1
|
D’Cruz N, De Vleeschhauwer J, Putzolu M, Nackaerts E, Gilat M, Nieuwboer A. Sensorimotor Network Segregation Predicts Long-Term Learning of Writing Skills in Parkinson's Disease. Brain Sci 2024; 14:376. [PMID: 38672025 PMCID: PMC11047850 DOI: 10.3390/brainsci14040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The prediction of motor learning in Parkinson's disease (PD) is vastly understudied. Here, we investigated which clinical and neural factors predict better long-term gains after an intensive 6-week motor learning program to ameliorate micrographia. We computed a composite score of learning through principal component analysis, reflecting better writing accuracy on a tablet in single and dual task conditions. Three endpoints were studied-acquisition (pre- to post-training), retention (post-training to 6-week follow-up), and overall learning (acquisition plus retention). Baseline writing, clinical characteristics, as well as resting-state network segregation were used as predictors. We included 28 patients with PD (13 freezers and 15 non-freezers), with an average disease duration of 7 (±3.9) years. We found that worse baseline writing accuracy predicted larger gains for acquisition and overall learning. After correcting for baseline writing accuracy, we found female sex to predict better acquisition, and shorter disease duration to help retention. Additionally, absence of FOG, less severe motor symptoms, female sex, better unimanual dexterity, and better sensorimotor network segregation impacted overall learning positively. Importantly, three factors were retained in a multivariable model predicting overall learning, namely baseline accuracy, female sex, and sensorimotor network segregation. Besides the room to improve and female sex, sensorimotor network segregation seems to be a valuable measure to predict long-term motor learning potential in PD.
Collapse
Affiliation(s)
- Nicholas D’Cruz
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Box 1500, B-3001 Leuven, Belgium; (N.D.); (J.D.V.); (E.N.); (M.G.)
| | - Joni De Vleeschhauwer
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Box 1500, B-3001 Leuven, Belgium; (N.D.); (J.D.V.); (E.N.); (M.G.)
| | - Martina Putzolu
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, 16132 Genoa, Italy;
| | - Evelien Nackaerts
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Box 1500, B-3001 Leuven, Belgium; (N.D.); (J.D.V.); (E.N.); (M.G.)
| | - Moran Gilat
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Box 1500, B-3001 Leuven, Belgium; (N.D.); (J.D.V.); (E.N.); (M.G.)
| | - Alice Nieuwboer
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Box 1500, B-3001 Leuven, Belgium; (N.D.); (J.D.V.); (E.N.); (M.G.)
| |
Collapse
|
2
|
Associations between resting-state functional connectivity changes and prolonged benefits of writing training in Parkinson's disease. J Neurol 2022; 269:4696-4707. [PMID: 35420350 DOI: 10.1007/s00415-022-11098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Our earlier work showed that automaticity and retention of writing skills improved with intensive writing training in Parkinson's disease (PD). However, whether this training changed the resting-state networks in the brain and how these changes underlie retention of motor learning is currently unknown. OBJECTIVE To examine changes in resting-state functional connectivity (rs-FC) and their relation to behavioral changes immediately after writing training and at 6 week follow-up. METHODS Twenty-five PD patients underwent resting-state fMRI (ON medication) before and after 6 weeks writing training. Motor learning was evaluated with a dual task paradigm pre- and post-training and at follow-up. Next, pre-post within-network changes in rs-FC were identified by an independent component analysis. Significant clusters were used as seeds in ROI-to-ROI analyses and rs-FC changes were correlated with changes in behavioral performance over time. RESULTS Similar to our larger cohort findings, writing accuracy in single and dual task conditions improved post-training and this was maintained at follow-up. Connectivity within the dorsal attentional network (DAN) increased pre-post training, particularly with the right superior and middle temporal gyrus (rS/MTG). This cluster also proved more strongly connected to parietal and frontal areas and to cerebellar regions. Behavioral improvements from pre- to post-training and follow-up correlated with increased rs-FC between rS/MTG and the cerebellum. CONCLUSIONS Training-driven improvements in dual task writing led to functional reorganization within the DAN and increased connectivity with cerebellar areas. These changes were associated with the retention of writing gains and could signify task-specific neural changes or an inability to segregate neural networks.
Collapse
|
3
|
Bellot E, Kauffmann L, Coizet V, Meoni S, Moro E, Dojat M. Effective connectivity in subcortical visual structures in de novo Patients with Parkinson's Disease. Neuroimage Clin 2021; 33:102906. [PMID: 34891045 PMCID: PMC8670854 DOI: 10.1016/j.nicl.2021.102906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Parkinson's disease (PD) manifests with the appearance of non-motor symptoms before motor symptoms onset. Among these, dysfunctioning visual structures have recently been reported to occur at early disease stages. OBJECTIVE This study addresses effective connectivity in the visual network of PD patients. METHODS Using functional MRI and dynamic causal modeling analysis, we evaluated the connectivity between the superior colliculus, the lateral geniculate nucleus and the primary visual area V1 in de novo untreated PD patients (n = 22). A subset of the PD patients (n = 8) was longitudinally assessed two times at two months and at six months after starting dopaminergic treatment. Results were compared to those of age-matched healthy controls (n = 22). RESULTS Our results indicate that the superior colliculus drives cerebral activity for luminance contrast processing both in healthy controls and untreated PD patients. The same effective connectivity was observed with neuromodulatory differences in terms of neuronal dynamic interactions. Our main findings were that the modulation induced by luminance contrast changes of the superior colliculus connectivity (self-connectivity and connectivity to the lateral geniculate nucleus) was inhibited in PD patients (effect of contrast: p = 0.79 and p = 0.77 respectively). The introduction of dopaminergic medication in a subset (n = 8) of the PD patients failed to restore the effective connectivity modulation observed in the healthy controls. INTERPRETATION The deficits in luminance contrast processing in PD was associated with a deficiency in connectivity adjustment from the superior colliculus to the lateral geniculate nucleus and to V1. No differences in cerebral blood flow were observed between controls and PD patients suggesting that the deficiency was at the neuronal level. Administration of a dopaminergic treatment over six months was not able to normalize the observed alterations in inter-regional coupling. These findings highlight the presence of early dysfunctions in primary visual areas, which might be used as early markers of the disease.
Collapse
Affiliation(s)
- Emmanuelle Bellot
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France
| | - Louise Kauffmann
- Laboratory of Psychology and Neurocognition, CNRS UMR 5105, Grenoble, France
| | - Véronique Coizet
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France
| | - Sara Meoni
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France; Laboratory of Psychology and Neurocognition, CNRS UMR 5105, Grenoble, France; Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
| | - Elena Moro
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France; Laboratory of Psychology and Neurocognition, CNRS UMR 5105, Grenoble, France
| | - Michel Dojat
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France.
| |
Collapse
|
4
|
Snyder AD, Ma L, Steinberg JL, Woisard K, Moeller FG. Dynamic Causal Modeling Self-Connectivity Findings in the Functional Magnetic Resonance Imaging Neuropsychiatric Literature. Front Neurosci 2021; 15:636273. [PMID: 34456665 PMCID: PMC8385130 DOI: 10.3389/fnins.2021.636273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Dynamic causal modeling (DCM) is a method for analyzing functional magnetic resonance imaging (fMRI) and other functional neuroimaging data that provides information about directionality of connectivity between brain regions. A review of the neuropsychiatric fMRI DCM literature suggests that there may be a historical trend to under-report self-connectivity (within brain regions) compared to between brain region connectivity findings. These findings are an integral part of the neurologic model represented by DCM and serve an important neurobiological function in regulating excitatory and inhibitory activity between regions. We reviewed the literature on the topic as well as the past 13 years of available neuropsychiatric DCM literature to find an increasing (but still, perhaps, and inadequate) trend in reporting these results. The focus of this review is fMRI as the majority of published DCM studies utilized fMRI and the interpretation of the self-connectivity findings may vary across imaging methodologies. About 25% of articles published between 2007 and 2019 made any mention of self-connectivity findings. We recommend increased attention toward the inclusion and interpretation of self-connectivity findings in DCM analyses in the neuropsychiatric literature, particularly in forthcoming effective connectivity studies of substance use disorders.
Collapse
Affiliation(s)
- Andrew D Snyder
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Radiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Kyle Woisard
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Frederick G Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| |
Collapse
|
5
|
Kanno S, Shinohara M, Kanno K, Gomi Y, Uchiyama M, Nishio Y, Baba T, Hosokai Y, Takeda A, Fukuda H, Mori E, Suzuki K. Neural substrates underlying progressive micrographia in Parkinson's disease. Brain Behav 2020; 10:e01669. [PMID: 32558361 PMCID: PMC7428504 DOI: 10.1002/brb3.1669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/18/2020] [Accepted: 05/04/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The neural substrates associated with the development of micrographia remain unknown. We aimed to elucidate the neural substrates underlying micrographia in Parkinson's disease (PD) patients. METHODS Forty PD patients and 20 healthy controls underwent handwriting tests that involved free writing and copying. We measured the size of each letter and the resting cerebral glucose metabolic rate of the PD patients and another group of age- and sex-matched 14 healthy controls (HCs), who had not participated in the writing tests, using resting-state 18F-fluorodeoxyglucose positron emission tomography. RESULTS In the PD patients, the prevalence of consistent micrographia (CM) associated with free writing was 2.5% for both tasks. Alternatively, the prevalence of progressive micrographia (PM) was 15% for free writing and 17.5% for copying. In the PD patients, there was no significant difference in the letter sizes between these tasks, whereas the variability of the letter sizes for copying was significantly different from that for free writing. The means and decrements in letter sizes in either task were not significantly correlated with the severity of brady/hypokinesia in the PD patients. For free writing, the PD patients with PM showed glucose hypometabolism in the anterior part of the right middle cingulate cortex, including the rostral cingulate motor area, compared with those without PM. For copying, the PD patients with PM showed glucose hypometabolism in the right superior occipital gyrus, including V3A, compared with those without PM. CONCLUSIONS These findings suggest that PM in free writing in PD patients is caused by the difficulty of monitoring whether the actual handwriting movements are desirable for maintaining letter size during self-paced handwriting. By contrast, PM in copying in PD patients is evoked by a lack of visual information about the personal handwriting and hand motions that are used as cues for maintaining letter sizes.
Collapse
Affiliation(s)
- Shigenori Kanno
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Mayumi Shinohara
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Kasumi Kanno
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Yukihiro Gomi
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Occupational TherapyInternational University of Health and WelfareNaritaJapan
| | - Makoto Uchiyama
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Speech, Language, and Hearing SciencesNiigata University of Health and WelfareNiigataJapan
| | - Yoshiyuki Nishio
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of General PsychiatryTokyo Metropolitan Matsuzawa HospitalSetagayaJapan
| | - Toru Baba
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of NeurologySendai Nishitaga HospitalSendaiJapan
| | - Yoshiyuki Hosokai
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Radiological ScienceInternational University of Health and WelfareOtawaraJapan
| | - Atsushi Takeda
- Department of NeurologySendai Nishitaga HospitalSendaiJapan
| | - Hiroshi Fukuda
- Department of Nuclear Medicine and RadiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Division of RadiologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Etsuro Mori
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Behavioural Neurology and Cognitive NeuropsychiatryOsaka University United Graduate School of Child DevelopmentSuitaJapan
| | - Kyoko Suzuki
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
6
|
Isoliquiritigenin attenuates lipopolysaccharide-induced cognitive impairment through antioxidant and anti-inflammatory activity. BMC Neurosci 2019; 20:41. [PMID: 31387531 PMCID: PMC6685153 DOI: 10.1186/s12868-019-0520-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
Background Oxidative stress and neuroinflammation are central pathogenic mechanisms common to many neurological diseases. Isoliquiritigenin (ISL) is a flavonoid in licorice with multiple pharmacological properties, including anti-inflammatory activity, and has demonstrated protective efficacy against acute neural injury. However, potential actions against cognitive impairments have not been examined extensively. We established a rat model of cognitive impairment by intracerebroventricular injection of lipopolysaccharide (LPS), and examined the effects of ISL pretreatment on cognitive function, hippocampal injury, and hippocampal expression of various synaptic proteins, antioxidant enzymes, pro-inflammatory cytokines, and signaling factors controlling anti-oxidant and pro-inflammatory responses. Results Rats receiving LPS alone demonstrated spatial learning deficits in the Morris water maze test as evidenced by longer average escape latency, fewer platform crossings, and shorter average time in the target quadrant than untreated controls. ISL pretreatment reversed these deficits as well as LPS-induced decreases in the hippocampal expression levels of synaptophysin, postsynaptic density-95, brain-derived neurotrophic factor, superoxide dismutase, glutathione peroxidase, and BCL-2. ISL pretreatment also reversed LPS-induced increases in TUNEL-positive (apoptotic) cells, BAX/BCL-2 ratio, and expression levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and C-C motif chemokine ligand 3. Pretreatment with ISL increased the expression levels of phosphorylated (p)-GSK-3β, nuclear NRF2, HO-1 mRNA, and NQO1 mRNA, and reversed LPS-induced nuclear translocation of nuclear factor (NF)-κB. Conclusions ISL protects against LPS-induced cognitive impairment and neuronal injury by promoting or maintaining antioxidant capacity and suppressing neuroinflammation, likely through phosphorylation-dependent inactivation of GSK-3β, enhanced expression of NRF2-responsive antioxidant genes, and suppression of NF-κB-responsive pro-inflammatory genes.
Collapse
|
7
|
Gao J, Xiong B, Zhang B, Li S, Huang N, Zhan G, Jiang R, Yang L, Wu Y, Miao L, Zhu B, Yang C, Luo A. Sulforaphane Alleviates Lipopolysaccharide-induced Spatial Learning and Memory Dysfunction in Mice: The Role of BDNF-mTOR Signaling Pathway. Neuroscience 2018; 388:357-366. [PMID: 30086367 DOI: 10.1016/j.neuroscience.2018.07.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Peripheral immune activation could cause neuroinflammation, leading to a series of central nervous system (CNS) disorders, such as spatial learning and memory dysfunction. However, its pathogenic mechanism and therapeutic strategies are not yet determined. The present study aimed to investigate the therapeutic effects of sulforaphane (SFN) on lipopolysaccharide (LPS)-induced spatial learning and memory dysfunction, and tried to elucidate its relationship with the role of hippocampal brain-derived neurotrophic factor (BDNF)-mammalian target of rapamycin (mTOR) signaling pathway. Intraperitoneal injection of LPS for consecutive 7 days to mice caused abnormal behaviors in Morris water maze test (MWMT), while systemic administration of SFN notably reversed the abnormal behaviors. In addition, hippocampal levels of inflammatory cytokines, synaptic proteins, BDNF-tropomyosin receptor kinase B (TrkB) and mTOR signaling pathways were altered in the processes of LPS-induced cognitive dysfunction and SFN's therapeutic effects. Furthermore, we found that ANA-12 (a TrkB inhibitor) or rapamycin (a mTOR inhibitor) could block the beneficial effects of SFN on LPS-induced cognitive dysfunction, and that hippocampal levels of synaptic proteins, BDNF-TrkB and mTOR signaling pathways were also notably changed. In conclusion, the results of the present study suggest that SFN could elicit improving effects on LPS-induced spatial learning and memory dysfunction, which is likely related to the regulation of hippocampal BDNF-mTOR signaling pathway.
Collapse
Affiliation(s)
- Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingrui Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Niannian Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Riyue Jiang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ling Yang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yeshun Wu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Liying Miao
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Zhu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Nackaerts E, Michely J, Heremans E, Swinnen SP, Smits-Engelsman BCM, Vandenberghe W, Grefkes C, Nieuwboer A. Training for Micrographia Alters Neural Connectivity in Parkinson's Disease. Front Neurosci 2018; 12:3. [PMID: 29403348 PMCID: PMC5780425 DOI: 10.3389/fnins.2018.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022] Open
Abstract
Despite recent advances in clarifying the neural networks underlying rehabilitation in Parkinson's disease (PD), the impact of prolonged motor learning interventions on brain connectivity in people with PD is currently unknown. Therefore, the objective of this study was to compare cortical network changes after 6 weeks of visually cued handwriting training (= experimental) with a placebo intervention to address micrographia, a common problem in PD. Twenty seven early Parkinson's patients on dopaminergic medication performed a pre-writing task in both the presence and absence of visual cues during behavioral tests and during fMRI. Subsequently, patients were randomized to the experimental (N = 13) or placebo intervention (N = 14) both lasting 6 weeks, after which they underwent the same testing procedure. We used dynamic causal modeling to compare the neural network dynamics in both groups before and after training. Most importantly, intensive writing training propagated connectivity via the left hemispheric visuomotor stream to an increased coupling with the supplementary motor area, not witnessed in the placebo group. Training enhanced communication in the left visuomotor integration system in line with the learned visually steered training. Notably, this pattern was apparent irrespective of the presence of cues, suggesting transfer from cued to uncued handwriting. We conclude that in early PD intensive motor skill learning, which led to clinical improvement, alters cortical network functioning. We showed for the first time in a placebo-controlled design that it remains possible to enhance the drive to the supplementary motor area through motor learning.
Collapse
Affiliation(s)
| | - Jochen Michely
- Department of Neurology, Cologne University Hospital, Cologne, Germany
| | - Elke Heremans
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | | | | | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Institute of Neuroscience and Medicine - Cognitive Neurology (INM-3), Research Centre Jülich, Jülich, Germany
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|