1
|
Luca IS, Vuckovic A. How are opposite neurofeedback tasks represented at cortical and corticospinal tract levels? J Neural Eng 2025; 22:026031. [PMID: 40043361 DOI: 10.1088/1741-2552/adbcdb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
Objective.The study objective was to characterise indices of learning and patterns of connectivity in two neurofeedback (NF) paradigms that modulate mu oscillations in opposite directions, and the relationship with change in excitability of the corticospinal tract (CST).Approach.Forty-three healthy volunteers participated in 3 NF sessions for upregulation (N = 24) or downregulation (N = 19) of individual alpha (IA) power at central location Cz. Brain signatures from multichannel electroencephalogram (EEG) were analysed, including oscillatory (power, spindles), non-oscillatory components (Hurst exponent), and effective connectivity directed transfer function (DTF) of participants who were successful at enhancing or suppressing IA power at Cz. CST excitability was studied through leg motor-evoked potential, tested before and after the last NF session. We assessed whether participants modulated widespread alpha or central mu rhythm through the use of current source density derivation (CSD), and related the change in activity in mu and upper half of mu band, to CST excitability change.Main results.In the last session, IA/mu power suppression was achieved by 79% of participants, while 63% enhanced IA. CSD-EEG revealed that mu power was upregulated through an increase in the incidence rate of bursts of alpha band activity, while downregulation involved changes in oscillation amplitude and temporal patterns. Neuromodulation also influenced frequencies adjacent to the targeted band, indicating the use of common mental strategies within groups. DTF analysis showed, for both groups, significant connectivity between structures commonly associated with motor imagery tasks, known to modulate the excitability of the motor cortex, although most connections did not remain significant after correcting for multiple comparisons. CST excitability modulation was related to the absolute amplitude of upper mu modulation, rather than the modulation direction.Significance.The upregulation and downregulation of IA/mu power during NF, with respect to baseline were achieved via distinct mechanisms involving oscillatory and non-oscillatory EEG features. Mu enhancement and suppression post-NF and during the last NF block with respect to the baseline, respectively corresponded to opposite trends in motor-evoked potential changes post-NF. The ability of NF to modulate CST excitability could be a valuable rehabilitation tool for central nervous system disorders (stroke, spinal cord injury), where increased excitability and neural plasticity are desired. This work may inform future neuromodulation protocols, and may improve NF training effectiveness by rewarding certain EEG signatures.
Collapse
Affiliation(s)
- Ioana Susnoschi Luca
- Department of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Aleksandra Vuckovic
- Department of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Orendáčová M, Kvašňák E. What can neurofeedback and transcranial alternating current stimulation reveal about cross-frequency coupling? Front Neurosci 2025; 19:1465773. [PMID: 40012676 PMCID: PMC11861218 DOI: 10.3389/fnins.2025.1465773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
In recent years, the dynamics and function of cross-frequency coupling (CFC) in electroencephalography (EEG) have emerged as a prevalent area of investigation within the research community. One possible approach in studying CFC is to utilize non-invasive neuromodulation methods such as transcranial alternating current stimulation (tACS) and neurofeedback (NFB). In this study, we address (1) the potential applicability of single and multifrequency tACS and NFB protocols in CFC research; (2) the prevalence of CFC types, such as phase-amplitude or amplitude-amplitude CFC, in tACS and NFB studies; and (3) factors that contribute to inter- and intraindividual variability in CFC and ways to address them potentially. Here we analyzed research studies on CFC, tACS, and neurofeedback. Based on current knowledge, CFC types have been reported in tACS and NFB studies. We hypothesize that direct and indirect effects of tACS and neurofeedback can induce CFC. Several variability factors such as health status, age, fatigue, personality traits, and eyes-closed (EC) vs. eyes-open (EO)condition may influence the CFC types. Modifying the duration of the tACS and neurofeedback intervention and selecting a specific demographic experimental group could reduce these sources of CFC variability. Neurofeedback and tACS appear to be promising tools for studying CFC.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | | |
Collapse
|
3
|
Chikhi S, Matton N, Sanna M, Blanchet S. Effects of one session of theta or high alpha neurofeedback on EEG activity and working memory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1065-1083. [PMID: 39322825 DOI: 10.3758/s13415-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).
Collapse
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France.
- Integrative Neuroscience and Cognition Center, Université Paris Cité, F-75006, Paris, France.
| | - Nadine Matton
- CLLE - Cognition, Langues, Langage, Ergonomie, Université de Toulouse, Toulouse, France
- Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, Toulouse, France
| | - Marie Sanna
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| |
Collapse
|
4
|
Chikhi S, Matton N, Sanna M, Blanchet S. Mental strategies and resting state EEG: Effect on high alpha amplitude modulation by neurofeedback in healthy young adults. Biol Psychol 2023; 178:108521. [PMID: 36801435 DOI: 10.1016/j.biopsycho.2023.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Neurofeedback (NFB) is a brain-computer interface which allows individuals to modulate their brain activity. Despite the self-regulatory nature of NFB, the effectiveness of strategies used during NFB training has been little investigated. In a single session of NFB training (6*3 min training blocks) with healthy young participants, we experimentally tested if providing a list of mental strategies (list group, N = 46), compared with a group receiving no strategies (no list group, N = 39), affected participants' neuromodulation ability of high alpha (10-12 Hz) amplitude. We additionally asked participants to verbally report the mental strategies used to enhance high alpha amplitude. The verbatim was then classified in pre-established categories in order to examine the effect of type of mental strategy on high alpha amplitude. First, we found that giving a list to the participants did not promote the ability to neuromodulate high alpha activity. However, our analysis of the specific strategies reported by learners during training blocks revealed that cognitive effort and recalling memories were associated with higher high alpha amplitude. Furthermore, the resting amplitude of trained high alpha frequency predicted an amplitude increase during training, a factor that may optimize inclusion in NFB protocols. The present results also corroborate the interrelation with other frequency bands during NFB training. Although these findings are based on a single NFB session, our study represents a further step towards developing effective protocols for high alpha neuromodulation by NFB.
Collapse
Affiliation(s)
- Samy Chikhi
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France
| | - Nadine Matton
- CLLE, Université de Toulouse, CNRS (UMR 5263), Toulouse, France; ENAC, École Nationale d'Aviation Civile, Université de Toulouse, France
| | - Marie Sanna
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France
| | - Sophie Blanchet
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France.
| |
Collapse
|
5
|
Behzadifard B, Sabaghypour S, Farkhondeh Tale Navi F, Nazari MA. Training the brain to time: the effect of neurofeedback of SMR-Beta1 rhythm on time perception in healthy adults. Exp Brain Res 2022; 240:2027-2038. [PMID: 35576072 DOI: 10.1007/s00221-022-06380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
Abstract
The timing ability plays an important role in everyday activities and is influenced by several factors such as the attention and arousal levels of the individuals. The effects of these factors on time perception have been interpreted through psychological models of time, including Attentional Gate Model (AGM). On the other hand, research has indicated that neurofeedback (NFB) training improves attention and increases arousal levels in the clinical and healthy population. Regarding the link between attentional processing and arousal levels and NFB and their relation to time perception, this study is a pilot demonstration of the influence of SMR-Beta1 (12-18 Hz) NFB training on time production and reproduction performance in healthy adults. To this end, 12 (9 female and 3 males; M = 26.3, SD = 3.8) and 12 participants (7 female and 5 males; M = 26.9, SD = 3.1) were randomly assigned into the experimental (with SMR-Beta1 NFB) and control groups (without any NFB training), respectively. The experimental group underwent intensive 10 sessions (3 days a week) of the 12-18 Hz up-training. Time production and reproduction performance were assessed pre and post NFB training for all participants. Three-way mixed ANOVA was carried out on T-corrected scores of reproduction and production tasks. Correlation analysis was also performed between SMR-Beta1 and time perception. While NFB training significantly influenced time production (P < 0.01), no such effect was observed for the time reproduction task. The results of the study are finally discussed within the frameworks of AGM, dual-process and cognitive aspects of time perception. Overall, our results contribute to disentangling the underlying mechanisms of temporal performance in healthy individuals.
Collapse
Affiliation(s)
- Behnoush Behzadifard
- Department of Psychology, Kish International Branch, Islamic Azad University, Kish Island, Iran
| | - Saied Sabaghypour
- Department of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Exp.way, Tehran, Iran.
| |
Collapse
|
6
|
Liu S, Hao X, Liu X, He Y, Zhang L, An X, Song X, Ming D. Sensorimotor rhythm neurofeedback training relieves anxiety in healthy people. Cogn Neurodyn 2021; 16:531-544. [DOI: 10.1007/s11571-021-09732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 10/19/2022] Open
|
7
|
Grosselin F, Breton A, Yahia-Cherif L, Wang X, Spinelli G, Hugueville L, Fossati P, Attal Y, Navarro-Sune X, Chavez M, George N. Alpha activity neuromodulation induced by individual alpha-based neurofeedback learning in ecological context: a double-blind randomized study. Sci Rep 2021; 11:18489. [PMID: 34531416 PMCID: PMC8445968 DOI: 10.1038/s41598-021-96893-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
The neuromodulation induced by neurofeedback training (NFT) remains a matter of debate. Investigating the modulation of brain activity specifically associated with NF requires controlling for multiple factors, such as reward, performance, congruency between task and targeted brain activity. This can be achieved using sham feedback (FB) control condition, equating all aspects of the experiment but the link between brain activity and FB. We aimed at investigating the modulation of individual alpha EEG activity induced by NFT in a double-blind, randomized, sham-controlled study. Forty-eight healthy participants were assigned to either NF (n = 25) or control (n = 23) group and performed alpha upregulation training (over 12 weeks) with a wearable EEG device. Participants of the NF group received FB based on their individual alpha activity. The control group received the auditory FB of participants of the NF group. An increase of alpha activity across training sessions was observed in the NF group only (p < 0.001). This neuromodulation was selective in that there was no evidence for similar effects in the theta (4-8 Hz) and low beta (13-18 Hz) bands. While alpha upregulation was found in the NF group only, psychological outcome variables showed overall increased feeling of control, decreased anxiety level and increased relaxation feeling, without any significant difference between the NF and the control groups. This is interpreted in terms of learning context and placebo effects. Our results pave the way to self-learnt, NF-based neuromodulation with light-weighted, wearable EEG systems.
Collapse
Affiliation(s)
- Fanny Grosselin
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute (ICM), INSERM U 1127, CNRS UMR 7225, Equipe Aramis, 75013, Paris, France.
- myBrain Technologies, 75010, Paris, France.
- INRIA, Aramis Project-Team, 75013, Paris, France.
| | | | - Lydia Yahia-Cherif
- Institut du Cerveau-Paris Brain Institute-ICM, Centre MEG-EEG, Paris, France
- CNRS, UMR 7225, F-75013, Paris, France
- Inserm, U 1127, Paris, France
- Sorbonne Université, Paris, France
| | - Xi Wang
- myBrain Technologies, 75010, Paris, France
| | | | - Laurent Hugueville
- Institut du Cerveau-Paris Brain Institute-ICM, Centre MEG-EEG, Paris, France
- CNRS, UMR 7225, F-75013, Paris, France
- Inserm, U 1127, Paris, France
- Sorbonne Université, Paris, France
| | - Philippe Fossati
- CNRS, UMR 7225, F-75013, Paris, France
- Inserm, U 1127, Paris, France
- Sorbonne Université, Paris, France
- Institut du Cerveau-Paris Brain Institute-ICM, Equipe CIA-Cognitive Control, Interoception, Attention, 75013, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Service de Psychiatrie Adulte, 75013, Paris, France
| | | | | | | | - Nathalie George
- Institut du Cerveau-Paris Brain Institute-ICM, Centre MEG-EEG, Paris, France
- CNRS, UMR 7225, F-75013, Paris, France
- Inserm, U 1127, Paris, France
- Sorbonne Université, Paris, France
- Institut du Cerveau-Paris Brain Institute-ICM, Equipe Experimental Neurosurgery, 75013, Paris, France
| |
Collapse
|
8
|
Orendáčová M, Kvašňák E. Effects of Transcranial Alternating Current Stimulation and Neurofeedback on Alpha (EEG) Dynamics: A Review. Front Hum Neurosci 2021; 15:628229. [PMID: 34305549 PMCID: PMC8297546 DOI: 10.3389/fnhum.2021.628229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) and neurofeedback (NFB) are two different types of non-invasive neuromodulation techniques, which can modulate brain activity and improve brain functioning. In this review, we compared the current state of knowledge related to the mechanisms of tACS and NFB and their effects on electroencephalogram (EEG) activity (online period/stimulation period) and on aftereffects (offline period/post/stimulation period), including the duration of their persistence and potential behavioral benefits. Since alpha bandwidth has been broadly studied in NFB and in tACS research, the studies of NFB and tACS in modulating alpha bandwidth were selected for comparing the online and offline effects of these two neuromodulation techniques. The factors responsible for variability in the responsiveness of the modulated EEG activity by tACS and NFB were analyzed and compared too. Based on the current literature related to tACS and NFB, it can be concluded that tACS and NFB differ a lot in the mechanisms responsible for their effects on an online EEG activity but they possibly share the common universal mechanisms responsible for the induction of aftereffects in the targeted stimulated EEG band, namely Hebbian and homeostatic plasticity. Many studies of both neuromodulation techniques report the aftereffects connected to the behavioral benefits. The duration of persistence of aftereffects for NFB and tACS is comparable. In relation to the factors influencing responsiveness to tACS and NFB, significantly more types of factors were analyzed in the NFB studies compared to the tACS studies. Several common factors for both tACS and NFB have been already investigated. Based on these outcomes, we propose several new research directions regarding tACS and NFB.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | | |
Collapse
|
9
|
Jin X, Lu Y, Hatfield BD, Wang X, Wang B, Zhou C. Ballroom dancers exhibit a dispositional need for arousal and elevated cerebral cortical activity during preferred melodic recall. PeerJ 2021; 9:e10658. [PMID: 33520454 PMCID: PMC7811281 DOI: 10.7717/peerj.10658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 11/26/2022] Open
Abstract
Background Although the association of human temperament and preference has been studied previously, few investigations have examined cerebral cortical activation to assess brain dynamics associated with the motivation to engage in performance. The present study adopted a personality and cognitive neuroscience approach to investigate if participation in ballroom dancing is associated with sensation-seeking temperament and elevated cerebral cortical arousal during freely chosen musical recall. Methods Preferred tempo, indicated by tapping speed during melodic recall, and a measure of fundamental disposition or temperament were assessed in 70 ballroom dancers and 71 nondancers. All participants completed a trait personality inventory (i.e., the Chen Huichang 60 Temperaments Inventory) to determine four primary types: choleric, sanguine, phlegmatic and melancholic. Participants separately recalled their favorite musical piece and tapped to it with their index finger for 40 beats using a computer keyboard. A subset of 59 participants (29 ballroom dancers and 30 nondancers) also repeated the same tapping task while electroencephalographic (EEG) activity was recorded. Results The results revealed that the dancers were more extraverted, indicative of a heightened need for arousal, exhibited a preference for faster musical tempo, and exhibited elevated EEG beta power during the musical recall task relative to nondancers. Paradoxically, dancers also showed elevated introversion (i.e., melancholic score) relative to nondancers, which can be resolved by consideration of interactional personality theory if one assumes reasonably that dance performance environment is perceived in a stimulating manner. Conclusion The results are generally consistent with arousal theory, and suggest that ballroom dancers seek elevated stimulation and, thereby, choose to engage with active and energetic rhythmic auditory stimulation, thus providing the nervous system with the requisite stimulation for desired arousal. These results also suggest an underlying predisposition for engagement in ballroom dance and support the gravitational hypothesis, which propose that personality traits and perception lead to the motivation to engage in specific forms of human performance.
Collapse
Affiliation(s)
- Xinhong Jin
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yingzhi Lu
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Bradley D Hatfield
- Department of Kinesiology, University of Maryland, College Park, MD, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Xiaoyu Wang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Biye Wang
- Department of Physical Education, Yangzhou University, Yangzhou, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
10
|
Gadea M, Aliño M, Hidalgo V, Espert R, Salvador A. Effects of a single session of SMR neurofeedback training on anxiety and cortisol levels. Neurophysiol Clin 2020; 50:167-173. [PMID: 32279927 DOI: 10.1016/j.neucli.2020.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES According to some studies, a putatively calming effect of EEG neurofeedback training could be useful as a therapeutic tool in psychiatric practice. With the aim of elucidating this possibility, we tested the efficacy of a single session of ↑sensorimotor (SMR)/↓theta neurofeedback training for mood improvement in 32 healthy men, taking into account trainability, independence and interpretability of the results. METHODS A pre-post design, with the following dependent variables, was applied: (i) psychometric measures of mood with regards to anxiety, depression, and anger (Profile of Mood State, POMS, and State Trait Anxiety Inventory, STAI); (ii) biological measures (salivary levels of cortisol); (iii) neurophysiological measures (EEG frequency band power analysis). In accordance with general recommendations for research in neurofeedback, a control group receiving sham neurofeedback was included. RESULTS Anxiety levels decreased after the real neurofeedback and increased after the sham neurofeedback (P<0.01, size effect 0.9 for comparison between groups). Cortisol decreased after the experiment in both groups, though with significantly more pronounced effects in the desired direction after the real neurofeedback (P<0.04; size effect 0.7). The group receiving real neurofeedback significantly enhanced their SMR band (P<0.004; size effect 0.88), without changes in the theta band. The group receiving sham neurofeedback did not show any EEG changes. CONCLUSIONS The improvement observed in anxiety was greater in the experimental group than in the sham group, confirmed by both subjective (psychometric) measures and objective (biological) measures. This was demonstrated to be associated with the real neurofeedback, though a nonspecific (placebo) effect likely also contributed.
Collapse
Affiliation(s)
- Marien Gadea
- Department of Psychobiology, University of Valencia, Valencia, Spain.
| | - Marta Aliño
- Department of Psychology, Universidad Internacional de Valencia, Valencia, Spain
| | - Vanesa Hidalgo
- Area of Psychobiology, Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
| | - Raul Espert
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Alicia Salvador
- Laboratory of Cognitive Social Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Bismuth J, Vialatte F, Lefaucheur JP. Relieving peripheral neuropathic pain by increasing the power-ratio of low-β over high-β activities in the central cortical region with EEG-based neurofeedback: Study protocol for a controlled pilot trial (SMRPain study). Neurophysiol Clin 2020; 50:5-20. [DOI: 10.1016/j.neucli.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
|
12
|
Mirifar A, Keil A, Beckmann J, Ehrlenspiel F. No Effects of Neurofeedback of Beta Band Components on Reaction Time Performance. JOURNAL OF COGNITIVE ENHANCEMENT 2018. [DOI: 10.1007/s41465-018-0093-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
|