1
|
Ma Y, Xie D, Yu Y, Yao K, Zhang S, Li Q, Hong Y, Shen X. Differences in brain activation and connectivity during unaffected hand exercise in subacute and convalescent stroke patients. Neuroscience 2025; 565:10-18. [PMID: 39561956 DOI: 10.1016/j.neuroscience.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Patients experiencing severe hemiplegia following a stroke struggle to rehabilitate their affected limbs. Cross-education (CE) training emerges as a promising rehabilitation method due to its safety, simplicity, low risk, and ability to effectively improve muscle strength in the affected limb. However, controversy surrounds the neural mechanisms and clinical applications of CE. To address this, we employed functional near-infrared spectroscopy to monitor the response of regions of interest (ROI) and functional connectivity in patients with stroke experiencing severe hemiplegia during one session of 50% maximal voluntary contraction (MVC) strength training with less-affected hand in both subacute and convalescent phases. Our objective was to compare the two stroke groups to gain insight into the potential utility for unilateral training of the less-affected limb as an effective rehabilitation approach during different phases post of stroke. The findings revealed varying degrees of activation in the ROIs within the affected hemisphere across both groups during the task. Additionally, we found that the subacute stroke patients with severe hemiplegia (SPS) had higher blood oxygen levels in the ipsilesional primary motor (iM1), ipsilesional pre-motor and supplementary motor area (iP-SMA) and contralesional P-SMA (cP-SMA). Functional connectivity strength between the iM1 and contralesional brain regions, as well as between the iP-SMA and ipsilesional ROIs, showed statistically significant differences in SPS compared to convalescent stroke patients with severe hemiplegia (CPS) during a 50% MVC strength training session using the less-affected hand. SIGNIFICANCE STATEMENT: Exploring the neural mechanisms underlying one session of 50% MVC strength training with less-affected hand sheds light on a safe therapy. The study enhances our understanding of less-affected hand training and investigates the feasibility as a future rehabilitation approach. Analyzing how one session of 50% MVC strength training with less-affected hand affects brain activation and connectivity could lead to more tailored and effective rehabilitation strategies.
Collapse
Affiliation(s)
- Yuqin Ma
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China
| | - Dongyan Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China
| | - Yang Yu
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| | - Kexin Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China
| | - Shuting Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Rond, Jinghu District, Wuhu 241000, China
| | - Qiqi Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China.
| | - Xianshan Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
2
|
Rannama I, Zusa A, Latash ML. Force drifts and matching errors in the lower extremities: implications for the control and perception of foot force. Exp Brain Res 2024; 243:37. [PMID: 39739043 DOI: 10.1007/s00221-024-06990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Accurate control of force on the environment is mechanically necessary for many tasks involving the lower extremities. We investigated drifts in the horizontal (shear) active force produced by right-footed seated subjects and the effects of force matching by the other foot. Subjects generated constant shear force at 15% and 30% of maximal voluntary contraction (MVC) using one foot. Visual feedback of shear force magnitude was provided for the first 5s, then turned off for 30s. During the 30% MVC task, we observed parallel drops in active shear and vertical force magnitudes leading to consistent drifts in the resultant force magnitude, not in its direction. Force matching by the other foot resulted in significantly lower forces when feedback was available throughout the trial. No feedback was provided for the matching foot. When the matching foot began exerting force, the task foot experienced a notable drop in all force components, with a change in force direction only for the task foot. After this initial drop, the downward drift in the task foot stopped or reversed. Subjects were unaware of these drifts and errors. Our findings suggest that shear force production involves setting a referent coordinate vector, which shows drifts and matching errors, while its direction remains stable. Involvement of the matching foot appears to perturb the neural commands to the task foot, with minor differences observed between feet. The discrepancy between the consistent force drifts and lack of awareness of the drifts indicates a difference between force perception-to-act and perception-to-report.
Collapse
Affiliation(s)
- Indrek Rannama
- School of Natural Sciences and Health, Tallinn University, Narva mnt 25, Tallinn, 10120, Estonia.
| | - Anna Zusa
- Latvian Academy of Sport Education, Riga Stradiņš University, Riga, Latvia
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
3
|
Yuk J, Sainburg RL. Lateralization of acquisition and consolidation in direction but not amplitude of a motor skill task. Exp Brain Res 2024; 242:2341-2356. [PMID: 39110162 DOI: 10.1007/s00221-024-06900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024]
Abstract
Previous research suggests that the neural processes underlying specification of movement direction and amplitude are independently represented in the nervous system. However, our understanding of acquisition and consolidation processes in the direction and distance learning remains limited. We designed a virtual air hockey task, in which the puck direction is determined by the hand direction at impact, while the puck distance is determined by the amplitude of the velocity. In two versions of this task, participants were required to either specify the direction or the distance of the puck, while the alternate variable did not contribute to task success. Separate groups of right-handed participants were recruited for each task. Each participant was randomly assigned to one of two groups with a counter-balanced arm practice sequence (right to left, or left to right). We examined acquisition and, after 24 h, we examined two aspects of consolidation: 1) same hand performance to test the durability and 2) the opposite hand to test the effector-independent consolidation (interlimb transfer) of learning. The distance task showed symmetry between hands in the extent of acquisition as well as in both aspects of consolidation. In contrast, the direction task showed asymmetry in both acquisition and consolidation: the dominant right arm showed faster and greater acquisition and greater transfer from the opposite arm training. The asymmetric acquisition and consolidation processes shown in the direction task might be explained by lateralized control and mapping of direction, an interpretation consistent with previous findings on motor adaptation paradigms.
Collapse
Affiliation(s)
- Jisung Yuk
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| | - Robert L Sainburg
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
- Department of Neurology, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Bhat SG, Shin AY, Kaufman KR. Upper extremity asymmetry due to nerve injuries or central neurologic conditions: a scoping review. J Neuroeng Rehabil 2023; 20:151. [PMID: 37940959 PMCID: PMC10634143 DOI: 10.1186/s12984-023-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Peripheral nerve injuries and central neurologic conditions can result in extensive disabilities. In cases with unilateral impairment, assessing the asymmetry between the upper extremity has been used to assess outcomes of treatment and severity of injury. A wide variety of validated and novel tests and sensors have been utilized to determine the upper extremity asymmetry. The purpose of this article is to review the literature and define the current state of the art for describing upper extremity asymmetry in patients with peripheral nerve injuries or central neurologic conditions. METHOD An electronic literature search of PubMed, Scopus, Web of Science, OVID was performed for publications between 2000 to 2022. Eligibility criteria were subjects with neurological conditions/injuries who were analyzed for dissimilarities in use between the upper extremities. Data related to study population, target condition/injury, types of tests performed, sensors used, real-world data collection, outcome measures of interest, and results of the study were extracted. Sackett's Level of Evidence was used to judge the quality of the articles. RESULTS Of the 7281 unique articles, 112 articles met the inclusion criteria for the review. Eight target conditions/injuries were identified (Brachial Plexus Injury, Cerebral Palsy, Multiple Sclerosis, Parkinson's Disease, Peripheral Nerve Injury, Spinal Cord Injury, Schizophrenia, and stroke). The tests performed were classified into thirteen categories based on the nature of the test and data collected. The general results related to upper extremity asymmetry were listed for all the reviewed articles. Stroke was the most studied condition, followed by cerebral palsy, with kinematics and strength measurement tests being the most frequently used tests. Studies with a level of evidence level II and III increased between 2000 and 2021. The use of real-world evidence-based data, and objective data collection tests also increased in the same period. CONCLUSION Adequately powered randomized controlled trials should be used to study upper extremity asymmetry. Neurological conditions other than stroke should be studied further. Upper extremity asymmetry should be measured using objective outcome measures like motion tracking and activity monitoring in the patient's daily living environment.
Collapse
Affiliation(s)
- Sandesh G Bhat
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kenton R Kaufman
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Motion Analysis Laboratory, Mayo Clinic, DAHLC 4-214A, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Dery H, Buaron B, Mazinter R, Lavi S, Mukamel R. Playing with your ears: Audio-motor skill learning is sensitive to the lateral relationship between trained hand and ear. iScience 2023; 26:107720. [PMID: 37674982 PMCID: PMC10477063 DOI: 10.1016/j.isci.2023.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
A salient feature of motor and sensory circuits in the brain is their contralateral hemispheric bias-a feature that might play a role in integration and learning of sensorimotor skills. In the current behavioral study, we examined whether the lateral configuration between sound-producing hand and feedback-receiving ear affects performance and learning of an audio-motor skill. Right-handed participants (n = 117) trained to play a piano sequence using their right or left hand while auditory feedback was presented monaurally, either to the right or left ear. Participants receiving auditory feedback to the contralateral ear during training performed better than participants receiving ipsilateral feedback (with respect to the training hand). Furthermore, in the Left-Hand training groups, the contralateral training advantage persisted in a generalization task. Our results demonstrate that audio-motor learning is sensitive to the lateral configuration between motor and sensory circuits and suggest that integration of neural activity across hemispheres facilitates such learning.
Collapse
Affiliation(s)
- Hadar Dery
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Batel Buaron
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roni Mazinter
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shalev Lavi
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roy Mukamel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Yao WX, Ge S, Zhang JQ, Hemmat P, Jiang BY, Liu XJ, Lu X, Yaghi Z, Yue GH. Bilateral transfer of motor performance as a function of motor imagery training: a systematic review and meta-analysis. Front Psychol 2023; 14:1187175. [PMID: 37333595 PMCID: PMC10273842 DOI: 10.3389/fpsyg.2023.1187175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Objective The objective of this review was to evaluate the efficacy of mental imagery training (MIT) in promoting bilateral transfer (BT) of motor performance for healthy subjects. Data sources We searched 6 online-databases (Jul-Dec 2022) using terms: "mental practice," "motor imagery training," "motor imagery practice," "mental training," "movement imagery," "cognitive training," "bilateral transfer," "interlimb transfer," "cross education," "motor learning," "strength," "force" and "motor performance." Study selection and data extraction We selected randomized-controlled studies that examined the effect of MIT on BT. Two reviewers independently determined if each study met the inclusion criteria for the review. Disagreements were resolved through discussion and, if necessary, by a third reviewer. A total of 9 articles out of 728 initially identified studies were chosen for the meta-analysis. Data synthesis The meta-analysis included 14 studies for the comparison between MIT and no-exercise control (CTR) and 15 studies for the comparison between MIT and physical training (PT). Results MIT showed significant benefit in inducing BT compared to CTR (ES = 0.78, 95% CI = 0.57-0.98). The effect of MIT on BT was similar to that of PT (ES = -0.02, 95% CI = -0.15-0.17). Subgroup analyses showed that internal MIT (IMIT) was more effective (ES = 2.17, 95% CI = 1.57-2.76) than external MIT (EMIT) (ES = 0.95, 95% CI = 0.74-1.17), and mixed-task (ES = 1.68, 95% CI = 1.26-2.11) was more effective than mirror-task (ES = 0.46, 95% CI = 0.14-0.78) and normal-task (ES = 0.56, 95% CI = 0.23-0.90). No significant difference was found between transfer from dominant limb (DL) to non-dominant limb (NDL) (ES = 0.67, 95% CI = 0.37-0.97) and NDL to DL (ES = 0.87, 95% CI = 0.59-1.15). Conclusion This review concludes that MIT can serve as a valuable alternative or supplement to PT in facilitating BT effects. Notably, IMIT is preferable to EMIT, and interventions incorporating tasks that have access to both intrinsic and extrinsic coordinates (mixed-task) are preferred over those that involve only one of the two coordinates (mirror-task or normal-task). These findings have implications for rehabilitation of patients such as stroke survivors.
Collapse
Affiliation(s)
- Wan X. Yao
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Sha Ge
- College of Sports Science, Tianjin Normal University, Tianjin, China
| | - John Q. Zhang
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Parisa Hemmat
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Bo Y. Jiang
- School of Public Health, Jilin Medical University, Jilin, China
| | - Xiao J. Liu
- College of Art, Beijing Sport University, Beijing, China
| | - Xing Lu
- College of Art, Beijing Sport University, Beijing, China
| | - Zayd Yaghi
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Guang H. Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
7
|
Mota DMS, Moraes ÍAP, Papa DCR, Fernani DCGL, Almeida CS, Tezza MHS, Dantas MTAP, Fernandes SMS, Ré AHN, Silva TD, Monteiro CBM. Bilateral Transfer of Performance between Real and Non-Immersive Virtual Environments in Post-Stroke Individuals: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3301. [PMID: 36834000 PMCID: PMC9963577 DOI: 10.3390/ijerph20043301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
(1) Background: Post-stroke presents motor function deficits, and one interesting possibility for practicing skills is the concept of bilateral transfer. Additionally, there is evidence that the use of virtual reality is beneficial in improving upper limb function. We aimed to evaluate the transfer of motor performance of post-stroke and control groups in two different environments (real and virtual), as well as bilateral transfer, by changing the practice between paretic and non-paretic upper limbs. (2) Methods: We used a coincident timing task with a virtual (Kinect) or a real device (touch screen) in post-stroke and control groups; both groups practiced with bilateral transference. (3) Results: Were included 136 participants, 82 post-stroke and 54 controls. The control group presented better performance during most parts of the protocol; however, it was more evident when compared with the post-stroke paretic upper limb. We found bilateral transference mainly in Practice 2, with the paretic upper limb using the real interface method (touch screen), but only after Practice 1 with the virtual interface (Kinect), using the non-paretic upper limb. (4) Conclusions: The task with the greatest motor and cognitive demand (virtual-Kinect) provided transfer into the real interface, and bilateral transfer was observed in individuals post-stroke. However, this is more strongly observed when the virtual task was performed using the non-paretic upper limb first.
Collapse
Affiliation(s)
- Deise M. S. Mota
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Íbis A. P. Moraes
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
- Faculty of Medicine, University City of Sao Paulo (UNICID), São Paulo 03071-000, Brazil
| | - Denise C. R. Papa
- Medicine (Cardiology) at Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04021-001, Brazil
| | - Deborah C. G. L. Fernani
- Department of Physiotherapy, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente 19050-920, Brazil
| | - Caroline S. Almeida
- Department of Physiotherapy, University of Medical Sciences of Santa Casa of São Paulo, São Paulo 01224-001, Brazil
| | - Maria H. S. Tezza
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Maria T. A. P. Dantas
- Department of Physiotherapy, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente 19050-920, Brazil
| | - Susi M. S. Fernandes
- Department of Physiotherapy, Mackenzie Presbyterian University (UPM), São Paulo 01302-907, Brazil
| | - Alessandro H. N. Ré
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Talita D. Silva
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
- Faculty of Medicine, University City of Sao Paulo (UNICID), São Paulo 03071-000, Brazil
- Medicine (Cardiology) at Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04021-001, Brazil
| | - Carlos B. M. Monteiro
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
| |
Collapse
|
8
|
Fang Q, Xia Y, Zhang X, Huang F. Asymmetry of interlimb transfer: Pedagogical innovations in physical education. Front Psychol 2022; 13:1029888. [PMID: 36420383 PMCID: PMC9678050 DOI: 10.3389/fpsyg.2022.1029888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/24/2022] [Indexed: 06/22/2024] Open
Affiliation(s)
- Qun Fang
- School of Physical Education, Qingdao University, Qingdao, China
| | | | | | | |
Collapse
|
9
|
Liu Y, Caracoglia J, Sen S, Freud E, Striem-Amit E. Are reaching and grasping effector-independent? Similarities and differences in reaching and grasping kinematics between the hand and foot. Exp Brain Res 2022; 240:1833-1848. [PMID: 35426511 PMCID: PMC9142431 DOI: 10.1007/s00221-022-06359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
While reaching and grasping are highly prevalent manual actions, neuroimaging studies provide evidence that their neural representations may be shared between different body parts, i.e., effectors. If these actions are guided by effector-independent mechanisms, similar kinematics should be observed when the action is performed by the hand or by a cortically remote and less experienced effector, such as the foot. We tested this hypothesis with two characteristic components of action: the initial ballistic stage of reaching, and the preshaping of the digits during grasping based on object size. We examined if these kinematic features reflect effector-independent mechanisms by asking participants to reach toward and to grasp objects of different widths with their hand and foot. First, during both reaching and grasping, the velocity profile up to peak velocity matched between the hand and the foot, indicating a shared ballistic acceleration phase. Second, maximum grip aperture and time of maximum grip aperture of grasping increased with object size for both effectors, indicating encoding of object size during transport. Differences between the hand and foot were found in the deceleration phase and time of maximum grip aperture, likely due to biomechanical differences and the participants’ inexperience with foot actions. These findings provide evidence for effector-independent visuomotor mechanisms of reaching and grasping that generalize across body parts.
Collapse
Affiliation(s)
- Yuqi Liu
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA.
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - James Caracoglia
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
- Division of Graduate Medical Sciences, Boston University Medical Center, Boston, MA, 02215, USA
| | - Sriparna Sen
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Erez Freud
- Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
10
|
Palomero-Gallagher N, Amunts K. A short review on emotion processing: a lateralized network of neuronal networks. Brain Struct Funct 2022; 227:673-684. [PMID: 34216271 PMCID: PMC8844151 DOI: 10.1007/s00429-021-02331-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
Emotions are valenced mental responses and associated physiological reactions that occur spontaneously and automatically in response to internal or external stimuli, and can influence our behavior, and can themselves be modulated to a certain degree voluntarily or by external stimuli. They are subserved by large-scale integrated neuronal networks with epicenters in the amygdala and the hippocampus, and which overlap in the anterior cingulate cortex. Although emotion processing is accepted as being lateralized, the specific role of each hemisphere remains an issue of controversy, and two major hypotheses have been proposed. In the right-hemispheric dominance hypothesis, all emotions are thought to be processed in the right hemisphere, independent of their valence or of the emotional feeling being processed. In the valence lateralization hypothesis, the left is thought to be dominant for the processing of positively valenced stimuli, or of stimuli inducing approach behaviors, whereas negatively valenced stimuli, or stimuli inducing withdrawal behaviors, would be processed in the right hemisphere. More recent research points at the existence of multiple interrelated networks, each associated with the processing of a specific component of emotion generation, i.e., its generation, perception, and regulation. It has thus been proposed to move from hypotheses supporting an overall hemispheric specialization for emotion processing toward dynamic models incorporating multiple interrelated networks which do not necessarily share the same lateralization patterns.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany.
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| |
Collapse
|
11
|
Bange M, Gonzalez-Escamilla G, Marquardt T, Radetz A, Dresel C, Herz D, Schöllhorn WI, Groppa S, Muthuraman M. Deficient Interhemispheric Connectivity Underlies Movement Irregularities in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:381-395. [PMID: 34719510 DOI: 10.3233/jpd-212840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Movement execution is impaired in patients with Parkinson's disease. Evolving neurodegeneration leads to altered connectivity between distinct regions of the brain and altered activity at interconnected areas. How connectivity alterations influence complex movements like drawing spirals in Parkinson's disease patients remains largely unexplored. OBJECTIVE We investigated whether deteriorations in interregional connectivity relate to impaired execution of drawing. METHODS Twenty-nine patients and 31 age-matched healthy control participants drew spirals with both hands on a digital graphics tablet, and the regularity of drawing execution was evaluated by sample entropy. We recorded resting-state fMRI and task-related EEG, and calculated the time-resolved partial directed coherence to estimate effective connectivity for both imaging modalities to determine the extent and directionality of interregional interactions. RESULTS Movement performance in Parkinson's disease patients was characterized by increased sample entropy, corresponding to enhanced irregularities in task execution. Effective connectivity between the motor cortices of both hemispheres, derived from resting-state fMRI, was significantly reduced in Parkinson's disease patients in comparison to controls. The connectivity strength in the nondominant to dominant hemisphere direction in both modalities was inversely correlated with irregularities during drawing, but not with the clinical state. CONCLUSION Our findings suggest that interhemispheric connections are affected both at rest and during drawing movements by Parkinson's disease. This provides novel evidence that disruptions of interhemispheric information exchange play a pivotal role for impairments of complex movement execution in Parkinson's disease patients.
Collapse
Affiliation(s)
- Manuel Bange
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tabea Marquardt
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Angela Radetz
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christian Dresel
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Damian Herz
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | | | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
13
|
Yadav G, Mutha PK. Symmetric interlimb transfer of newly acquired skilled movements. J Neurophysiol 2020; 124:1364-1376. [PMID: 32902352 DOI: 10.1152/jn.00777.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we aimed to examine features of interlimb generalization or "transfer" of newly acquired motor skills, with a broader goal of better understanding the mechanisms mediating skill learning. Right-handed participants (n = 36) learned a motor task that required them to make very rapid but accurate reaches to one of eight randomly presented targets, thus bettering the typical speed-accuracy tradeoff. Subjects were divided into an "RL" group that first trained with the right arm and was then tested on the left and an "LR" group that trained with the left arm and was subsequently tested on the right. We found significant interlimb transfer in both groups. Remarkably, we also observed that participants learned faster with their left arm compared with the right. We hypothesized that this could be due to a previously suggested left arm/right hemisphere advantage for movements under variable task conditions. To corroborate this, we recruited two additional groups of participants (n = 22) that practiced the same task under a single target condition. This removal of task level variability eliminated learning rate differences between the arms, yet interlimb transfer remained robust and symmetric, as in the first experiment. Additionally, the strategy used to reduce errors during learning, albeit heterogeneous across subjects particularly in our second experiment, was adopted by the untrained arm. These findings may be best explained as the outcome of the operation of cognitive strategies during the early stages of motor skill learning.NEW & NOTEWORTHY How newly acquired motor skills generalize across effectors is not well understood. Here, we show that newly learned skilled actions transfer symmetrically across the arms and that task-level variability influences learning rate but not transfer magnitude or direction. Interestingly, strategies developed during learning with one arm transfer to the untrained arm. This likely reflects the outcome of learning driven by cognitive mechanisms during the initial stages of motor skill acquisition.
Collapse
Affiliation(s)
- Goldy Yadav
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Pratik K Mutha
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India.,Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| |
Collapse
|
14
|
Wang YF, Zhao J, Negyesi J, Nagatomi R. Differences in the Magnitude of Motor Skill Acquisition and Interlimb Transfer between Left- and Right-Handed Subjects after Short-Term Unilateral Motor Skill Practice. TOHOKU J EXP MED 2020; 251:31-37. [PMID: 32434999 DOI: 10.1620/tjem.251.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Motor skill practice improves performance not only in the trained - but also in the untrained contralateral limb - a phenomenon called as interlimb transfer. Handedness affects motor skill acquisition and interlimb transfer, but it remains unknown whether handedness affects interlimb transfer when practicing with the dominant or non-dominant limb. We have hypothesized that interlimb transfer of skill acquisition differs between left- and right-handed participants, and that right- as compared with left-hand motor skill practice shows greater interlimb transfer, regardless of handedness. Strongly left-hand (n = 12, aged 27.3 ± 4.4 years; 3 female) and right-hand dominant (n = 12, 20.7 ± 3.8 years; 5 female) subjects with no history of neurological or orthopedic disorders performed the grooved pegboard test before and after 4 blocks of practice on the same apparatus. Subjects were timed on their speed of the task. Right-handed subjects failed to improve manual performance in their right hand after right- or left-hand motor practice. In contrast, they showed improvement on the left hand in each condition. These data suggest greater interlimb transfer after right-hand motor skill practice, but no interlimb transfer after left-hand practice. On the other hand, our results show consistent interlimb transfer effects in left-handed subjects, irrespective of whether the dominant left or the non-dominant right arm has been initially trained. In conclusion, our results add to the body of literature by detecting the differences in the magnitude of motor skill acquisition and interlimb transfer between left- and right-handed subjects after short-term unilateral motor skill practice.
Collapse
Affiliation(s)
- Yi Fan Wang
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine
| | - Jun Zhao
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine
| | - Janos Negyesi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine.,Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering
| |
Collapse
|
15
|
Srinivasan GA, Embar T, Sainburg R. Interlimb differences in coordination of rapid wrist/forearm movements. Exp Brain Res 2020; 238:713-725. [PMID: 32060564 DOI: 10.1007/s00221-020-05743-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/30/2020] [Indexed: 11/28/2022]
Abstract
We have previously proposed a model of motor lateralization that attributes specialization for predictive control of intersegmental coordination to the dominant hemisphere/limb system, and control of limb impedance to the non-dominant system. This hypothesis was developed based on visually targeted discrete reaching movement made predominantly with the shoulder and elbow joints. The purpose of this experiment was to determine whether dominant arm advantages for multi-degree of freedom coordination also occur during continuous distal movements of the wrist that do not involve visual guidance. In other words, are the advantages of the dominant arm restricted to controlling intersegmental coordination during discrete visually targeted reaching movements, or are they more generally related to coordination of multiple degrees of freedom at other joints, regardless of whether the movements are discrete or invoke visual guidance? Eight right-handed participants were instructed to perform alternating wrist ulnar/radial deviation movements at two instructed speeds, slow and fast, with the dominant or the non-dominant arm, and were instructed not to rotate the forearm (pronation/supination) or move the wrist up and down (flexion/extension). This was explained by slowly and passively moving the wrist in each plane during the instructions. Because all the muscles that cross the wrist have moment arms with respect to more than one axis of rotation, intermuscular coordination is required to prevent motion about non-instructed axes of rotation. We included two conditions, a very slow condition, as a control condition, to demonstrate understanding of the task, and an as-fast-as-possible condition to challenge predictive aspect of control, which we hypothesize are specialized to the dominant controller. Our results indicated that during as-fast-as-possible conditions the non-dominant arm incorporated significantly more non-instructed motion, which resulted in greater circumduction at the non-dominant than the dominant wrist. These findings extend the dynamic dominance hypothesis, indicating that the dominant hemisphere-arm system is specialized for predictive control of multiple degrees of freedom, even in movements of the distal arm and made in the absence of visual guidance.
Collapse
Affiliation(s)
- Gautum A Srinivasan
- Department of Kinesiology, Pennsylvania State University, Rec Hall 27, Burrowes Rd., University Park, PA, 16802, USA.
| | - Tarika Embar
- Department of Kinesiology, Pennsylvania State University, Rec Hall 27, Burrowes Rd., University Park, PA, 16802, USA
| | - Robert Sainburg
- Department of Kinesiology, Pennsylvania State University, Rec Hall 27, Burrowes Rd., University Park, PA, 16802, USA.,Department of Neurology, Penn State College of Medicine, Hershey, USA
| |
Collapse
|
16
|
Woytowicz EJ, Sainburg RL, Westlake KP, Whitall J. Competition for limited neural resources in older adults leads to greater asymmetry of bilateral movements than in young adults. J Neurophysiol 2020; 123:1295-1304. [PMID: 31913762 DOI: 10.1152/jn.00405.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated that lateralization in the neural control of predictive and impedance mechanisms is reflected by interlimb differences in control of bilateral tasks. Aging has been shown to reduce lateralization during unilateral performance, presumably due to greater recruitment of the ipsilateral hemisphere. We now hypothesize that aging-related reduction in the efficiency of neural resources should produce greater behavioral asymmetry during bilateral actions that require hemispheric specialization for each arm. This is because simultaneous control of dominant and nondominant arm function should induce competition for hemisphere-specific resources. To test this hypothesis, we now examine the effect of aging (young, n = 20; old, n = 20) on performance of a mechanically coupled task, in which one arm reaches toward targets while the other arm stabilizes against a spring that connects the two arms. Results indicate better dominant arm reaching performance and better nondominant arm stabilizing performance for both groups. Most notably, limb and joint compliance was lower in the dominant arm, leading to dominant arm deficits in stabilizing performance. Group analysis indicated that older adults showed substantially greater asymmetry in stabilizing against the spring load than did the younger adults. We propose that competition for limited neural resources in older adults is associated with reduced contributions of right hemisphere mechanisms to right-dominant arm stabilizing performance, and thus to greater asymmetry of performance.NEW & NOTEWORTHY We provide evidence for greater asymmetry of interlimb differences in bilateral coordination for stabilizing and preserved asymmetry of reaching with aging. These results provide the first evidence for increased lateralization with aging within the context of a complementary bilateral task.
Collapse
Affiliation(s)
- Elizabeth J Woytowicz
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert L Sainburg
- Department of Kinesiology, Penn State University, University Park, Pennsylvania.,Department of Neurology, Penn State Milton S. Hershey Medical Center and College of Medicine, Hershey, Pennsylvania
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Bolton DAE, Buick AR, Carroll TJ, Carson RG. Interlimb transfer and generalisation of learning in the context of persistent failure to accomplish a visuomotor task. Exp Brain Res 2019; 237:1077-1092. [PMID: 30758515 PMCID: PMC6430762 DOI: 10.1007/s00221-019-05484-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/29/2019] [Indexed: 11/30/2022]
Abstract
Transfer, in which capability acquired in one situation influences performance in another is considered, along with retention, as demonstrative of effectual learning. In this regard, interlimb transfer of functional capacity has commanded particular attention as a means of gauging the generalisation of acquired capability. Both theoretical treatments and prior empirical studies suggest that the successful accomplishment of a physical training regime is required to bring about generalised changes that extend to the untrained limb. In the present study, we pose the following question: Does interlimb transfer occur if and only if the training movements are executed? We report findings from JG-an individual recruited to a larger scale trial, who presented with (unilateral) deficits of motor control. We examined whether changes in the performance of the untrained right limb arose following practice undertaken by the impaired left limb, wherein the majority of JG's attempts to execute the training task were unsuccessful. Comparison was made with a group of "control" participants drawn from the main trial, who did not practice the task. For JG, substantial gains in the performance of the untrained limb (registered 3 days, 10 days and 1 year following training) indicated that effective learning had occurred. Learning was, however, expressed principally when the unimpaired (i.e. untrained) limb was utilised to perform the task. When the impaired limb was used, marked deficiencies in movement execution remained prominent throughout.
Collapse
Affiliation(s)
- D A E Bolton
- Department of Kinesiology and Health Sciences, Utah State University, Logan, USA
- School of Psychology, Queen's University Belfast, Belfast, UK
| | - A R Buick
- School of Psychology, Queen's University Belfast, Belfast, UK
| | - T J Carroll
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - R G Carson
- School of Psychology, Queen's University Belfast, Belfast, UK.
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
18
|
Woytowicz EJ, Westlake KP, Whitall J, Sainburg RL. Handedness results from complementary hemispheric dominance, not global hemispheric dominance: evidence from mechanically coupled bilateral movements. J Neurophysiol 2018; 120:729-740. [PMID: 29742023 PMCID: PMC7132323 DOI: 10.1152/jn.00878.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/13/2018] [Accepted: 05/06/2018] [Indexed: 11/22/2022] Open
Abstract
Two contrasting views of handedness can be described as 1) complementary dominance, in which each hemisphere is specialized for different aspects of motor control, and 2) global dominance, in which the hemisphere contralateral to the dominant arm is specialized for all aspects of motor control. The present study sought to determine which motor lateralization hypothesis best predicts motor performance during common bilateral task of stabilizing an object (e.g., bread) with one hand while applying forces to the object (e.g., slicing) using the other hand. We designed an experimental equivalent of this task, performed in a virtual environment with the unseen arms supported by frictionless air-sleds. The hands were connected by a spring, and the task was to maintain the position of one hand while moving the other hand to a target. Thus the reaching hand was required to take account of the spring load to make smooth and accurate trajectories, while the stabilizer hand was required to impede the spring load to keep a constant position. Right-handed subjects performed two task sessions (right-hand reach and left-hand stabilize; left-hand reach and right-hand stabilize) with the order of the sessions counterbalanced between groups. Our results indicate a hand by task-component interaction such that the right hand showed straighter reaching performance whereas the left hand showed more stable holding performance. These findings provide support for the complementary dominance hypothesis and suggest that the specializations of each cerebral hemisphere for impedance and dynamic control mechanisms are expressed during bilateral interactive tasks. NEW & NOTEWORTHY We provide evidence for interlimb differences in bilateral coordination of reaching and stabilizing functions, demonstrating an advantage for the dominant and nondominant arms for distinct features of control. These results provide the first evidence for complementary specializations of each limb-hemisphere system for different aspects of control within the context of a complementary bilateral task.
Collapse
Affiliation(s)
- Elizabeth J Woytowicz
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Health Sciences, University of Southampton , Southampton , United Kingdom
| | - Robert L Sainburg
- Department of Kinesiology, Penn State University , University Park, Pennsylvania
- Department of Neurology, Penn State Milton S. Hershey Medical Center and College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
19
|
Marinovic W, Homan M, Carroll TJ. Use-dependent directional bias does not transfer to the untrained limb during bimanual contractions. Eur J Neurosci 2017; 47:33-39. [PMID: 29119684 DOI: 10.1111/ejn.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/03/2017] [Accepted: 10/31/2017] [Indexed: 02/03/2023]
Abstract
Skills learned through practice with one limb can often be transferred to the untrained limb. In the present report, we sought to determine whether movement direction biases, acquired through repeated movement with one limb, transfer to the untrained limb. In order to do so, we asked participants to perform synchronized bilateral contractions of muscles in both wrists, followed by the unilateral contraction of muscles in one wrist. In four experiments, we manipulated the position of the unilateral target to create use-dependent directional biases; changed the direction of the cursor in relation to the wrist movement to control for attentional biases; and sought to induce directional biases with both right and left unilateral movements. The results showed clear movement-related biases for the wrist that performed unilateral contractions, but no evidence that movement-related bias transferred to the opposite limb during bilateral action. Thus, motor preparation and execution of unilateral contractions does not affect the direction of movement made by the opposite limb during subsequent bilateral contractions.
Collapse
Affiliation(s)
- Welber Marinovic
- School of Psychology and Speech Pathology, Curtin University, Building 401, Bentley, 6102, Perth, WA, Australia.,Centre for Sensorimotor Performance, School of Human and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Melinda Homan
- Centre for Sensorimotor Performance, School of Human and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Timothy J Carroll
- Centre for Sensorimotor Performance, School of Human and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|