1
|
Schranz C, Seo NJ. Cortical Sensorimotor Integration as a Neural Origin of Impaired Grip Force Direction Control following Stroke. Brain Sci 2024; 14:253. [PMID: 38539642 PMCID: PMC10968555 DOI: 10.3390/brainsci14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Stroke is a major cause of disability worldwide. Upper limb impairment is prevalent after stroke. One of the post-stroke manifestations is impaired grip force directional control contributing to diminished abilities to grip and manipulate objects necessary for activities of daily living. The objective of this study was to investigate the neural origin of the impaired grip force direction control following stroke. Due to the importance of online adjustment of motor output based on sensory feedback, it was hypothesized that grip force direction control would be associated with cortical sensorimotor integration in stroke survivors. METHODS Ten chronic stroke survivors participated in this study. Cortical sensorimotor integration was quantified by short latency afferent inhibition (SAI), which represents the responsiveness of the primary motor cortex to somatosensory input. Grip force direction control was assessed during paretic grip. RESULTS Grip force direction control was significantly associated with SAI. This relationship was independent of sensory impairment level. CONCLUSIONS Cortical sensorimotor integration may play a significant role in the grip force direction control important for gripping and manipulating objects with the affected hand following stroke. This knowledge may be used to inform personalized rehabilitation treatment. For example, for patients with impaired grip force direction control, behavioral therapy focusing on feedback motor control, augmented by use of brain stimulation to reinforce cortical sensorimotor integration such as paired associative stimulation, may be applied.
Collapse
Affiliation(s)
- Christian Schranz
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H. Johnson VA Health Care System, Charleston, SC 20401, USA
| | - Na Jin Seo
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H. Johnson VA Health Care System, Charleston, SC 20401, USA
- Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Altermatt M, Thomas FA, Wenderoth N. Movement predictability modulates sensorimotor processing. Front Hum Neurosci 2023; 17:1237407. [PMID: 38053650 PMCID: PMC10694232 DOI: 10.3389/fnhum.2023.1237407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction An important factor for optimal sensorimotor control is how well we are able to predict sensory feedback from internal and external sources during movement. If predictability decreases due to external disturbances, the brain is able to adjust muscle activation and the filtering of incoming sensory inputs. However, little is known about sensorimotor adjustments when predictability is increased by availability of additional internal feedback. In the present study we investigated how modifications of internal and external sensory feedback influence the control of muscle activation and gating of sensory input. Methods Co-activation of forearm muscles, somatosensory evoked potentials (SEP) and short afferent inhibition (SAI) were assessed during three object manipulation tasks designed to differ in the predictability of sensory feedback. These included manipulation of a shared object with both hands (predictable coupling), manipulation of two independent objects without (uncoupled) and with external interference on one of the objects (unpredictable coupling). Results We found a task-specific reduction in co-activation during the predictable coupling compared to the other tasks. Less sensory gating, reflected in larger subcortical SEP amplitudes, was observed in the unpredictable coupling task. SAI behavior was closely linked to the subcortical SEP component indicating an important function of subcortical sites in predictability related SEP gating and their direct influence on M1 inhibition. Discussion Together, these findings suggest that the unpredictable coupling task cannot only rely on predictive forward control and is compensated by enhancing co-activation and increasing the saliency for external stimuli by reducing sensory gating at subcortical level. This behavior might serve as a preparatory step to compensate for external disturbances and to enhance processing and integration of all incoming external stimuli to update the current sensorimotor state. In contrast, predictive forward control is accurate in the predictable coupling task due to the integrated sensory feedback from both hands where sensorimotor resources are economized by reducing muscular co-activation and increasing sensory gating.
Collapse
|
3
|
Torres FDF, Ramalho BL, Rodrigues MR, Schmaedeke AC, Moraes VH, Reilly KT, Carvalho RDP, Vargas CD. Plasticity of face-hand sensorimotor circuits after a traumatic brachial plexus injury. Front Neurosci 2023; 17:1221777. [PMID: 37609451 PMCID: PMC10440702 DOI: 10.3389/fnins.2023.1221777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Background Interactions between the somatosensory and motor cortices are of fundamental importance for motor control. Although physically distant, face and hand representations are side by side in the sensorimotor cortex and interact functionally. Traumatic brachial plexus injury (TBPI) interferes with upper limb sensorimotor function, causes bilateral cortical reorganization, and is associated with chronic pain. Thus, TBPI may affect sensorimotor interactions between face and hand representations. Objective The aim of this study was to investigate changes in hand-hand and face-hand sensorimotor integration in TBPI patients using an afferent inhibition (AI) paradigm. Method The experimental design consisted of electrical stimulation (ES) applied to the hand or face followed by transcranial magnetic stimulation (TMS) to the primary motor cortex to activate a hand muscle representation. In the AI paradigm, the motor evoked potential (MEP) in a target muscle is significantly reduced when preceded by an ES at short-latency (SAI) or long-latency (LAI) interstimulus intervals. We tested 18 healthy adults (control group, CG), evaluated on the dominant upper limb, and nine TBPI patients, evaluated on the injured or the uninjured limb. A detailed clinical evaluation complemented the physiological investigation. Results Although hand-hand SAI was present in both the CG and the TBPI groups, hand-hand LAI was present in the CG only. Moreover, less AI was observed in TBPI patients than the CG both for face-hand SAI and LAI. Conclusion Our results indicate that sensorimotor integration involving both hand and face sensorimotor representations is affected by TBPI.
Collapse
Affiliation(s)
- Fernanda de Figueiredo Torres
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia Lima Ramalho
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Marcelle Ribeiro Rodrigues
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Schmaedeke
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Moraes
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen T. Reilly
- Trajectoires Team, Lyon Neuroscience Research Center, Lyon, France
- University UCBL Lyon 1, University of Lyon, Lyon, France
| | - Raquel de Paula Carvalho
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
- Laboratory of Child Development and Motricity, Department of Human Movement Science, Institute of Health and Society, Universidade Federal de São Paulo, Santos, Brazil
| | - Claudia D. Vargas
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Kato T, Sasaki A, Nakazawa K. Short-and long-latency afferent inhibition of the human leg motor cortex by H-reflex subthreshold electrical stimulation at the popliteal fossa. Exp Brain Res 2023; 241:249-261. [PMID: 36481937 PMCID: PMC9870969 DOI: 10.1007/s00221-022-06497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
In humans, peripheral sensory stimulation inhibits subsequent motor evoked potentials (MEPs) induced by transcranial magnetic stimulation; this process is referred to as short- or long-latency afferent inhibition (SAI or LAI, respectively), depending on the inter-stimulus interval (ISI) length. Although upper limb SAI and LAI have been well studied, lower limb SAI and LAI remain under-investigated. Here, we examined the time course of the soleus (SOL) muscle MEP following electrical tibial nerve (TN) stimulation at the popliteal fossa at ISIs of 20-220 ms. When the conditioning stimulus intensity was three-fold the perceptual threshold, MEP amplitudes were inhibited at an ISI of 220 ms, but not at shorter ISIs. TN stimulation just below the Hoffman (H)-reflex threshold intensity inhibited MEP amplitudes at ISIs of 30, 35, 100, 180 and 200 ms. However, the relationship between MEP inhibition and the P30 latency of somatosensory evoked potentials (SEPs) did not show corresponding ISIs at the SEP P30 latency that maximizes MEP inhibition. To clarify whether the site of afferent-induced MEP inhibition occurs at the cortical or spinal level, we examined the time course of SOL H-reflex following TN stimulation. H-reflex amplitudes were not significantly inhibited at ISIs where MEP inhibition occurred but at an ISI of 120 ms. Our findings indicate that stronger peripheral sensory stimulation is required for lower limb than for upper limb SAI and LAI and that lower limb SAI and LAI are of cortical origin. Moreover, the direct pathway from the periphery to the primary motor cortex may contribute to lower limb SAI.
Collapse
Affiliation(s)
- Tatsuya Kato
- grid.26999.3d0000 0001 2151 536XGraduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, 153-8902 Tokyo, Japan ,grid.54432.340000 0001 0860 6072Japan Society for the Promotion of Science, Tokyo, 102-0083 Japan
| | - Atsushi Sasaki
- grid.54432.340000 0001 0860 6072Japan Society for the Promotion of Science, Tokyo, 102-0083 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, 560-8531 Japan
| | - Kimitaka Nakazawa
- grid.26999.3d0000 0001 2151 536XGraduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| |
Collapse
|
5
|
Ramalho BL, Moly J, Raffin E, Bouet R, Harquel S, Farnè A, Reilly KT. Face-hand sensorimotor interactions revealed by afferent inhibition. Eur J Neurosci 2021; 55:189-200. [PMID: 34796553 DOI: 10.1111/ejn.15536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Reorganization of the sensorimotor cortex following permanent (e.g., amputation) or temporary (e.g., local anaesthesia) deafferentation of the hand has revealed large-scale plastic changes between the hand and face representations that are accompanied by perceptual correlates. The physiological mechanisms underlying this reorganization remain poorly understood. The aim of this study was to investigate sensorimotor interactions between the face and hand using an afferent inhibition transcranial magnetic stimulation protocol in which the motor evoked potential elicited by the magnetic pulse is inhibited when it is preceded by an afferent stimulus. We hypothesized that if face and hand representations in the sensorimotor cortex are functionally coupled, then electrocutaneous stimulation of the face would inhibit hand muscle motor responses. In two separate experiments, we delivered an electrocutaneous stimulus to either the skin over the right upper lip (Experiment 1) or right cheek (Experiment 2) and recorded muscular activity from the right first dorsal interosseous. Both lip and cheek stimulation inhibited right first dorsal interosseous motor evoked potentials. To investigate the specificity of this effect, we conducted two additional experiments in which electrocutaneous stimulation was applied to either the right forearm (Experiment 3) or right upper arm (Experiment 4). Forearm and upper arm stimulation also significantly inhibited the right first dorsal interosseous motor evoked potentials, but this inhibition was less robust than the inhibition associated with face stimulation. These findings provide the first evidence for face-to-hand afferent inhibition.
Collapse
Affiliation(s)
- Bia Lima Ramalho
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Laboratory of Neurobiology II, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, Brazil
| | - Julien Moly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| | - Estelle Raffin
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Romain Bouet
- University UCBL Lyon 1, University of Lyon, Lyon, France.,Brain Dynamics and Cognition Team - DyCog, Lyon Neuroscience Research Center, INSERM U1028, CRNS-UMR5292, Lyon, France
| | - Sylvain Harquel
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.,Laboratoire de Psychologie et NeuroCognition - LPNC, University Grenoble Alpes, CNRS UMR5105, Grenoble, France.,IRMaGe, University Grenoble-Alpes, CHU Grenoble Alpes, INSERM US17, CNRS UMS3552, Grenoble, France
| | - Alessandro Farnè
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Hospices Civils de Lyon, Neuro-immersion, Mouvement and Handicap, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Karen T Reilly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| |
Collapse
|
6
|
Kojima S, Miyaguchi S, Yokota H, Saito K, Inukai Y, Otsuru N, Onishi H. The Number or Type of Stimuli Used for Somatosensory Stimulation Affected the Modulation of Corticospinal Excitability. Brain Sci 2021; 11:brainsci11111494. [PMID: 34827493 PMCID: PMC8615945 DOI: 10.3390/brainsci11111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
Motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) a few milliseconds after this cortical activity following electrical stimulation (ES) result in an inhibition comparable to that by TMS alone; this is called short-latency afferent inhibition (SAI). Cortical activity is observed after mechanical tactile stimulation (MS) and is affected by the number of stimuli by ES. We determined the effects of somatosensory stimulus methods and multiple conditioning stimuli on SAI in 19 participants. In experiment 1, the interstimulus intervals between the conditioning stimulation and TMS were 25, 27 and 29 ms for ES and 28, 30 and 32 ms for MS. In experiment 2, we used 1, 2, 3 and 4 conditioning stimulations of ES and MS. The interstimulus interval between the ES or MS and TMS was 27 or 30 ms, respectively. In experiment 1, MEPs were significantly decreased in both the ES and MS conditions. In experiment 2, MEPs after ES were significantly decreased in all conditions. Conversely, MEPs after MS were significantly decreased after one stimulus and increased after four stimulations, indicating the SAI according to the number of stimuli. Therefore, the somatosensory stimulus methods and multiple conditioning stimuli affected the SAI.
Collapse
|
7
|
Corticospinal Tract Wiring and Brain Lesion Characteristics in Unilateral Cerebral Palsy: Determinants of Upper Limb Motor and Sensory Function. Neural Plast 2018; 2018:2671613. [PMID: 30344602 PMCID: PMC6158964 DOI: 10.1155/2018/2671613] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 11/17/2022] Open
Abstract
Brain lesion characteristics (timing, location, and extent) and the type of corticospinal tract (CST) wiring have been proposed as determinants of upper limb (UL) motor function in unilateral cerebral palsy (uCP), yet an investigation of the relative combined impact of these factors on both motor and sensory functions is still lacking. Here, we first investigated whether structural brain lesion characteristics could predict the underlying CST wiring and we explored the role of CST wiring and brain lesion characteristics to predict UL motor and sensory functions in uCP. Fifty-two participants with uCP (mean age (SD): 11 y and 3 m (3 y and 10 m)) underwent a single-pulse Transcranial Magnetic Stimulation session to determine CST wiring between the motor cortex and the more affected hand (n = 17 contralateral, n = 19 ipsilateral, and n = 16 bilateral) and an MRI to determine lesion timing (n = 34 periventricular (PV) lesion, n = 18 corticosubcortical (CSC) lesion), location, and extent. Lesion location and extent were evaluated with a semiquantitative scale. A standardized protocol included UL motor (grip strength, unimanual capacity, and bimanual performance) and sensory measures. A combination of lesion locations (damage to the PLIC and frontal lobe) significantly contributed to differentiate between the CST wiring groups, reclassifying the participants in their original group with 57% of accuracy. Motor and sensory functions were influenced by each of the investigated neurological factors. However, multiple regression analyses showed that motor function was predicted by the CST wiring (more preserved in individuals with contralateral CST (p < 0.01)), lesion extent, and damage to the basal ganglia and thalamus. Sensory function was predicted by the combination of a large and later lesion and an ipsilateral or bilateral CST wiring, which led to increased sensory deficits (p < 0.05). These novel insights contribute to a better understanding of the underlying pathophysiology of UL function and may be useful to delineate individualized treatment strategies.
Collapse
|
8
|
Sasaki R, Tsuiki S, Miyaguchi S, Kojima S, Saito K, Inukai Y, Otsuru N, Onishi H. Somatosensory Inputs Induced by Passive Movement Facilitate Primary Motor Cortex Excitability Depending on the Interstimulus Interval, Movement Velocity, and Joint Angle. Neuroscience 2018; 386:194-204. [PMID: 30008398 DOI: 10.1016/j.neuroscience.2018.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Abstract
Somatosensory inputs affect primary motor cortex (M1) excitability; however, the effect of movement-induced somatosensory inputs on M1 excitability is unknown. This study examined whether M1 excitability is modulated by somatosensory inputs with passive movement in 29 healthy subjects. Motor-evoked potentials (MEPs), elicited by transcranial magnetic stimulation (TMS) were recorded from the first dorsal interosseous (FDI) muscle (Experiment 1). M- and F-waves were measured from the FDI muscle (Experiment 2). Passive movements of the index finger were performed in the adduction direction. TMS pulses were preceded by starting passive movements with interstimulus intervals (ISIs) of 30, 60, 90, 120, 150, 180, and 210 ms. TMS or electrical stimulation was performed in the midrange of the metacarpophalangeal joint during passive movements. MEPs were significantly facilitated at 90, 120, and 150 ms (p < 0.05). No M- or F-wave changes were observed for any ISI. In addition, we investigated whether MEP changes were dependent on passive movement velocity and joint angle. Passive movement was performed at two movement velocities (Experiment 3) or joint angles (Experiment 4). MEP facilitation was observed depending on the movement velocities or joint angles. These experiments demonstrated that somatosensory inputs induced by passive movements facilitated M1 excitability depending on the ISIs, passive movement velocity, and joint angle.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Shota Tsuiki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| |
Collapse
|
9
|
Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 2018; 11:59-74. [PMID: 28964754 DOI: 10.1016/j.brs.2017.09.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
|
10
|
Ruddy KL. Directionality of interhemispheric communication. Brain Struct Funct 2017; 222:4293-4296. [PMID: 29116425 DOI: 10.1007/s00429-017-1557-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/06/2017] [Indexed: 11/26/2022]
Affiliation(s)
- K L Ruddy
- Neural Control of Movement Lab, ETH, Zurich, Switzerland.
- Trinity College Institute of Neuroscience, The Lloyd Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
11
|
Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: A 7T fMRI study. Neuroimage 2017. [DOI: 10.1016/j.neuroimage.2017.06.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
12
|
Tamè L, Carr A, Longo MR. Vision of the body improves inter-hemispheric integration of tactile-motor responses. Acta Psychol (Amst) 2017; 175:21-27. [PMID: 28259727 DOI: 10.1016/j.actpsy.2017.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/01/2017] [Accepted: 02/28/2017] [Indexed: 12/01/2022] Open
Abstract
Sensory input from and motor output to the two sides of the body needs to be continuously integrated between the two cerebral hemispheres. This integration can be measured through its cost in terms of processing speed. In simple detection tasks, reaction times (RTs) are faster when stimuli are presented to the side of the body ipsilateral to the body part used to respond. This advantage - the contralateral-ipsilateral difference (also known as the crossed-uncrossed difference: CUD) - is thought to reflect inter-hemispheric interactions needed for sensorimotor information to be integrated between the two hemispheres. Several studies have shown that non-informative vision of the body enhances performance in tactile tasks. However, it is unknown whether the CUD can be similarly affected by vision. Here, we investigated whether the CUD is modulated by vision of the body (i.e., the stimulated hand) by presenting tactile stimuli unpredictably on the middle fingers when one hand was visible (i.e., either the right or left hand). Participants detected the stimulus and responded as fast as possible using either their left or right foot. Consistent with previous results, a clear CUD (5.8ms) was apparent on the unseen hand. Critically, however, no such effect was found on the hand that was visible (-2.2ms). Thus, when touch is delivered to a seen hand, the usual cost in processing speed of responding with a contralateral effector is eliminated. This result suggests that vision of the body improves the interhemispheric integration of tactile-motor responses.
Collapse
Affiliation(s)
- Luigi Tamè
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom.
| | - Alex Carr
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| |
Collapse
|