1
|
Yordanova J, Falkenstein M, Kolev V. Aging alters functional connectivity of motor theta networks during sensorimotor reactions. Clin Neurophysiol 2024; 158:137-148. [PMID: 38219403 DOI: 10.1016/j.clinph.2023.12.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Both cognitive and primary motor networks alter with advancing age in humans. The networks activated in response to external environmental stimuli supported by theta oscillations remain less well explored. The present study aimed to characterize the effects of aging on the functional connectivity of response-related theta networks during sensorimotor tasks. METHODS Electroencephalographic signals were recorded in young and middle-to-older age adults during three tasks performed in two modalities, auditory and visual: a simple reaction task, a Go-NoGo task, and a choice-reaction task. Response-related theta oscillations were computed. The phase-locking value (PLV) was used to analyze the spatial synchronization of primary motor and motor control theta networks. RESULTS Performance was overall preserved in older adults. Independently of the task, aging was associated with reorganized connectivity of the contra-lateral primary motor cortex. In younger adults, it was synchronized with motor control regions (intra-hemispheric premotor/frontal and medial frontal). In older adults, it was only synchronized with intra-hemispheric sensorimotor regions. CONCLUSIONS Motor theta networks of older adults manifest a functional decoupling between the response-generating motor cortex and motor control regions, which was not modulated by task variables. The overall preserved performance in older adults suggests that the increased connectivity within the sensorimotor network is associated with an excessive reliance on sensorimotor feedback during movement execution compensating for a deficient cognitive regulation of motor regions during sensorimotor reactions. SIGNIFICANCE New evidence is provided for the reorganization of motor networks during sensorimotor reactions already at the transition from middle to old age.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
2
|
Ao M, Ren S, Yu Y, Huang H, Miao X, Ao Y, Wang W. The effects of blurred visual inputs with different levels on the cerebral activity during free level walking. Front Neurosci 2023; 17:1151799. [PMID: 37139527 PMCID: PMC10149992 DOI: 10.3389/fnins.2023.1151799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
Objective The aim of this study was to evaluate the effects of blurred vision on electrocortical activities at different levels during walking. Materials and methods A total of 22 healthy volunteers (all men; mean age: 24.4 ± 3.9 years) underwent an electroencephalography (EEG) test synchronous with free level walking. Visual status was simulated by goggles covered by the occlusion foil targeted at a Snellen visual acuity of 20/60 (V0.3), 20/200 (V0.1), and light perception (V0). At each of these conditions, the participants completed barefoot walking for five blocks of 10 m. The EEG signals were recorded by a wireless EEG system with electrodes of interest, namely, Cz, Pz, Oz, O1, and O2. The gait performances were assessed by the Vicon system. Results During walking with normal vision (V1.0), there were cerebral activities related to visual processing, characterized as higher spectral power of delta (Oz and O2 vs. Cz, Pz, and O1, p ≤ 0.033) and theta (Oz vs. Cz and O1, p = 0.044) bands in occipital regions. Moderately blurred vision (V0.3) would attenuate the predominance of delta- and theta-band activities at Oz and O2, respectively. At the statuses of V0.1 and V0, the higher power of delta (at V0.1 and V0, Oz, and O2 vs. Cz, Pz, and O1, p ≤ 0.047) and theta bands (at V0.1, Oz vs. Cz, p = 0.010; at V0, Oz vs. Cz, Pz, and O1, p ≤ 0.016) emerged again. The cautious gait pattern, characterized by a decrease in gait speed (p < 0.001), a greater amplitude of deviation from the right ahead (p < 0.001), a prolonged stance time (p = 0.001), a restricted range of motion in the hip on the right side (p ≤ 0.010), and an increased knee flexion during stance on the left side (p = 0.014), was only detected at the status of V0. The power of the alpha band at the status of V0 was higher than that at V1.0, V0.3, and V0.1 (p ≤ 0.011). Conclusion Mildly blurred visual inputs would elicit generalization of low-frequency band activity during walking. In circumstance to no effective visual input, locomotor navigation would rely on cerebral activity related to visual working memory. The threshold to trigger the shift might be the visual status that is as blurred as the level of Snellen visual acuity of 20/200.
Collapse
Affiliation(s)
- Mingxin Ao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Shuang Ren
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yuanyuan Yu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Hongshi Huang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Xin Miao
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- *Correspondence: Yingfang Ao
| | - Wei Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Yeh WH, Ju YJ, Liu YT, Wang TY. Systematic Review and Meta-Analysis on the Effects of Neurofeedback Training of Theta Activity on Working Memory and Episodic Memory in Healthy Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11037. [PMID: 36078752 PMCID: PMC9517899 DOI: 10.3390/ijerph191711037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The main purpose of this study was to investigate the effects of neurofeedback training (NFT) of theta activity on working memory (WM) and episodic memory (EM) in healthy participants via a systematic review and meta-analysis. A total of 337 articles obtained from electronic databases were assessed; however, only 11 articles met the criteria for meta-analysis after manually screening and eliminating unnecessary studies. A meta-analysis calculating the Hedges' g effect size metric with 95% confidence intervals using random effects models was employed. Heterogeneity was estimated using I2 statistics. Theta NFT is effective in improving memory outcomes, including WM with a Hedges' g of 0.56 [0.10; 1.02] (I2 = 62.9% and p = 0.02), and EM with a Hedges' g of 0.62 [0.13; 1.10] (I2 = 42.04% and p = 0.01). Overall, the results suggest that theta NFT seems to be useful as nonpharmacological/adjunct training to improve WM and EM in healthy participants.
Collapse
Affiliation(s)
- Wen-Hsiu Yeh
- Institute of Basic Medical Science, National Cheng Kung University, Tainan 701, Taiwan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung City 821, Taiwan
| | - Ya-Ju Ju
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung City 821, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Ting Liu
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 711, Taiwan
| | - Ting-Yi Wang
- Department of Doctorate of Nursing Practice Program, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
4
|
van Helvert MJL, Oostwoud Wijdenes L, Geerligs L, Medendorp WP. Cortical beta-band power modulates with uncertainty in effector selection during motor planning. J Neurophysiol 2021; 126:1891-1902. [PMID: 34731060 DOI: 10.1152/jn.00198.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although beta-band activity during motor planning is known to be modulated by uncertainty about where to act, less is known about its modulations to uncertainty about how to act. To investigate this issue, we recorded oscillatory brain activity with EEG while human participants (n = 17) performed a hand choice reaching task. The reaching hand was either predetermined or of participants' choice, and the target was close to one of the two hands or at about equal distance from both. To measure neural activity in a motion artifact-free time window, the location of the upcoming target was cued 1,000-1,500 ms before the presentation of the target, whereby the cue was valid in 50% of trials. As evidence for motor planning during the cuing phase, behavioral observations showed that the cue affected later hand choice. Furthermore, reaction times were longer in the choice trials than in the predetermined trials, supporting the notion of a competitive process for hand selection. Modulations of beta-band power over central cortical regions, but not alpha-band or theta-band power, were in line with these observations. During the cuing period, reaches in predetermined trials were preceded by larger decreases in beta-band power than reaches in choice trials. Cue direction did not affect reaction times or beta-band power, which may be due to the cue being invalid in 50% of trials, retaining effector uncertainty during motor planning. Our findings suggest that effector uncertainty modulates beta-band power during motor planning.NEW & NOTEWORTHY Although reach-related beta-band power in central cortical areas is known to modulate with the number of potential targets, here we show, using a cuing paradigm, that the power in this frequency band, but not in the alpha or theta band, is also modulated by the uncertainty of which hand to use. This finding supports the notion that multiple possible effector-specific actions can be specified in parallel up to the level of motor preparation.
Collapse
Affiliation(s)
- Milou J L van Helvert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Leonie Oostwoud Wijdenes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Linda Geerligs
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Bhangal S, Sharma S, Valle-Inclán F, Ren X, Hackley SA. Learning to deal with delayed outcomes: EEG oscillatory and slow potentials during the prefeedback interval. Psychophysiology 2021; 58:e13853. [PMID: 34106482 DOI: 10.1111/psyp.13853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
It is well established that the stimulus-preceding negativity (SPN) decreases in amplitude as a task is mastered, a phenomenon generally attributed to the reduction in anticipatory attention as feedback becomes less needed. Typically, the experiments supporting this assumption have used relatively short delays (<3 s). However, we found in a previous study that this decline in amplitude, although present during the 2.5-s prefeedback delay of a patterned key-pressing task, was absent with an 8-s delay. We reexamined this finding using a 6-s delay and found that the SPN diminished at frontal sites as participants learned a sequence of four keypress durations, but that this modulation was limited to the early half of the delay (maximum at 2 s). Decline of lateralized sensorimotor theta activity across trials was also limited to early portions of the delay. These findings suggest that processes other than anticipatory attention to feedback may be more relevant for explaining SPN diminution. Such processes could include adjustment and maintenance of action-outcome expectancies (e.g., forward models) during the prefeedback interval.
Collapse
Affiliation(s)
- Sabrina Bhangal
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Shreya Sharma
- School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - Xi Ren
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven A Hackley
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
6
|
Canaveral CA, Savoie FA, Danion FR, Bernier PM. Dissociation between Temporal and Spatial Anticipation in the Neural Dynamics of Goal-directed Movement Preparation. J Cogn Neurosci 2020; 32:1301-1315. [PMID: 32073350 DOI: 10.1162/jocn_a_01547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is well documented that providing advanced information regarding the spatial location of a target stimulus (i.e., spatial anticipation) or its timing of occurrence (i.e., temporal anticipation) influences reach preparation, reducing RTs. Yet, it remains unknown whether the RT gains attributable to temporal and spatial anticipation are subtended by similar preparatory dynamics. Here, this issue is addressed in humans by investigating EEG beta-band activity during reach preparation. Participants performed a reach RT task in which they initiated a movement as fast as possible toward visual targets following their appearance. Temporal anticipation was manipulated by having the target appear after a constant or variable delay period, whereas spatial anticipation was manipulated by precueing participants about the upcoming target location in advance or not. Results revealed that temporal and spatial anticipation both reduced reach RTs, with no interaction. Interestingly, temporal and spatial anticipation were associated with fundamentally different patterns of beta-band modulations. Temporal anticipation was associated with beta-band desynchronization over contralateral sensorimotor regions specifically around the expected moment of target onset, the magnitude of which was correlated with RT modulations across participants. In contrast, spatial anticipation did not influence sensorimotor activity but rather led to increased beta-band power over bilateral parieto-occipital regions during the entire delay period. These results argue for distinct states of preparation incurred by temporal and spatial anticipation. In particular, sensorimotor beta-band desynchronization may reflect the timely disinhibition of movement-related neuronal ensembles at the expected time of movement initiation, without reflecting its spatial parameters per se.
Collapse
Affiliation(s)
| | | | - Frédéric R Danion
- Aix Marseille Université, CNRS, Institut de Neurosciences de la Timone
| | | |
Collapse
|
7
|
Hamel R, Côté K, Matte A, Lepage JF, Bernier PM. Rewards interact with repetition-dependent learning to enhance long-term retention of motor memories. Ann N Y Acad Sci 2019; 1452:34-51. [PMID: 31294872 DOI: 10.1111/nyas.14171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/26/2019] [Accepted: 05/29/2019] [Indexed: 11/28/2022]
Abstract
The combination of behavioral experiences that enhance long-term retention remains largely unknown. Informed by neurophysiological lines of work, this study tested the hypothesis that performance-contingent monetary rewards potentiate repetition-dependent forms of learning, as induced by extensive practice at asymptote, to enhance long-term retention of motor memories. To this end, six groups of 14 participants (n = 84) acquired novel motor behaviors by adapting to a gradual visuomotor rotation while these factors were manipulated. Retention was assessed 24 h later. While all groups similarly acquired the novel motor behaviors, results from the retention session revealed an interaction indicating that rewards enhanced long-term retention, but only when practice was extended to asymptote. Specifically, the interaction indicated that this effect selectively occurred when rewards were intermittently available (i.e., 50%), but not when they were absent (i.e., 0%) or continuously available (i.e., 100%) during acquisition. This suggests that the influence of rewards on extensive practice and long-term retention is nonlinear, as continuous rewards did not further enhance retention as compared with intermittent rewards. One possibility is that rewards' intermittent availability allows to maintain their subjective value during acquisition, which may be key to potentiate long-term retention.
Collapse
Affiliation(s)
- Raphaël Hamel
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Département de Kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kathleen Côté
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexia Matte
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Michel Bernier
- Département de Kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|