1
|
Xue F, Yue X, Fan Y, Cui J, Brauth SE, Tang Y, Fang G. Auditory neural networks involved in attention modulation prefer biologically significant sounds and exhibit sexual dimorphism in anurans. ACTA ACUST UNITED AC 2018; 221:jeb.167775. [PMID: 29361582 DOI: 10.1242/jeb.167775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/19/2017] [Indexed: 11/20/2022]
Abstract
Allocating attention to biologically relevant stimuli in a complex environment is critically important for survival and reproductive success. In humans, attention modulation is regulated by the frontal cortex, and is often reflected by changes in specific components of the event-related potential (ERP). Although brain networks for attention modulation have been widely studied in primates and avian species, little is known about attention modulation in amphibians. The present study aimed to investigate the attention modulation networks in an anuran species, the Emei music frog (Babina daunchina). Male music frogs produce advertisement calls from within underground nest burrows that modify the acoustic features of the calls, and both males and females prefer calls produced from inside burrows. We broadcast call stimuli to male and female music frogs while simultaneously recording electroencephalographic (EEG) signals from the telencephalon and mesencephalon. Granger causal connectivity analysis was used to elucidate functional brain networks within the time window of ERP components. The results show that calls produced from inside nests which are highly sexually attractive result in the strongest brain connections; both ascending and descending connections involving the left telencephalon were stronger in males while those in females were stronger with the right telencephalon. Our findings indicate that the frog brain allocates neural attention resources to highly attractive sounds within the window of early components of ERP, and that such processing is sexually dimorphic, presumably reflecting the different reproductive strategies of males and females.
Collapse
Affiliation(s)
- Fei Xue
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan 610041, People's Republic of China.,Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 26 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, People's Republic of China
| | - Xizi Yue
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Yanzhu Fan
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Jianguo Cui
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Steven E Brauth
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Yezhong Tang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
2
|
The First Call Note Plays a Crucial Role in Frog Vocal Communication. Sci Rep 2017; 7:10128. [PMID: 28860503 PMCID: PMC5579009 DOI: 10.1038/s41598-017-09870-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/01/2017] [Indexed: 11/25/2022] Open
Abstract
Vocal Communication plays a crucial role in survival and reproductive success in most amphibian species. Although amphibian communication sounds are often complex consisting of many temporal features, we know little about the biological significance of each temporal component. The present study examined the biological significance of notes of the male advertisement calls of the Emei music frog (Babina daunchina) using the optimized electroencephalogram (EEG) paradigm of mismatch negativity (MMN). Music frog calls generally contain four to six notes separated approximately by 150 millisecond intervals. A standard stimulus (white noise) and five deviant stimuli (five notes from one advertisement call) were played back to each subject while simultaneously recording multi-channel EEG signals. The results showed that the MMN amplitude for the first call note was significantly larger than for that of the others. Moreover, the MMN amplitudes evoked from the left forebrain and midbrain were typically larger than those from the right counterpart. These results are consistent with the ideas that the first call note conveys more information than the others for auditory recognition and that there is left-hemisphere dominance for processing information derived from conspecific calls in frogs.
Collapse
|