1
|
Tassinari ID, Zang J, Ribeiro NH, Martins BB, Tauffer JVM, Nunes RR, Sanches EF, Sizonenko S, Netto CA, Paz AH, de Fraga LS. Lactate administration causes long-term neuroprotective effects following neonatal hypoxia-ischemia. Exp Neurol 2024; 381:114929. [PMID: 39168170 DOI: 10.1016/j.expneurol.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Neonatal hypoxia-ischemia (HI) is one of the main causes of mortality and long-term disabilities in newborns, and the only clinical approach to treat this condition is therapeutic hypothermia, which shows some limitations. Thus, putative neuroprotective agents have been tested in animal models of HI. Lactate is a preferential metabolic substrate of the neonatal brain and has already been shown to produce beneficial neuroprotective outcomes in neonatal animals exposed to HI. Here, we administered lactate as a treatment in neonatal rats previously exposed to HI and evaluated the impact of this treatment in adulthood. Seven-day-old (P7) male and female Wistar rats underwent permanent common right carotid occlusion combined with an exposition to a hypoxic atmosphere (8% oxygen) for 60 min. Animals were assigned to one of four experimental groups: HI, HI+LAC, SHAM, SHAM+LAC. Lactate was administered intraperitoneally 30 min and 2 h after hypoxia in HI+LAC and SHAM+LAC groups, whereas HI and SHAM groups received vehicle. Animals were tested in the behavioral tasks of negative geotaxis and righting reflex (P8), cylinder test (P24), and the modified neurological severity score was calculated (P25). Open field (OF), and novel object recognition (NOR) were evaluated in adulthood. Animals were killed at P60, and the brains were harvested and processed to evaluate the volume of brain injury. Our results showed that lactate administration reduced the volume of brain lesion and improved sensorimotor and cognitive behaviors in neonatal, juvenile, and adult life in HI animals from both sexes. Thus, lactate administration might be considered as a potential neuroprotective strategy for the treatment of neonatal HI, which is a prevalent disorder affecting newborns.
Collapse
Affiliation(s)
- Isadora D'Ávila Tassinari
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Janaína Zang
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Nícolas Heller Ribeiro
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Bianca Büchele Martins
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - João Vitor Miotto Tauffer
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Ricardo Ribeiro Nunes
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Departamento de Bioquímica, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Ana Helena Paz
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Departamento de Ciências Morfológicas, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre 90050-170, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Luciano Stürmer de Fraga
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil.
| |
Collapse
|
2
|
Wu X, Liu R, Zhang Z, Yang J, Liu X, Jiang L, Fang M, Wang S, Lai L, Song Y, Li Z. The RhoB p.S73F mutation leads to cerebral palsy through dysregulation of lipid homeostasis. EMBO Mol Med 2024; 16:2002-2023. [PMID: 39080495 PMCID: PMC11393352 DOI: 10.1038/s44321-024-00113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/14/2024] Open
Abstract
Cerebral palsy (CP) is a prevalent neurological disorder that imposes a significant burden on children, families, and society worldwide. Recently, the RhoB p.S73F mutation was identified as a de novo mutation associated with CP. However, the mechanism by which the RhoB p.S73F mutation causes CP is currently unclear. In this study, rabbit models were generated to mimic the human RhoB p.S73F mutation using the SpG-BE4max system, and exhibited the typical symptoms of human CP, such as periventricular leukomalacia and spastic-dystonic diplegia. Further investigation revealed that the RhoB p.S73F mutation could activate ACAT1 through the LYN pathway, and the subsequently altered lipid levels may lead to neuronal and white matter damage resulting in the development of CP. This study presented the first mammalian model of genetic CP that accurately replicates the RhoB p.S73F mutation in humans, provided further insights between RhoB and lipid metabolism, and novel therapeutic targets for human CP.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruonan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhongtian Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, 100039, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou, 510530, China
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Liqiang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mengmeng Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shoutang Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Liangxue Lai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, 100039, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou, 510530, China.
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Nasri H, Ghotbeddin Z, Rahimi K, Tabandeh MR. The effects of MEPaL on oxidative stress and motor function in the rats affected by prenatal hypoxia. Brain Behav 2024; 14:e3539. [PMID: 38849974 PMCID: PMC11161390 DOI: 10.1002/brb3.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/23/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Maternal hypoxia disrupts neural development and subsequently leads to cerebral palsy and epilepsy in newborns. Hypoxia plays a role in neurodegeneration by increasing oxidative stress. Pistacia atlantica is known as an important antioxidant, and its anti-inflammatory and antioxidant effects have been shown in various studies. This study aims to investigate the effects of methanolic extract of P. atlantica leaves (MEPaLs) on the oxidative parameters in the serum of rats affected by maternal hypoxia. MATERIAL AND METHODS In this study, eight pregnant rats were used. The newborns were divided into four groups, including the control and the hypoxia groups, which are affected by maternal hypoxia, hypoxia + MEPaL 100 mg/kg, and hypoxia + MEPaL 150 mg/kg. MEPaL was injected (i.p) for 21 days into the neonatal rats after the lactation period. Hypoxia was induced by keeping pregnant rats in a hypoxic chamber with 7% oxygen and 93% nitrogen intensity for 3 h on the 20th day of pregnancy. Behavioral changes were measured using open-field and rotarod tests. Finally, biomarkers of oxidative stress, nitric oxide (NO), glutathione (GSH), GSSG, TAS, TOS, and oxidative stress index (OSI) were measured in the experimental groups. RESULTS Behavioral results showed that the anxiety behavior in the hypoxia group increased, but the motor activity (moved distance and movement speed) decreased. Moreover, the amount of time spent maintaining balance on the rotarod rod was significantly decreased in the hypoxia group. The concentration of NO in the group of hypoxia + MEPaL 100 mg/kg showed a significant decrease, and MEPaL 100, and 150 mg/kg + hypoxia also increased the concentration of GSH and decreased GSSG. In addition, MEPaL100 and 150 mg/kg caused a significant increase in the ratio of GSH to GSSG and decreased OSI and total oxidant capacity. CONCLUSIONS Oxidative stress increased in the rats affected by maternal hypoxia and may be the main mechanism for motor activity impairment and balance disturbance, whereas MELaL improved motor performance by decreasing oxidative stress.
Collapse
Affiliation(s)
- Hadis Nasri
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
- Stem Cell and Transgenic Technology Research CenterShahid Chamran University of AhvazAhvazIran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
- Stem Cell and Transgenic Technology Research CenterShahid Chamran University of AhvazAhvazIran
| |
Collapse
|
4
|
Machado DN, Durán-Carabali LE, Odorcyk FK, Carvalho AVS, Martini APR, Schlemmer LM, de Mattos MDM, Bernd GP, Dalmaz C, Netto CA. Bumetanide Attenuates Cognitive Deficits and Brain Damage in Rats Subjected to Hypoxia-Ischemia at Two Time Points of the Early Postnatal Period. Neurotox Res 2023; 41:526-545. [PMID: 37378827 DOI: 10.1007/s12640-023-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is one of the main causes of tissue damage, cell death, and imbalance between neuronal excitation and inhibition and synaptic loss in newborns. GABA, the major inhibitory neurotransmitter of the central nervous system (CNS) in adults, is excitatory at the onset of neurodevelopment and its action depends on the chloride (Cl-) cotransporters NKCC1 (imports Cl-) and KCC2 (exports Cl-) expression. Under basal conditions, the NKCC1/KCC2 ratio decreases over neurodevelopment. Thus, changes in this ratio caused by HI may be related to neurological disorders. The present study evaluated the effects of bumetanide (NKCC cotransporters inhibitor) on HI impairments in two neurodevelopmental periods. Male Wistar rat pups, 3 (PND3) and 11 (PND11) days old, were submitted to the Rice-Vannucci model. Animals were divided into 3 groups: SHAM, HI-SAL, and HI-BUM, considering each age. Bumetanide was administered intraperitoneally at 1, 24, 48, and 72 h after HI. NKCC1, KCC2, PSD-95, and synaptophysin proteins were analyzed after the last injection by western blot. Negative geotaxis, righting reflex, open field, object recognition test, and Morris water maze task were performed to assess neurological reflexes, locomotion, and memory function. Tissue atrophy and cell death were evaluated by histology. Bumetanide prevented neurodevelopmental delay, hyperactivity, and declarative and spatial memory deficits. Furthermore, bumetanide reversed HI-induced brain tissue damage, reduced neuronal death and controlled GABAergic tone, maintained the NKCC1/KCC2 ratio, and synaptogenesis close to normality. Thereby, bumetanide appears to play an important therapeutic role in the CNS, protecting the animals against HI damage and improving functional performance.
Collapse
Affiliation(s)
- Diorlon Nunes Machado
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil.
| | - Luz Elena Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Ana Paula Rodrigues Martini
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Livia Machado Schlemmer
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Marcel de Medeiros de Mattos
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Gabriel Pereira Bernd
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Carla Dalmaz
- Departament of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Departament of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Departament of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
5
|
Brégère C, Schwendele B, Radanovic B, Guzman R. Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Rev Rep 2022; 18:474-522. [PMID: 34382141 PMCID: PMC8930888 DOI: 10.1007/s12015-021-10213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxia-ischemia encephalopathy (HIE) refers to a brain injury in term infants that can lead to death or lifelong neurological deficits such as cerebral palsy (CP). The pathogenesis of this disease involves multiple cellular and molecular events, notably a neuroinflammatory response driven partly by microglia, the brain resident macrophages. Treatment options are currently very limited, but stem cell (SC) therapy holds promise, as beneficial outcomes are reported in animal studies and to a lesser degree in human trials. Among putative mechanisms of action, immunomodulation is considered a major contributor to SC associated benefits. The goal of this review is to examine whether microglia is a cellular target of SC-mediated immunomodulation and whether the recruitment of microglia is linked to brain repair. We will first provide an overview on microglial activation in the rodent model of neonatal HI, and highlight its sensitivity to developmental age. Two complementary questions are then addressed: (i) do immune-related treatments impact microglia and provide neuroprotection, (ii) does stem cell treatment modulates microglia? Finally, the immune-related findings in patients enrolled in SC based clinical trials are discussed. Our review points to an impact of SCs on the microglial phenotype, but heterogeneity in experimental designs and methodological limitations hamper our understanding of a potential contribution of microglia to SC associated benefits. Thorough analyses of the microglial phenotype are warranted to better address the relevance of the neuroimmune crosstalk in brain repair and improve or advance the development of SC protocols in humans.
Collapse
Affiliation(s)
- Catherine Brégère
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Bernd Schwendele
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Boris Radanovic
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Durán-Carabali LE, Odorcyk FK, Sanches EF, de Mattos MM, Anschau F, Netto CA. Effect of environmental enrichment on behavioral and morphological outcomes following neonatal hypoxia-ischemia in rodent models: A systematic review and meta-analysis. Mol Neurobiol 2022; 59:1970-1991. [PMID: 35040041 DOI: 10.1007/s12035-022-02730-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of mortality and morbidity in newborns and, despite recent advances in neonatal intensive care, there is no definitive treatment for this pathology. Once preclinical studies have shown that environmental enrichment (EE) seems to be a promising therapy for children with HI, the present study conducts a systematic review and meta-analysis of articles with EE in HI rodent models focusing on neurodevelopmental reflexes, motor and cognitive function as well as brain damage. The protocol was registered a priori at PROSPERO. The search was conducted in PubMed, Embase and PsycINFO databases, resulting in the inclusion of 22 articles. Interestingly, EE showed a beneficial impact on neurodevelopmental reflexes (SMD= -0.73, CI= [-0.98; -0.47], p< 0.001, I2= 0.0%), motor function (SMD= -0.55, CI= [-0.81; -0.28], p< 0.001, I2= 62.6%), cognitive function (SMD= -0.93, CI= [-1.14; -0.72], p< 0.001, I2= 27.8%) and brain damage (SMD= -0.80, CI= [-1.03; -0.58], p< 0.001, I2= 10.7%). The main factors that potentiate EE positive effects were enhanced study quality, earlier age at injury as well as earlier start and longer duration of EE exposure. Overall, EE was able to counteract the behavioral and histological damage induced by the lesion, being a promising therapeutic strategy for HI.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - F K Odorcyk
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - M M de Mattos
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - F Anschau
- Medicine school, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduation Program on Evaluation and Production of Technologies for the Brazilian National Health System, Porto Alegre, Brazil
| | - C A Netto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil. .,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Dose-Dependent Neuroprotective Effects of Bovine Lactoferrin Following Neonatal Hypoxia-Ischemia in the Immature Rat Brain. Nutrients 2021; 13:nu13113880. [PMID: 34836132 PMCID: PMC8618330 DOI: 10.3390/nu13113880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023] Open
Abstract
Injuries to the developing brain due to hypoxia–ischemia (HI) are common causes of neurological disabilities in preterm babies. HI, with oxygen deprivation to the brain or reduced cerebral blood perfusion due to birth asphyxia, often leads to severe brain damage and sequelae. Injury mechanisms include glutamate excitotoxicity, oxidative stress, blood–brain barrier dysfunction, and exacerbated inflammation. Nutritional intervention is emerging as a therapeutic alternative to prevent and rescue brain from HI injury. Lactoferrin (Lf) is an iron-binding protein present in saliva, tears, and breast milk, which has been shown to have antioxidant, anti-inflammatory and anti-apoptotic properties when administered to mothers as a dietary supplement during pregnancy and/or lactation in preclinical studies of developmental brain injuries. However, despite Lf’s promising neuroprotective effects, there is no established dose. Here, we tested three different doses of dietary maternal Lf supplementation using the postnatal day 3 HI model and evaluated the acute neurochemical damage profile using 1H Magnetic Resonance Spectroscopy (MRS) and long-term microstructure alterations using advanced diffusion imaging (DTI/NODDI) allied to protein expression and histological analysis. Pregnant Wistar rats were fed either control diet or bovine Lf supplemented chow at 0.1, 1, or 10 g/kg/body weight concentration from the last day of pregnancy (embryonic day 21–E21) to weaning. At postnatal day 3 (P3), pups from both sexes had their right common carotid artery permanently occluded and were exposed to 6% oxygen for 30 min. Sham rats had the incision but neither surgery nor hypoxia episode. At P4, MRS was performed on a 9.4 T scanner to obtain the neurochemical profile in the cortex. At P4 and P25, histological analysis and protein expression were assessed in the cortex and hippocampus. Brain volumes and ex vivo microstructural analysis using DTI/NODDI parameters were performed at P25. Acute metabolic disturbance induced in cortical tissue by HIP3 was reversed with all three doses of Lf. However, data obtained from MRS show that Lf neuroprotective effects were modulated by the dose. Through western blotting analysis, we observed that HI pups supplemented with Lf at 0.1 and 1 g/kg were able to counteract glutamatergic excitotoxicity and prevent metabolic failure. When 10 g/kg was administered, we observed reduced brain volumes, increased astrogliosis, and hypomyelination, pointing to detrimental effects of high Lf dose. In conclusion, Lf supplementation attenuates, in a dose-dependent manner, the acute and long-term cerebral injury caused by HI. Lf reached its optimal effects at a dose of 1 g/kg, which pinpoints the need to better understand effects of Lf, the pathways involved and possible harmful effects. These new data reinforce our knowledge regarding neuroprotection in developmental brain injury using Lf through lactation and provide new insights into lactoferrin’s neuroprotection capacities and limitation for immature brains.
Collapse
|
8
|
Lactate Administration Reduces Brain Injury and Ameliorates Behavioral Outcomes Following Neonatal Hypoxia-Ischemia. Neuroscience 2020; 448:191-205. [PMID: 32905840 DOI: 10.1016/j.neuroscience.2020.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy is a major cause of mortality and disability in newborns and the only standard approach for treating this condition is therapeutic hypothermia, which shows some limitations. Thus, putative neuroprotective agents have been tested in animal models. The present study evaluated the administration of lactate, a potential energy substrate of the central nervous system (CNS) in an animal model of hypoxia-ischemia (HI), that mimics in neonatal rats the brain damage observed in human newborns. Seven-day-old (P7) male and female Wistar rats underwent permanent common right carotid occlusion combined with an exposition to a hypoxic atmosphere (8% oxygen) for 60 min. Animals were assigned to four experimental groups: HI, HI + LAC, SHAM, SHAM + LAC. Lactate was administered intraperitoneally 30 min and 2 h after hypoxia in HI + LAC and SHAM + LAC groups. HI and SHAM groups received vehicle at the same time points. The volume of brain lesion was evaluated in P9. Animals underwent behavioral assessments: negative geotaxis, righting reflex (P8 and P14), and cylinder test (P20). Lactate administration reduced the volume of brain lesion and improved behavioral parameters after HI in both sexes. Thus, lactate administration could be a neuroprotective strategy for the treatment of neonatal HI, a disorder still affecting a significant percentage of human newborns.
Collapse
|
9
|
Hamdy N, Eide S, Sun HS, Feng ZP. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 2020; 334:113457. [PMID: 32889009 DOI: 10.1016/j.expneurol.2020.113457] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia and resulting encephalopathies are of significant concern. Intrapartum asphyxia is a leading cause of neonatal death globally. Among surviving infants, there remains a high incidence of hypoxic-ischemic encephalopathy due to neonatal hypoxic-ischemic brain injury, manifesting as mild conditions including attention deficit hyperactivity disorder, and debilitating disorders such as cerebral palsy. Various animal models of neonatal hypoxic brain injury have been implemented to explore cellular and molecular mechanisms, assess the potential of novel therapeutic strategies, and characterize the functional and behavioural correlates of injury. Each of the animal models has individual advantages and limitations. The present review looks at several widely-used and alternative rodent models of neonatal hypoxia and hypoxia-ischemia; it highlights their strengths and limitations, and their potential for continued and improved use.
Collapse
Affiliation(s)
- Nancy Hamdy
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sarah Eide
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
10
|
Azevedo PN, Zanirati G, Venturin GT, Schu GG, Durán–Carabali LE, Odorcyk FK, Soares AV, Laguna GDO, Netto CA, Zimmer ER, da Costa JC, Greggio S. Long-term changes in metabolic brain network drive memory impairments in rats following neonatal hypoxia-ischemia. Neurobiol Learn Mem 2020; 171:107207. [DOI: 10.1016/j.nlm.2020.107207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
11
|
Ghotbeddin Z, Tabandeh MR, Borujeni MP, Truski FF, Tabrizian L. Study the effect of crocin in three maternal hypoxia protocols with different oxygen intensities on motor activity and balance in rat offspring. Acta Neurol Belg 2020; 120:155-161. [PMID: 29882009 DOI: 10.1007/s13760-018-0953-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023]
Abstract
Hypoxia as one of the most common clinical disturbances in pregnancy period can cause destructive changes in motor sensory cortex and can lead to imperfect organization in motor reactions. Crocin, a water-soluble carotenoid, is the most active ingredients of saffron and a lot of studies declare its positive effectiveness on improving motor activity. Since the hypoxia intensity affects its malicious amount on movement, in this paper, we have studied the effect of crocin in three maternal hypoxia protocols with different oxygen intensities on motor activity and balance in rat offspring. In this experiment, female rats (Wistar) were used on the 20th day of pregnancy. The rats were randomly divided into eight experimental groups: sham, crocin, hypoxia with three different intensities: 10% oxygen and 90% nitrogen for 1 h (hypoxia-ɪ), 7% oxygen and 93% nitrogen for 1 h (hypoxia-ɪɪ), 7% oxygen and 93% nitrogen for 3 h (hypoxia-ɪɪɪ) and treated-crocin hypoxia groups. To produce hypoxia, pregnant rats were placed in a hypoxia box. In crocin group, rat offspring received 30 mg/kg crocin via IP injection at P14-28. Control group also received saline injection at the same time. Finally, balance and motor activity in offspring were measured respectively by rotarod and open-field devices. Results showed that motor activity significantly decreased in hypoxia-ɪɪɪ group as compared with sham group (p < 0.01). Balance in hypoxia-ɪɪɪ group significantly decreased as compared with sham group (p < 0.05). As a result, crocin treatment improved all these changes. The results of this study implied that both hypoxia duration and intensity have profound effects on motor activities impairments.
Collapse
|
12
|
Durán-Carabali LE, Sanches EF, Odorcyk FK, Nicola F, Mestriner RG, Reichert L, Aristimunha D, Pagnussat AS, Netto CA. Tissue Injury and Astrocytic Reaction, But Not Cognitive Deficits, Are Dependent on Hypoxia Duration in Very Immature Rats Undergoing Neonatal Hypoxia-Ischemia. Neurochem Res 2019; 44:2631-2642. [PMID: 31564017 DOI: 10.1007/s11064-019-02884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Preterm birth and hypoxia-ischemia (HI) are major causes of neonatal death and neurological disabilities in newborns. The widely used preclinical HI model combines carotid occlusion with hypoxia exposure; however, the relationship between different hypoxia exposure periods with brain tissue loss, astrocyte reactivity and behavioral impairments following HI is lacking. Present study evaluated HI-induced behavioral and morphological consequences in rats exposed to different periods of hypoxia at postnatal day 3. Wistar rats of both sexes were assigned into four groups: control group, HI-120 min, HI-180 min and HI-210 min. Neurodevelopmental reflexes, exploratory abilities and cognitive function were assessed. At adulthood, tissue damage and reactive astrogliosis were measured. Animals exposed to HI-180 and HI-210 min had delayed neurodevelopmental reflexes compared to control group. Histological assessment showed tissue loss that was restricted to the ipsilateral hemisphere in lower periods of hypoxia exposure (120 and 180 min) but affected both hemispheres when 210 min was used. Reactive astrogliosis was increased only after 210 min of hypoxia. Interestingly, cognitive deficits were induced regardless the duration of hypoxia and there were correlations between behavioral parameters and cortex, hippocampus and corpus callosum volumes. These results show the duration of hypoxia has a close relationship with astrocytic response and tissue damage progression. Furthermore, the long-lasting cognitive memory deficit and its association with brain structures beyond the hippocampus suggests that complex anatomical changes should be involved in functional alterations taking place as hypoxia duration is increased, even when the cognitive impairment limit is achieved.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Post-graduation Program of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - E F Sanches
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - F K Odorcyk
- Post-graduation Program of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - F Nicola
- Post-graduation Program of Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - R G Mestriner
- Neurorehabilitation and Neural Repair Research Group, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - L Reichert
- Neurorehabilitation and Neural Repair Research Group, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D Aristimunha
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - A S Pagnussat
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - C A Netto
- Post-graduation Program of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil.,Post-graduation Program of Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Cavarsan CF, Gorassini MA, Quinlan KA. Animal models of developmental motor disorders: parallels to human motor dysfunction in cerebral palsy. J Neurophysiol 2019; 122:1238-1253. [PMID: 31411933 PMCID: PMC6766736 DOI: 10.1152/jn.00233.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is the most common motor disability in children. Much of the previous research on CP has focused on reducing the severity of brain injuries, whereas very few researchers have investigated the cause and amelioration of motor symptoms. This research focus has had an impact on the choice of animal models. Many of the commonly used animal models do not display a prominent CP-like motor phenotype. In general, rodent models show anatomically severe injuries in the central nervous system (CNS) in response to insults associated with CP, including hypoxia, ischemia, and neuroinflammation. Unfortunately, most rodent models do not display a prominent motor phenotype that includes the hallmarks of spasticity (muscle stiffness and hyperreflexia) and weakness. To study motor dysfunction related to developmental injuries, a larger animal model is needed, such as rabbit, pig, or nonhuman primate. In this work, we describe and compare various animal models of CP and their potential for translation to the human condition.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
14
|
Enriched experience during pregnancy and lactation protects against motor impairments induced by neonatal hypoxia-ischemia. Behav Brain Res 2019; 367:189-193. [DOI: 10.1016/j.bbr.2019.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022]
|
15
|
Sanches EF, van de Looij Y, Toulotte A, Sizonenko SV, Lei H. Mild Neonatal Brain Hypoxia-Ischemia in Very Immature Rats Causes Long-Term Behavioral and Cerebellar Abnormalities at Adulthood. Front Physiol 2019; 10:634. [PMID: 31231232 PMCID: PMC6560160 DOI: 10.3389/fphys.2019.00634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Systemic hypoxia-ischemia (HI) often occurs during preterm birth in human. HI induces injuries to hinder brain cells mainly in the ipsilateral forebrain structures. Such HI injuries may cause lifelong disturbances in the distant regions, such as the contralateral side of the cerebellum. We aimed to evaluate behavior associated with the cerebellum, to acquire cerebellar abundant metabolic alterations using in vivo 1H magnetic resonance spectroscopy (1H MRS), and to determine GFAP, NeuN, and MBP protein expression in the left cerebellum, in adult rats after mild early postnatal HI on the right forebrain at day 3 (PND3). From PND45, HI animals exhibited increased locomotion in the open field while there is neither asymmetrical forelimb use nor coordination deficits in the motor tasks. Despite the fact that metabolic differences between two cerebellar hemispheres were noticeable, a global increase in glutamine of HI rats was observed and became significant in the left cerebellum compared to the sham-operated group. Furthermore, increases in glutamate, glycine, the sum of glutamate and glutamine and total choline, only occurred in the left cerebellum of HI rats. Remarkably, there were decreased expression of MBP and NeuN but no detectable reactive astrogliosis in the contralateral side of the cerebellum of HI rats. Taken together, the detected alterations observed in the left cerebellum of HI rats may reflect disequilibrium in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons from hypoxic-ischemic origin. Our data provides in vivo evidence of long-term changes in the corresponding cerebellum following mild neonatal HI in very immature rats, supporting the notion that systemic HI could cause cell death in the cerebellum, a distant region from the expected injury site. HIGHLIGHTS -Neonatal hypoxia-ischemia (HI) in very immature rats induces hyperactivity toward adulthood.-1H magnetic resonance spectroscopy detects long-term cerebellar metabolic changes in adult rats after neonatal HI at postnatal day 3.-Substantial decreases of expression of neuronal and myelin markers in adult rats cerebellum after neonatal cortical mild HI.
Collapse
Affiliation(s)
- Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Audrey Toulotte
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Vladimir Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Hongxia Lei
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Buratti P, Covatti C, Centenaro LA, Brancalhão RMC, Torrejais MM. Morphofunctional characteristics of skeletal muscle in rats with cerebral palsy. Int J Exp Pathol 2019; 100:49-59. [PMID: 30773727 DOI: 10.1111/iep.12304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/24/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023] Open
Abstract
Knowledge of skeletal muscle adaptations is important to understand the functional deficits in cerebral palsy (CP). This study aimed to investigate the morphofunctional characteristics of skeletal muscle in a CP animal model. Initially, pregnant Wistar rats were injected intraperitoneally with saline or lipopolysaccharide over the last five days of pregnancy. The control group (n = 8) consisted of male pups born to females injected with saline. The CP group (n = 8) consisted of male pups born to females injected with lipopolysaccharide, which were submitted to perinatal anoxia [day of birth, postnatal day 0 (P0)] and sensorimotor restriction (P1-P30). The open-field test was undertaken on P29 and P45. On P48, the animals were weighed, and the plantaris muscle was collected and its weight and length were measured. Transverse sections were stained with haematoxylin-eosin, NADH-TR, Masson's trichrome and non-specific esterase reaction for analysis. and transmission electron microscopy was performed. In the CP group, reductions were observed in mobility time, number of crossings and rearing frequency, body weight, muscle weight and length, and nucleus-to-fibre and capillary-to-fibre ratios. There was a statistically significant increase in the percentage area of the muscle section occupied by collagen; reduction in the area and increase in the number of type I muscle fibres; increase in myofibrillar disorganization and Z-line disorganization and dissolution; and reduction in the area and largest and smallest diameters of neuromuscular junctions. Thus this animal model of CP produced morphofunctional alterations in skeletal muscle, that were associated with evidence of motor deficits as demonstrated by the open-field test.
Collapse
Affiliation(s)
- Pâmela Buratti
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Paraná, Brazil
| | - Caroline Covatti
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Paraná, Brazil
| | - Lígia Aline Centenaro
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Paraná, Brazil
| | - Rose Meire Costa Brancalhão
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Paraná, Brazil
| | - Marcia Miranda Torrejais
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Paraná, Brazil
| |
Collapse
|
17
|
Confortim HD, Deniz BF, de Almeida W, Miguel PM, Bronauth L, Vieira MC, de Oliveira BC, Pereira LO. Neonatal hypoxia-ischemia caused mild motor dysfunction, recovered by acrobatic training, without affecting morphological structures involved in motor control in rats. Brain Res 2018; 1707:27-44. [PMID: 30448443 DOI: 10.1016/j.brainres.2018.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
The aim of this study was to evaluated motor function and morphological aspects of the components involved in motor control (sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle) in male Wistar rats exposed to a model of neonatal hypoxic-ischemic encephalopathy (HIE) and the possible influence of different physical exercise protocols - treadmill and acrobatic. Male Wistar rats at the 7th post-natal day (PND) were submitted to the HIE model and from the 22nd until 60th PND the exercise protocols (treadmill or acrobatic training) were running. After the training, the animals were evaluated in Open Field, Ladder Rung Walking and Rotarod tasks and after samples of the motor control components were collected. Our results evidenced that the acrobatic training reversed the hyperactivity and anxiety, caused locomotion improvement and decreased brain atrophy in HIE animals. We did not find morphological differences on sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle in the animals submitted to HIE model. These intriguing data support the statement of the Rice-Vannucci model does not seem to reproduce, in structures involved in control function, the damage found in humans that suffer HIE. Regarding the protocols of exercise, we proposed that the acrobatic exercise could be a good therapeutic option especially in children affected by neonatal HIE and can be responsible for good results in cognitive and motor aspects.
Collapse
Affiliation(s)
- Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Bruna Chaves de Oliveira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Sanches EF, Van de Looij Y, Toulotte A, da Silva AR, Romero J, Sizonenko SV. Brain Metabolism Alterations Induced by Pregnancy Swimming Decreases Neurological Impairments Following Neonatal Hypoxia-Ischemia in Very Immature Rats. Front Neurol 2018; 9:480. [PMID: 29988536 PMCID: PMC6026645 DOI: 10.3389/fneur.2018.00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction: Prematurity, through brain injury and altered development is a major cause of neurological impairments and can result in motor, cognitive and behavioral deficits later in life. Presently, there are no well-established effective therapies for preterm brain injury and the search for new strategies is needed. Intra-uterine environment plays a decisive role in brain maturation and interventions using the gestational window have been shown to influence long-term health in the offspring. In this study, we investigated whether pregnancy swimming can prevent the neurochemical metabolic alterations and damage that result from postnatal hypoxic-ischemic brain injury (HI) in very immature rats. Methods: Female pregnant Wistar rats were divided into swimming (SW) or sedentary (SE) groups. Following a period of adaptation before mating, swimming was performed during the entire gestation. At postnatal day (PND3), rat pups from SW and SE dams had right common carotid artery occluded, followed by systemic hypoxia. At PND4 (24 h after HI), the early neurochemical profile was measured by 1H-magnetic resonance spectroscopy. Astrogliosis, apoptosis and neurotrophins protein expression were assessed in the cortex and hippocampus. From PND45, behavioral testing was performed. Diffusion tensor imaging and neurite orientation dispersion and density imaging were used to evaluate brain microstructure and the levels of proteins were quantified. Results: Pregnancy swimming was able to prevent early metabolic changes induced by HI preserving the energetic balance, decreasing apoptotic cell death and astrogliosis as well as maintaining the levels of neurotrophins. At adult age, swimming preserved brain microstructure and improved the performance in the behavioral tests. Conclusion: Our study points out that swimming during gestation in rats could prevent prematurity related brain damage in progeny with high translational potential and possibly interesting cost-benefits. HIGHLIGHTS- Prematurity is a major cause of neurodevelopmental impairments; - Swimming during pregnancy reduces brain damage after HI injury; - Pregnancy is an important but underestimated preventive window.
Collapse
Affiliation(s)
- Eduardo F Sanches
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Yohan Van de Looij
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland.,Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Audrey Toulotte
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Analina R da Silva
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jacqueline Romero
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|