures following a single concussion event for motor deficits, psychological symptoms with open field assessment, T2-weighted structural imaging, diffusion tensor imaging (DTI), neurite orientation density dispersion imaging (NODDI), stimulus-evoked and resting-state functional magnetic resonance imaging (fMRI). Overall, a mismatch in the temporal onsets and durations of the behavioural symptoms and structural/functional changes in the brain was seen. Deficits in behaviour persisted until day 7 post-concussion but recovered at day 14 post-concussion. DTI and NODDI changes were most extensive at day 7 and persisted in some regions at day 14 post-concussion. A persistent increase in connectivity was seen at day 2 and day 14 on rsfMRI. Stimulus-invoked fMRI detected increased cortical activation at day 7 and 14 post-concussion. Our results demonstrate the capabilities of advanced MRI in detecting the effects of a single concussive impact in the brain, and highlight a mismatch in the onset and temporal evolution of behaviour, structure, and function after a concussion. These results have significant translational impact in developing methods for the detection of human concussion and the time course of brain recovery.
Collapse
|
6
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Salberg S, Noel M, Burke NN, Vinall J, Mychasiuk R. Utilization of a rodent model to examine the neurological effects of early life adversity on adolescent pain sensitivity. Dev Psychobiol 2020; 62:386-399. [DOI: 10.1002/dev.21922] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Sabrina Salberg
- Department of Psychology University of Calgary Calgary AB Canada
- Alberta Children’s Hospital Research Institute University of Calgary Calgary AB Canada
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
| | - Melanie Noel
- Department of Psychology University of Calgary Calgary AB Canada
- Alberta Children’s Hospital Research Institute University of Calgary Calgary AB Canada
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
| | - Nikita N. Burke
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Comparative Biology & Experimental Medicine, and Physiology & Pharmacology University of Calgary Calgary AB Canada
| | - Jillian Vinall
- Department of Anesthesia University of Calgary Calgary AB Canada
| | - Richelle Mychasiuk
- Department of Psychology University of Calgary Calgary AB Canada
- Alberta Children’s Hospital Research Institute University of Calgary Calgary AB Canada
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
| |
Collapse
|
8
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
9
|
Hiskens MI, Angoa-Pérez M, Schneiders AG, Vella RK, Fenning AS. Modeling sports-related mild traumatic brain injury in animals-A systematic review. J Neurosci Res 2019; 97:1194-1222. [PMID: 31135069 DOI: 10.1002/jnr.24472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Sports-related head trauma has emerged as an important public health issue, as mild traumatic brain injuries (mTBIs) may result in neurodegenerative disorders such as chronic traumatic encephalopathy (CTE). Research into mTBI and CTE pathophysiology are difficult to undertake in athletes, with observational trials and post-mortem analysis the current mainstays. Thus, animal models play an important role in the study of mTBI, however, traditional animal models have focused on acute, severe injuries rather than the more typical mTBI's seen in sport injuries. Recently, a number of animal models have been developed that are both appropriately scaled and biomechanically relevant to the forces sustained by athletes. This review aimed to examine the literature for variables included in these animal models, and the resulting neurotrauma as evidenced by pathology and behavioral deficits. A systematic search of the literature was performed in multiple electronic databases. The inclusion criteria required mimicry of athlete mTBI conditions: freedom of head movement, lack of surgical alteration of the skull, and application of direct contact force. Studies were analyzed for variables including apparatus design features (impact force, change in animal head velocity, and kinetic energy transfer to the head), demonstrated pathology (phosphorylated tau, TDP-43 aggregation, diffuse axonal injury, gliosis, cytokine inflammation response, and genetic integrity), and behavioral changes. These studies suggested that appropriate animal models can assist in understanding the pathological and functional outcomes of athlete mTBI, and could be used as a platform for future studies of diagnostic/prognostic markers and in the development of treatment interventions.
Collapse
Affiliation(s)
- Matthew I Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Mariana Angoa-Pérez
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Anthony G Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Branyan, Australia
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
10
|
Zamani A, Mychasiuk R, Semple BD. Determinants of social behavior deficits and recovery after pediatric traumatic brain injury. Exp Neurol 2019; 314:34-45. [PMID: 30653969 DOI: 10.1016/j.expneurol.2019.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/29/2018] [Accepted: 01/12/2019] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) during early childhood is associated with a particularly high risk of developing social behavior impairments, including deficits in social cognition that manifest as reduced social interactions, with profound consequences for the individuals' quality of life. A number of pre-injury, post-injury, and injury-related factors have been identified or hypothesized to determine the extent of social behavior problems after childhood TBI. These include variables associated with the individual themselves (e.g. age, genetics, the injury severity, and extent of white matter damage), proximal environmental factors (e.g. family functioning, parental mental health), and more distal environmental factors (e.g. socioeconomic status, access to resources). In this review, we synthesize the available evidence demonstrating which of these determinants influence risk versus resilience to social behavior deficits after pediatric TBI, drawing upon the available clinical and preclinical literature. Injury-related pathology in neuroanatomical regions associated with social cognition and behaviors will also be described, with a focus on findings from magnetic resonance imaging and diffusion tensor imaging. Finally, study limitations and suggested future directions are highlighted. In summary, while no single variable can alone accurately predict the manifestation of social behavior problems after TBI during early childhood, an increased understanding of how both injury and environmental factors can influence social outcomes provides a useful framework for the development of more effective rehabilitation strategies aiming to optimize recovery for young brain-injured patients.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Monash University, Prahran, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Prahran, VIC, Australia; Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
11
|
Späni CB, Braun DJ, Van Eldik LJ. Sex-related responses after traumatic brain injury: Considerations for preclinical modeling. Front Neuroendocrinol 2018; 50:52-66. [PMID: 29753798 PMCID: PMC6139061 DOI: 10.1016/j.yfrne.2018.03.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) has historically been viewed as a primarily male problem, since men are more likely to experience a TBI because of more frequent participation in activities that increase risk of head injuries. This male bias is also reflected in preclinical research where mostly male animals have been used in basic and translational science. However, with an aging population in which TBI incidence is increasingly sex-independent due to falls, and increasing female participation in high-risk activities, the attention to potential sex differences in TBI responses and outcomes will become more important. These considerations are especially relevant in designing preclinical animal models of TBI that are more predictive of human responses and outcomes. This review characterizes sex differences following TBI with a special emphasis on the contribution of the female sex hormones, progesterone and estrogen, to these differences. This information is potentially important in developing and customizing TBI treatments.
Collapse
Affiliation(s)
- Claudia B Späni
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY 40536, USA.
| | - David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY 40536, USA.
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, B481, BBSRB, 741 S. Limestone Street, Lexington, KY 40536, USA; Department of Neuroscience, College of Medicine, University of Kentucky, UK Medical Center MN 150, Lexington, KY 40536, USA.
| |
Collapse
|
12
|
Yamakawa GR, Lengkeek C, Salberg S, Spanswick SC, Mychasiuk R. Behavioral and pathophysiological outcomes associated with caffeine consumption and repetitive mild traumatic brain injury (RmTBI) in adolescent rats. PLoS One 2017; 12:e0187218. [PMID: 29108016 PMCID: PMC5673214 DOI: 10.1371/journal.pone.0187218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
Given that caffeine consumption is exponentially rising in adolescents and they are at increased risk for repetitive mild traumatic brain injury (RmTBI), we sought to examine the pathophysiological outcomes associated with early life caffeine consumption and RmTBI. Adolescent male and female Sprague Dawley rats received either caffeine in the drinking water or normal water and were then randomly assigned to 3 mild injuries using our lateral impact device or 3 sham procedures. Following injury induction, behavioral outcomes were measured with a test battery designed to examine symptoms consistent with clinical manifestation of PCS (balance and motor coordination, anxiety, short-term working memory, and depressive-like behaviours). In addition, pathophysiological outcomes were examined with histological measures of volume and cellular proliferation in the dentate gyrus, as well as microglia activation in the ventromedial hypothalamus. Finally, modifications to expression of 12 genes (Adora2a, App, Aqp4, Bdnf, Bmal1, Clock, Cry, Gfap, Orx1, Orx2, Per, Tau), in the prefrontal cortex, hippocampus, and/or the hypothalamus were assessed. We found that chronic caffeine consumption in adolescence altered normal developmental trajectories, as well as recovery from RmTBI. Of particular importance, many of the outcomes exhibited sex-dependent responses whereby the sex of the animal modified response to caffeine, RmTBI, and the combination of the two. These results suggest that caffeine consumption in adolescents at high risk for RmTBI should be monitored.
Collapse
Affiliation(s)
- Glenn R. Yamakawa
- University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Connor Lengkeek
- University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Sabrina Salberg
- University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Simon C. Spanswick
- University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Richelle Mychasiuk
- University of Calgary, Department of Psychology, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
13
|
Hehar H, Ma I, Mychasiuk R. Intergenerational Transmission of Paternal Epigenetic Marks: Mechanisms Influencing Susceptibility to Post-Concussion Symptomology in a Rodent Model. Sci Rep 2017; 7:7171. [PMID: 28769086 PMCID: PMC5541091 DOI: 10.1038/s41598-017-07784-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/30/2017] [Indexed: 01/29/2023] Open
Abstract
Epigenetic transmission of phenotypic variance has been linked to paternal experiences prior to conception and during perinatal development. Previous reports indicate that paternal experiences increase phenotypic heterogeneity and may contribute to offspring susceptibility to post-concussive symptomology. This study sought to determine if epigenetic tags, specifically DNA methylation of promoter regions, are transmitted from rodent fathers to their sons. Using MethyLight, promoter methylation of specific genes involved in recovery from concussion and brain plasticity were analyzed in sperm and brain tissue. Promoter methylation in sperm differed based on paternal experience. Differences in methylation were often identified in both the sperm and brain tissue obtained from their sons, demonstrating transmission of epigenetic tags. For certain genes, methylation in the sperm was altered following a concussion suggesting that a history of brain injury may influence paternal transmission of traits. As telomere length is paternally inherited and linked to neurological health, this study examined paternally derived differences in telomere length, in both sperm and brain. Telomere length was consistent between fathers and their sons, and between brain and sperm, with the exception of the older fathers. Older fathers exhibited increased sperm telomere length, which was not evident in sperm or brain of their sons.
Collapse
Affiliation(s)
- Harleen Hehar
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Irene Ma
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Richelle Mychasiuk
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Department of Psychology, Calgary, Alberta, Canada.
| |
Collapse
|