1
|
Chen Y, Sun J, Tao J, Sun T. Treatments and regulatory mechanisms of acoustic stimuli on mood disorders and neurological diseases. Front Neurosci 2024; 17:1322486. [PMID: 38249579 PMCID: PMC10796816 DOI: 10.3389/fnins.2023.1322486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Acoustic stimuli such as music or ambient noise can significantly affect physiological and psychological health in humans. We here summarize positive effects of music therapy in premature infant distress regulation, performance enhancement, sleep quality control, and treatment of mental disorders. Specifically, music therapy exhibits promising effects on treatment of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). We also highlight regulatory mechanisms by which auditory intervention affects an organism, encompassing modulation of immune responses, gene expression, neurotransmitter regulation and neural circuitry. As a safe, cost-effective and non-invasive intervention, music therapy offers substantial potential in treating a variety of neurological conditions.
Collapse
Affiliation(s)
- Yikai Chen
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Julianne Sun
- Xiamen Institute of Technology Attached School, Xiamen, China
| | - Junxian Tao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| |
Collapse
|
3
|
Can the Development of Religious and Cultural Tourism Build a Sustainable and Friendly Life and Leisure Environment for the Elderly and Promote Physical and Mental Health? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211989. [PMID: 34831742 PMCID: PMC8625097 DOI: 10.3390/ijerph182211989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
From the perspective of satisfaction, physical and mental health, and re-travel, this study explored whether the development of religious and cultural tourism could construct a sustainable and friendly life and leisure environment for the elderly to promote physical and mental health. This research adopted a mixed method, collected 700 questionnaires, used SPSS 22.0 statistical software, and analyzed basic statistics, t-test, and PPMCC test. Then, the researchers conducted semi-structured interviews, collected the opinions of six interviewees, and finally analyzed with multiple checks Law discussion. The results found that people of different genders and stakeholders had different opinions about DIY activities on leisure satisfaction, featured itineraries, relaxation areas, signs and instructions, community association and service center services, historical landmarks, and public transportation. They found people’s life satisfaction in physical and mental health was increased, their headaches or pressures on the top of their heads were relieved, backache problems were reduced, and they were no longer anxious and lost tempers. They had a greater willingness to revisit some places and share experiences. This study found significant differences among these topics (p < 0.01). Women, residents, and tourists had different opinions. In addition, although the natural environment landscape and feelings have the greatest influence, the better the physical and mental health was improved, the better the willingness to travel. However, the more perfect the local construction and development, the less favorable to attract people to engage in leisure activities or tourism consumption.
Collapse
|
4
|
Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, Coleman JRI, Hagenaars SP, Ward J, Wigmore EM, Alloza C, Shen X, Barbu MC, Xu EY, Whalley HC, Marioni RE, Porteous DJ, Davies G, Deary IJ, Hemani G, Berger K, Teismann H, Rawal R, Arolt V, Baune BT, Dannlowski U, Domschke K, Tian C, Hinds DA, Trzaskowski M, Byrne EM, Ripke S, Smith DJ, Sullivan PF, Wray NR, Breen G, Lewis CM, McIntosh AM. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci 2019; 22:343-352. [PMID: 30718901 PMCID: PMC6522363 DOI: 10.1038/s41593-018-0326-7] [Citation(s) in RCA: 1556] [Impact Index Per Article: 259.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
Major depression is a debilitating psychiatric illness that is typically associated with low mood and anhedonia. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximize sample size, we meta-analyzed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 genesets associated with depression, including both genes and gene pathways associated with synaptic structure and neurotransmission. An enrichment analysis provided further evidence of the importance of prefrontal brain regions. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant after multiple testing correction. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding etiology and developing new treatment approaches.
Collapse
Affiliation(s)
- David M Howard
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jonathan D Hafferty
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jude Gibson
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Masoud Shirali
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jonathan R I Coleman
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - Saskia P Hagenaars
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Eleanor M Wigmore
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Clara Alloza
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Eileen Y Xu
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Gibran Hemani
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health, Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Klaus Berger
- Institute of Epidemiology & Social Medicine, University of Münster, Münster, Germany
| | - Henning Teismann
- Institute of Epidemiology & Social Medicine, University of Münster, Münster, Germany
| | - Rajesh Rawal
- Institute of Epidemiology & Social Medicine, University of Münster, Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chao Tian
- 23andMe, Inc, Mountain View, CA, USA
| | | | - Maciej Trzaskowski
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Enda M Byrne
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Stephan Ripke
- Department of Psychiatry, Charite Universitatsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Naomi R Wray
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Gerome Breen
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - Cathryn M Lewis
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Schwarz AP, Rotov AY, Chuprina OI, Krytskaya DU, Trofimov AN, Kosheverova VV, Ischenko AM, Zubareva OE. Developmental prefrontal mRNA expression of D2 dopamine receptor splice variants and working memory impairments in rats after early life Interleukin-1β elevation. Neurobiol Learn Mem 2018; 155:231-238. [PMID: 30092312 DOI: 10.1016/j.nlm.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
Long (D2L) and Short (D2S) isoforms of D2 dopamine receptor differ in their biochemical and physiological properties, which could affect functioning of prefrontal cortex. Contribution of distinct D2 dopamine receptor isoforms to cognitive dysfunctions and its developmental regulation are currently not fully elucidated. In the present study, we evaluated developmental mRNA expression of D2S/D2L dopamine receptor isoforms within the rat medial prefrontal cortex (mPFC) in the model of neurodevelopmental cognitive dysfunction. Working memory performance (Y-maze spontaneous alternations) and D2S/D2L mRNA expression in the mPFC (by qRT-PCR) were evaluated in juvenile (P27), adolescent (P42-47) and adult (P75-90) rats after chronic early life treatment with proinflammatory cytokine interleukin (IL)-1β (1 µg/kg i.p. daily P15-21). It was shown that IL-1β elevation during the 3rd week of life leads to working memory deficit originating in juvenile animals and persisting into adulthood. D2S mRNA expression was strongly downregulated during adolescence, and such downregulation was exaggerated in animals injected with IL-1β during P15-21. Early life IL-1β administrations influenced developmental changes in the D2S/D2L mRNA ratio. This measure was found to be decreased in adolescent and adult control (intact and vehicle-treated) rats compared to juvenile control, while in the case of IL-1β-treated animals, the decrease in D2S/D2L ratio was observed only in adulthood but not in adolescence compared to juvenile rats. During the adolescence, D2S mRNA expression was downregulated and D2S/D2L ratio was upregulated in the mPFC of rats treated with IL-1β during the 3rd week of life compared to controls. Based on these data we conclude that changes in the developmental expression of D2 dopamine receptor splice variants within mPFC may underlie long-lasting cognitive deficit associated with neonatal pathology.
Collapse
Affiliation(s)
- Alexander P Schwarz
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia.
| | - Alexander Yu Rotov
- Laboratory of Evolution of the Sensory Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 199223 St. Petersburg, Russia
| | - Olga I Chuprina
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Darya U Krytskaya
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Alexander N Trofimov
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Vera V Kosheverova
- Laboratory of Intracellular Membranes Dynamics, Department of the Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky avenue 4, 194064 St. Petersburg, Russia
| | - Alexander M Ischenko
- Laboratory of Protein Biochemistry, Research Institute of Highly Pure Biopreparations, Pudozhskaya street 7, 197110 St. Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia; Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 199223 St. Petersburg, Russia
| |
Collapse
|
6
|
Schwarz AP, Trofimov AN, Zubareva OE, Lioudyno VI, Kosheverova VV, Ischenko AM, Klimenko VM. Prefrontal mRNA expression of long and short isoforms of D2 dopamine receptor: Possible role in delayed learning deficit caused by early life interleukin-1β treatment. Behav Brain Res 2017; 333:118-122. [PMID: 28673768 DOI: 10.1016/j.bbr.2017.06.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/11/2023]
Abstract
Long (D2L) and short (D2S) isoform of the D2 dopamine receptor are believed to play different roles in behavioral regulation. However, little is known about differential regulation of these isoforms mRNA expression during the process of learning in physiological and pathological states. In this study, we have investigated the combined effect of training in active avoidance (AA) paradigm and chronic early life treatment with pro-inflammatory cytokine interleukin (IL)-1β (1μg/kg i.p., P15-21) on D2S and D2L dopamine receptor mRNA expression in the medial prefrontal cortex (mPFC) of adult rats. We have shown differential regulation of D2 short and long mRNA isoform expression in the mPFC. There was no effect of AA-training on D2S mRNA expression, while D2L mRNA was downregulated in AA-trained control (intact and saline-treated) animals, and this effect was not observed in rats treated with IL-1β. D2S mRNA expression level negatively correlated with learning ability within control (saline-treated and intact) groups but not in IL-1β-treated animals. Thus, prefrontal expression of distinct D2 dopamine receptor splice variants is supposed to be implicated in cognitive decline caused by early life immune challenge.
Collapse
Affiliation(s)
- Alexander P Schwarz
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia.
| | - Alexander N Trofimov
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia; Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, 199223 St. Petersburg, Russia
| | - Victoria I Lioudyno
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Vera V Kosheverova
- Laboratory of Intracellular Membranes Dynamics, Department of the Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 St. Petersburg, Russia
| | - Alexander M Ischenko
- Laboratory of Protein Biochemistry, Research Institute of Highly Pure Biopreparations, Pudozhskaya 7, 197110 St. Petersburg, Russia
| | - Victor M Klimenko
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| |
Collapse
|