1
|
Barnet M, Descheemaeker A, Favier L, Moisset X, Schopp J, Dallel R, Artola A, Monconduit L, Antri M. Estrous cycle regulates cephalic mechanical sensitivity and sensitization of the trigemino-cervical complex in a female rat model of chronic migraine. Pain 2025; 166:e83-e96. [PMID: 39480245 DOI: 10.1097/j.pain.0000000000003459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
ABSTRACT The higher incidence of migraines in women compared with men has led to the inclusion of female animals in pain research models. However, the critical role of the hormonal cycle is frequently overlooked, despite its clear correlation with migraine occurrences. In this study, we show in a rat model of migraine induced by repeated dural infusions of an inflammatory soup (IS) that a second IS (IS2) injection performed in proestrus/estrus (PE, high estrogen) female rats evokes higher cephalic mechanical hypersensitivities than when performed in metestrus/diestrus (MD, low estrogen) or ovariectomized (OV) rats. This hypersensitivity induced by IS2 correlates with increased c-Fos expression in outer lamina II (IIo) neurons located in the periorbital projection area of the trigemino-cervical complex (TCC), in PE only. Four IS (IS4) repetition induced an enlargement of c-Fos expression in adjacent territories areas in PE, but not MD or OV animals. Unexpectedly, c-Fos expression in locus coeruleus neurons does not potentiate after IS2 or IS4 injections. To examine the impacts of the hormonal cycle on the physiology of lamina II o TCC neurons, we performed whole-cell patch-clamp recordings. Second inflammatory soup depolarizes neurons in PE and MD but not in OV rats and enhances excitatory synaptic inputs in PE animals to a greater extent compared with MD and OV rats. These findings show that central TCC sensitization triggered by meningeal nociceptor activation and the resulting cephalic hypersensitivity are modulated by the estrous cycle. This highlights the crucial need to account for not just sex, but also the female estrous cycle in pain research.
Collapse
Affiliation(s)
- Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Sajjad J, Morael J, Melo TG, Foley T, Murphy A, Keane J, Popov J, Stanton C, Dinan TG, Clarke G, Cryan JF, Collins JM, O'Mahony SM. Differential cortical aspartate uptake across the oestrous cycle is associated with changes in gut microbiota in Wistar-Kyoto rats. Neurosci Lett 2025; 847:138096. [PMID: 39716584 DOI: 10.1016/j.neulet.2024.138096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Pain and psychological stress are intricately linked, with sex differences evident in disorders associated with both systems. Glutamatergic signalling in the central nervous system is influenced by gonadal hormones via the hypothalamic-pituitary-adrenal axis and is central in pain research. Emerging evidence supports an important role for the gut microbiota in influencing pain signalling. Here, the functional activity of excitatory amino acid transporters (EAATs) in the anterior cingulate cortex (ACC) and lumbosacral spinal cord of male and female Wistar-Kyoto rats, an animal model of comorbid visceral hypersensitivity and enhanced stress responsivity, was investigated across the oestrous cycle. Correlations between the gut microbiota and changes in the functional activity of the central glutamatergic system were also investigated. EAAT function in the lumbosacral spinal cord was similar between males and females across the oestrous cycle. EAAT function was higher in the ACC of dioestrus females compared to proestrus and oestrus females. In males, aspartate uptake in the ACC positively correlated with Bacteroides, while aspartate uptake in the spinal cord positively correlated with the relative abundance of Lachnospiraceae NK4A136. Positive associations with aspartate uptake in the spinal cord were also observed for Alistipes and Bifidobacterium during oestrus, and Eubacterium coprostanoligenes during proestrus. Clostridium sensu stricto1 was negatively associated with aspartate uptake in the ACC in males and dioestrus females. These data indicate that glutamate metabolism in the ACC is oestrous stage-dependent and that short-chain fatty acid-producing bacteria are positively correlated with aspartate uptake in males and during specific oestrous stages in females.
Collapse
Affiliation(s)
- Jahangir Sajjad
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Jennifer Morael
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Thieza G Melo
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Amy Murphy
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - James Keane
- APC Microbiome Ireland, University College Cork, Ireland
| | - Jelena Popov
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - James M Collins
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
3
|
Reeb KL, Wiah S, Patel BP, Lewandowski SI, Mortensen OV, Salvino JM, Rawls SM, Fontana ACK. Positive allosteric modulation of glutamate transporter reduces cocaine-induced locomotion and expression of cocaine conditioned place preference in rats. Eur J Pharmacol 2024; 984:177017. [PMID: 39349114 PMCID: PMC11563849 DOI: 10.1016/j.ejphar.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The glutamatergic system, located throughout the brain including the prefrontal cortex and nucleus accumbens, plays a critical role in reward and reinforcement processing, and mediates the psychotropic effects of addictive drugs such as cocaine. Glutamate transporters, including EAAT2/GLT-1, are responsible for removing glutamate from the synaptic cleft. Reduced expression of GLT-1 following chronic cocaine use and abstinence has been reported. Here, we demonstrate that targeting GLT-1 with a novel positive allosteric modulator (PAM), NA-014, results in reduction of cocaine-associated behaviors in rats. Pharmacokinetic analysis demonstrated that NA-014 is brain-penetrant and suitable for in vivo studies.We found that 15 and 30 mg/kg NA-014 significantly reduced cocaine-induced locomotion in males. Only the 15 mg/kg dose was effective in females and 60 mg/kg was ineffective in both sexes. Furthermore, 30 and 60 mg/kg NA-014 reduced expression of cocaine conditioned place preference (CPP) in males. 30 mg/kg NA-014 reduced expression of cocaine CPP in females and 15 mg/kg did not affect cocaine CPP in either sex, suggesting GLT-1 influences cocaine-associated behaviors in a sex-dependent manner. NA-014 did not elicit rewarding behavior, nor alter baseline locomotion. Twice daily/7-day administration of 100 mg/kg of NA-014 did not alter GLT-1 or GLAST expression in either sex in the prefrontal cortex (PFC). Collectively, these studies demonstrated that NA-014 reduced the locomotor stimulant and rewarding effects of cocaine in male and female rats. In the context of psychostimulant use disorders, our study suggests studying GLT-1 PAMs as alternatives to β-lactam compounds that increase GLT-1 protein levels.
Collapse
Affiliation(s)
- Katelyn L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Sonita Wiah
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Bhumiben P Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Stacia I Lewandowski
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Joseph M Salvino
- Medicinal Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA.
| |
Collapse
|
4
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
5
|
Acute visceral pain relief mediated by A3AR agonists in rats: involvement of N-type voltage-gated calcium channels. Pain 2021; 161:2179-2190. [PMID: 32379223 DOI: 10.1097/j.pain.0000000000001905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pharmacological tools for chronic visceral pain management are still limited and inadequate. A3 adenosine receptor (A3AR) agonists are effective in different models of persistent pain. Recently, their activity has been related to the block of N-type voltage-gated Ca2+ channels (Cav2.2) in dorsal root ganglia (DRG) neurons. The present work aimed to evaluate the efficacy of A3AR agonists in reducing postinflammatory visceral hypersensitivity in both male and female rats. Colitis was induced by the intracolonic instillation of 2,4-dinitrobenzenesulfonic acid (DNBS; 30 mg in 0.25 mL 50% EtOH). Visceral hypersensitivity was assessed by measuring the visceromotor response and the abdominal withdrawal reflex to colorectal distension. The effects of A3AR agonists (MRS5980 and Cl-IB-MECA) were evaluated over time after DNBS injection and compared to that of the selective Cav2.2 blocker PD173212, and the clinically used drug linaclotide. A3AR agonists significantly reduced DNBS-evoked visceral pain both in the postinflammatory (14 and 21 days after DNBS injection) and persistence (28 and 35 days after DNBS) phases. Efficacy was comparable to effects induced by linaclotide. PD173212 fully reduced abdominal hypersensitivity to control values, highlighting the role of Cav2.2. The effects of MRS5980 and Cl-IB-MECA were completely abolished by the selective A3AR antagonist MRS1523. Furthermore, patch-clamp recordings showed that A3AR agonists inhibited Cav2.2 in dorsal root ganglia neurons isolated from either control or DNBS-treated rats. The effect on Ca2+ current was PD173212-sensitive and prevented by MRS1523. A3AR agonists are effective in relieving visceral hypersensitivity induced by DNBS, suggesting a potential therapeutic role against abdominal pain.
Collapse
|
6
|
Krishna G, Bromberg C, Connell EC, Mian E, Hu C, Lifshitz J, Adelson PD, Thomas TC. Traumatic Brain Injury-Induced Sex-Dependent Changes in Late-Onset Sensory Hypersensitivity and Glutamate Neurotransmission. Front Neurol 2020; 11:749. [PMID: 32849211 PMCID: PMC7419702 DOI: 10.3389/fneur.2020.00749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Women approximate one-third of the annual 2.8 million people in the United States who sustain traumatic brain injury (TBI). Several clinical reports support or refute that menstrual cycle-dependent fluctuations in sex hormones are associated with severity of persisting post-TBI symptoms. Previously, we reported late-onset sensory hypersensitivity to whisker stimulation that corresponded with changes in glutamate neurotransmission at 1-month following diffuse TBI in male rats. Here, we incorporated intact age-matched naturally cycling females into the experimental design while monitoring daily estrous cycle. We hypothesized that sex would not influence late-onset sensory hypersensitivity and associated in vivo amperometric extracellular recordings of glutamate neurotransmission within the behaviorally relevant thalamocortical circuit. At 28 days following midline fluid percussion injury (FPI) or sham surgery, young adult Sprague-Dawley rats were tested for hypersensitivity to whisker stimulation using the whisker nuisance task (WNT). As predicted, both male and female rats showed significantly increased sensory hypersensitivity to whisker stimulation after FPI, with females having an overall decrease in whisker nuisance scores (sex effect), but no injury and sex interaction. In males, FPI increased potassium chloride (KCl)-evoked glutamate overflow in primary somatosensory barrel cortex (S1BF) and ventral posteromedial nucleus of the thalamus (VPM), while in females the FPI effect was discernible only within the VPM. Similar to our previous report, we found the glutamate clearance parameters were not influenced by FPI, while a sex-specific effect was evident with female rats showing a lower uptake rate constant both in S1BF and VPM and longer clearance time (in S1BF) in comparison to male rats. Fluctuations in estrous cycle were evident among brain-injured females with longer diestrus (low circulating hormone) phase of the cycle over 28 days post-TBI. Together, these findings add to growing evidence indicating both similarities and differences between sexes in a chronic response to TBI. A better understanding of the influence of gonadal hormones on behavior, neurotransmission, secondary injury and repair processes after TBI is needed both clinically and translationally, with potential impact on acute treatment, rehabilitation, and symptom management.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Caitlin Bromberg
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Emily Charlotte Connell
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Erum Mian
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Chengcheng Hu
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, United States
| | - Jonathan Lifshitz
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Phoenix VA Health Care System, Phoenix, AZ, United States
| | - P. David Adelson
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Phoenix VA Health Care System, Phoenix, AZ, United States
| |
Collapse
|
7
|
Tumor necrosis factor receptor 1 inhibition is therapeutic for neuropathic pain in males but not in females. Pain 2019; 160:922-931. [PMID: 30586024 DOI: 10.1097/j.pain.0000000000001470] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor (TNF) is a proinflammatory cytokine, which is involved in physiological and pathological processes and has been found to be crucial for pain development. In the current study, we were interested in the effects of blocking Tumor necrosis factor receptor 1 (TNFR1) signaling on neuropathic pain after peripheral nerve injury with the use of transgenic mice and pharmacological inhibition. We have previously shown that TNFR1 mice failed to develop neuropathic pain and depressive symptoms after chronic constriction injury (CCI). To investigate the therapeutic effects of inhibiting TNFR1 signaling after injury, we delivered a drug that inactivates soluble TNF (XPro1595). Inhibition of solTNF signaling resulted in an accelerated recovery from neuropathic pain in males, but not in females. To begin exploring a mechanism, we investigated changes in N-methyl-D-aspartate (NMDA) receptors because neuropathic pain has been shown to invoke an increase in glutamatergic signaling. In male mice, XPro1595 treatment reduces elevated NMDA receptor levels in the brain after injury, whereas in female mice, NMDA receptor levels decrease after CCI. We further show that estrogen inhibits the therapeutic response of XPro1595 in females. Our results suggest that TNFR1 signaling plays an essential role in pain induction after CCI in males but not in females.
Collapse
|
8
|
Homiack D, O'Cinneide E, Hajmurad S, Dohanich GP, Schrader LA. Effect of acute alarm odor exposure and biological sex on generalized avoidance and glutamatergic signaling in the hippocampus of Wistar rats. Stress 2018; 21:292-303. [PMID: 29916754 DOI: 10.1080/10253890.2018.1484099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by the development of paradoxical memory disturbances including intrusive memories and amnesia for specific details of the traumatic experience. Despite evidence that women are at higher risk to develop PTSD, most animal research has focused on the processes by which male rodents develop adaptive fear memory. As such, the mechanisms contributing to sex differences in the development of PTSD-like memory disturbances are poorly understood. In this investigation, we exposed adult male and female Wistar rats to the synthetic alarm odor 2,4,5-trimethylthiazole (TMT) to assess development of generalized fear behavior and rapid modulation of glutamate uptake and signaling cascades associated with hippocampus-dependent long-term memory. We report that female Wistar rats exposed to alarm odor exhibit context discrimination impairments relative to TMT-exposed male rats, suggesting the intriguing possibility that females are at greater risk in developing generalized fear memories. Mechanistically, alarm odor exposure rapidly modulated signaling cascades consistent with activation of the CREB shut-off cascade in the male, but not the female hippocampus. Moreover, TMT exposure dampened glutamate uptake and affected expression of the glutamate transporter, GLT-1 in the hippocampus. Taken together, these results provide evidence for rapid sex-dependent modulation of CREB signaling in the hippocampus by alarm odor exposure which may contribute to the development of generalized fear.
Collapse
Affiliation(s)
- Damek Homiack
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
| | - Emma O'Cinneide
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
| | - Sema Hajmurad
- b Department of Cell and Molecular Biology , Tulane University , New Orleans , LA , USA
| | - Gary P Dohanich
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
- c Department of Psychology , Tulane University , New Orleans , LA , USA
| | - Laura A Schrader
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
- b Department of Cell and Molecular Biology , Tulane University , New Orleans , LA , USA
| |
Collapse
|
9
|
Zhao Z, Hiraoka Y, Ogawa H, Tanaka K. Region-specific deletions of the glutamate transporter GLT1 differentially affect nerve injury-induced neuropathic pain in mice. Glia 2018; 66:1988-1998. [DOI: 10.1002/glia.23452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Zhuoyang Zhao
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima; Bunkyo-ku Tokyo 113-8510 Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima; Bunkyo-ku Tokyo 113-8510 Japan
| | - Hiroshi Ogawa
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima; Bunkyo-ku Tokyo 113-8510 Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima; Bunkyo-ku Tokyo 113-8510 Japan
- Center for Brain Integration Research (CBIR), TMDU, 1-5-45 Yushima; Bunkyo-ku Tokyo 113-8510 Japan
| |
Collapse
|