1
|
Hussain A, Razak KA. Perineuronal net degradation causes a delayed change in resting and sound evoked responses in the mouse auditory cortex. Neuroscience 2025; 577:252-263. [PMID: 40389125 DOI: 10.1016/j.neuroscience.2025.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/30/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Perineuronal nets (PNNs) are extracellular matrix assemblies that preferentially cover parvalbumin-expressing (PV+) interneurons in the neocortex. PV+ cells and PNNs are impaired in a variety of neurodevelopmental disorders including Fragile X Syndrome and schizophrenia. In both of these disorders, electroencephalograph (EEG) recordings show similar phenotypes, including elevated resting gamma band power and reduced temporal fidelity in the 40 Hz auditory steady state response (ASSR). Whether there is a causal link between PNN integrity and EEG abnormalities remains unclear. We tested this link by recording EEG responses in the auditory cortex (AC) in wildtype mice in which PNNs were enzymatically degraded (Chondroitinase ABC or ChABC). EEGs were recorded at two different time points (4- or 14-days post injection, cross-sectional design). In comparison to saline control, ChABC injected mice showed a ∼50 % reduction in PNN density after 4-days. However, there was no difference in resting EEG power spectral density, auditory event-related potential amplitudes or ASSR temporal fidelity between saline and ChABC mice. At the 14-day time point, there was a recovery of PNN density in the AC. Interestingly, EEG responses were abnormal at this time point, with elevated gamma band activity and reduced ASSR temporal fidelity. Thus, the electrophysiological consequences of PNN loss are not seen acutely, but over a delayed time course, suggesting abnormal plasticity after a circuit perturbation. Taken together, these data indicate acute shaping of auditory cortical responses is less dependent on PNNs, but long-term stability of responses following a circuit perturbation depends on the integrity of PNNs.
Collapse
Affiliation(s)
- A Hussain
- Graduate Neuroscience Program, University of California, Riverside, USA
| | - K A Razak
- Graduate Neuroscience Program, University of California, Riverside, USA; Department of Psychology, University of California, Riverside, USA.
| |
Collapse
|
2
|
Obray JD, Denton AR, Carroll-Deaton J, Marquardt K, Chandler LJ, Scofield MD. Enhanced fear extinction through infralimbic perineuronal net digestion: The modulatory role of adolescent alcohol exposure. Alcohol 2025; 123:57-67. [PMID: 39710305 DOI: 10.1016/j.alcohol.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Perineuronal nets (PNNs) are specialized components of the extracellular matrix that play a critical role in learning and memory. In a Pavlovian fear conditioning paradigm, degradation of PNNs affects the formation and storage of fear memories. This study examined the impact of adolescent intermittent ethanol (AIE) exposure by vapor inhalation on the expression of PNNs in the adult rat prelimbic (PrL) and infralimbic (IfL) subregions of the medial prefrontal cortex. Results indicated that following AIE, the total number of PNN positive cells in the PrL cortex increased in layer II/III but did not change in layer V. Conversely, in the IfL cortex, the number of PNN positive cells decreased in layer V, with no change in layer II/III. In addition, the intensity of PNN staining was significantly altered by AIE exposure, which narrowed the distribution of signal intensity, reducing the number of high and low intensity PNNs. Given these changes in PNNs, the next experiment assessed the effects of AIE and PNN digestion on extinction of a conditioned fear memory. In Air control rats, digestion of PNNs by bilateral infusion of Chondroitinase ABC (ChABC) into the IfL cortex enhanced fear extinction and reduced contextual fear renewal. In contrast, both fear extinction learning and contextual fear renewal remained unchanged following PNN digestion in AIE exposed rats. These results highlight the sensitivity of prefrontal PNNs to adolescent alcohol exposure and suggest that ChABC-induced plasticity is reduced in the IfL cortex following AIE exposure.
Collapse
Affiliation(s)
- J Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Adam R Denton
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Psychology, Tusculum University, Tusculum, TN 37745, USA
| | - Jayda Carroll-Deaton
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristin Marquardt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
3
|
Grødem S, Thompson EH, Røe MB, Vatne GH, Nymoen Nystuen I, Buccino A, Otterstad T, Hafting T, Fyhn M, Lensjø KK. Differential impacts of germline and adult aggrecan knockout in PV+ neurons on perineuronal nets and PV+ neuronal function. Mol Psychiatry 2025:10.1038/s41380-025-02894-5. [PMID: 39837996 DOI: 10.1038/s41380-025-02894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism. The formation of PNNs is highly dependent on aggrecan, a proteoglycan encoded by the ACAN gene, but it remains unknown if it is produced by the PV+ neurons themselves. Thus, we established a knockout (KO) mouse model (ACANflx/PVcre) and an adeno-associated virus to specifically eliminate aggrecan production from PV+ neurons, in the germline or adult animals, respectively. The germline KO (ACANflx/PVcre) eliminated the expression of PNNs labeled by Wisteria floribunda agglutinin (WFA), the most commonly used PNN marker. Surprisingly, electrophysiological properties of PV+ interneurons and ocular dominance plasticity of adult ACANflx/PVcre mice were similar to controls. In contrast, AAV-mediated ACAN knockout in adult mice increased ocular dominance plasticity. Moreover, in vivo Chondroitinase ABC treatment of KO mice resulted in reduced firing rate of PV+ cells and increased frequency of spontaneous excitatory postsynaptic currents (sEPSC), a phenotype associated with chABC treatment of WT animals. These findings suggest that compensatory mechanisms may be activated during development in response to the germline loss of aggrecan. Indeed, qPCR of bulk tissue indicates that other PNN components, including neurocan and tenascin-R, are expressed at higher levels in the KO animals. Finally, behavioral testing revealed that ACANflx/PVcre mice had similar long-term memory as controls in the Morris water maze. However, they employed bolder search strategies during spatial learning and showed lower level of anxiety-related behavior in an open field and zero maze.
Collapse
Affiliation(s)
- Sverre Grødem
- Department of Bioscience, University of Oslo, Oslo, Norway
| | | | | | | | | | - Alessio Buccino
- Department of Bioscience, University of Oslo, Oslo, Norway
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | | | - Torkel Hafting
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marianne Fyhn
- Department of Bioscience, University of Oslo, Oslo, Norway
| | - Kristian Kinden Lensjø
- Department of Bioscience, University of Oslo, Oslo, Norway.
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Dzyubenko E, Hermann DM. Neuroglia and extracellular matrix molecules. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:197-211. [PMID: 40122625 DOI: 10.1016/b978-0-443-19104-6.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter provides a comprehensive overview of the roles of astrocytes, microglia, and the extracellular matrix (ECM) in regulating neuroplasticity and maintaining brain homeostasis. Astrocytes provide essential metabolic support to neurons, regulate synapse development, support neuroplasticity mechanisms, and modulate neurotransmission. Microglia, the resident immune cells of the brain, play a critical role in neuroinflammatory responses and homeostatic brain regulation by modulating synapse formation and pruning. The extracellular space (ECS) mediates intercellular interactions, provides a highly regulated environment for intercellular communication, and is filled with ECM molecules. Proteoglycans and polysaccharides of the ECM play a vital role not only in brain development but also in brain function throughout life. In the injured brain, neuroplasticity and regeneration can be bidirectionally regulated as a result of the interplay between ECM, astrocytes, and microglia. The modulation of synaptic strength, structural remodeling, and modification of intrinsic neuronal properties are among the central mechanisms that contribute to neuronal plasticity in health and disease. We believe that the understanding of ECM-glia interactions and their role in neuroplasticity regulation is key to the development of novel therapeutic strategies in neurologic disorders.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Obray JD, Denton AR, Carroll-Deaton J, Marquardt K, Chandler LJ, Scofield MD. Enhanced Fear Extinction Through Infralimbic Perineuronal Net Digestion: The Modulatory Role of Adolescent Alcohol Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619810. [PMID: 39484370 PMCID: PMC11526981 DOI: 10.1101/2024.10.23.619810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Perineuronal nets (PNNs) are specialized components of the extracellular matrix that play a critical role in learning and memory. In a Pavlovian fear conditioning paradigm, degradation of PNNs affects the formation and storage of fear memories. This study examined the impact of adolescent intermittent ethanol (AIE) exposure by vapor inhalation on the expression of PNNs in the adult rat prelimbic (PrL) and infralimbic (IfL) subregions of the medial prefrontal cortex. Results indicated that following AIE, the total number of PNN positive cells in the PrL cortex increased in layer II/III but did not change in layer V. Conversely, in the IfL cortex, the number of PNN positive cells decreased in layer V, with no change in layer II/III. In addition, the intensity of PNN staining was significantly altered by AIE exposure, which narrowed the distribution of signal intensity, reducing the number of high and low intensity PNNs. Given these changes in PNNs, the next experiment assessed the effects of AIE and PNN digestion on extinction of a conditioned fear memory. In Air control rats, digestion of PNNs by bilateral infusion of Chondroitinase ABC (ChABC) into the IfL cortex enhanced fear extinction and reduced contextual fear renewal. In contrast, both fear extinction learning and contextual fear renewal remained unchanged following PNN digestion in AIE exposed rats. These results highlight the sensitivity of prefrontal PNNs to adolescent alcohol exposure and suggest that ChABC-induced plasticity is reduced in the IfL cortex following AIE exposure.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - Adam R. Denton
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425
- Department of Psychology, Tusculum University, Tusculum, TN 37745
| | - Jayda Carroll-Deaton
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Kristin Marquardt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
6
|
Sullivan ED, Dannenhoffer CA, Sutherland EB, Vidrascu EM, Gómez-A A, Boettiger CA, Robinson DL. Effects of adolescent intermittent ethanol exposure on cortical perineuronal net and parvalbumin expression in adulthood mediate behavioral inflexibility. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1507-1518. [PMID: 39073296 PMCID: PMC11305908 DOI: 10.1111/acer.15395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Alcohol is commonly consumed by adolescents in a binge-like pattern, which can lead to long-lasting cognitive deficits, including reduced behavioral flexibility. We and others have determined that adolescent intermittent ethanol (AIE) exposure leads to increased number of perineuronal net (PNN) numbers in brain regions that are important for behavioral flexibility. However, whether altered neurochemistry stemming from AIE exposure plays a significant role in reduced behavioral flexibility is unknown. METHODS We measured the number and size of parvalbumin expressing (PV+) interneurons and associated PNNs within the orbitofrontal cortex (OFC), prelimbic cortex (PrL), infralimbic cortex (IL), and anterior insular cortex (AIC) of female and male rats following AIE or control exposure and subsequent training on an attentional set-shift task (ASST). We then ran analyses to determine whether AIE-induced changes in PV and PNN measures statistically mediated the AIE-induced behavioral deficit in reversal learning. RESULTS We demonstrate that AIE exposure impaired behavioral flexibility on reversal two of the ASST (i.e., recalling the initial learned associations), and led to smaller PV+ cells and increased PNN numbers in the AIC. Interestingly, PNN size and number were not altered in the PrL or IL following AIE exposure, in contrast to prior reports. Mediation analyses suggest that AIE alters behavioral flexibility, at least in part through changes in PV and PNN fluorescent measures in the AIC. CONCLUSIONS This study reveals a significant link between AIE exposure, neural alterations, and diminished behavioral flexibility in rats, and highlights a potential novel mechanism comprising changes in PV and PNN measures within the AIC. Future studies should explore the impact of PNN degradation within the AIC on behavioral flexibility.
Collapse
Affiliation(s)
- Emily D.K. Sullivan
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychiatry, Chapel Hill, NC, 27278, USA
| | - Carol A. Dannenhoffer
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychiatry, Chapel Hill, NC, 27278, USA
| | - Elizabeth B. Sutherland
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychology & Neuroscience, Chapel Hill, NC, 27278, USA
| | - Elena M. Vidrascu
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychology & Neuroscience, Chapel Hill, NC, 27278, USA
| | - Alexander Gómez-A
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychiatry, Chapel Hill, NC, 27278, USA
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychology & Neuroscience, Chapel Hill, NC, 27278, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychiatry, Chapel Hill, NC, 27278, USA
| |
Collapse
|
7
|
Wingert JC, Ramos JD, Reynolds SX, Gonzalez AE, Rose RM, Hegarty DM, Aicher SA, Bailey LG, Brown TE, Abbas AI, Sorg BA. Perineuronal nets in the rat medial prefrontal cortex alter hippocampal-prefrontal oscillations and reshape cocaine self-administration memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.577568. [PMID: 38370716 PMCID: PMC10871211 DOI: 10.1101/2024.02.05.577568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement behavior in rodent models of cocaine use disorder. Output from the mPFC is modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets (PNNs). Here we tested whether chondroitinase ABC (ABC)- mediated removal of PNNs prevented the acquisition or reconsolidation of a cocaine self-administration memory. ABC injections into the dorsal mPFC prior to training attenuated the acquisition of cocaine self-administration. Also, ABC given 3 days prior to but not 1 hr after memory reactivation blocked cue-induced reinstatement. However, reduced reinstatement was present only in rats given a novel reactivation contingency, suggesting that PNNs are required for the updating of a familiar memory. In naive rats, ABC injections into mPFC did not alter excitatory or inhibitory puncta on PV cells but reduced PV intensity. Whole-cell recordings revealed a greater inter-spike interval 1 hr after ABC, but not 3 days later. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during novel memory reactivation revealed that ABC in the mPFC prevented reward-associated increases in beta and gamma activity as well as phase-amplitude coupling between the dHIP and mPFC. Together, our findings show that PNN removal attenuates the acquisition of cocaine self-administration memories and disrupts reconsolidation of the original memory when combined with a novel reactivation session. Further, reduced dHIP/mPFC coupling after PNN removal may serve as a key biomarker for how to disrupt reconsolidation of cocaine memories and reduce relapse.
Collapse
|
8
|
Liu L, Zhang Y, Men S, Li X, Hou ST, Ju J. Elimination of perineuronal nets in CA1 disrupts GABA release and long-term contextual fear memory retention. Hippocampus 2023; 33:862-871. [PMID: 36709413 DOI: 10.1002/hipo.23503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Perineuronal nets (PNNs) which mostly surround the parvalbumin (PV) neurons, have been shown to play critical roles in neural plasticity. Recently, PNNs have been shown to regulate fear-associated memory, but the molecular mechanism is still unclear. In this study, we found that removal of PNNs in vivo using chondroitinase ABC (ChABC) injection resulted in reduced firing rate of PV neurons and decreased inhibitory synaptic transmission in both PV neurons and excitatory neurons in the CA1 hippocampus. Interestingly, altered synaptic transmission appears to be mediated by presynaptic changes. Furthermore, ChABC treatment disrupts long-term contextual fear memory retention. These results suggest PNNs might alter fear memory by reducing the presynaptic GABA release.
Collapse
Affiliation(s)
- Luping Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yujie Zhang
- The Pediatric Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Siqi Men
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xuanyi Li
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ju
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Henley T, Goudy J, Easterling M, Donley C, Wirka R, Bressan M. Local tissue mechanics control cardiac pacemaker cell embryonic patterning. Life Sci Alliance 2023; 6:e202201799. [PMID: 36973005 PMCID: PMC10043993 DOI: 10.26508/lsa.202201799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a "soft" macromolecular ECM that specifically encapsulates CPCs. In addition, we demonstrate that subjecting embryonic CPCs to substrate stiffnesses higher than those measured in vivo results in loss of coherent electrical oscillation and dysregulation of the HCN4 and NCX1 ion channels required for CPC automaticity. Collectively, these data indicate that local mechanics play a critical role in maintaining the embryonic CPC function while also quantitatively defining the range of material properties that are optimal for embryonic CPC maturation.
Collapse
Affiliation(s)
- Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie Goudy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marietta Easterling
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carrie Donley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Wirka
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Liu L, Zhang Y, Ju J. Removal of perineuronal nets leads to altered neuronal excitability and synaptic transmission in the visual cortex with distinct time courses. Neurosci Lett 2022; 785:136763. [PMID: 35760385 DOI: 10.1016/j.neulet.2022.136763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Parvalbumin-expressing (PV) interneurons fast inhibit excitatory neurons in various brain areas. Perineuronal nets (PNNs), accumulating around PV neurons, have been shown to play critical roles in neuronal function and plasticity. The cellular mechanisms underlying their functions are still in debate, for example, do PNNs contribute significantly to the excitability of inhibitory neurons especially those containing PV? On the other hand, whether PNNs have significant contributions to synaptic transmission of PV neurons is much less unknown. In this study, we designed experiments to address these questions and found that removing PNNs in vivo using chondroitinase ABC (ChABC) led to distinct changes in neuronal excitability and synaptic transmission, depending on the duration of ChABC treatment. The results showed 7 days after ChABC treatment reduced both intrinsic excitability of PV neurons and synaptic transmission to both PV neurons and excitatory neurons in the primary visual cortex. However, 1 day after ChABC treatment digested PNNs effectively but had no effects on intrinsic excitability and synaptic transmission. These results suggest the contribution of PNNs to neuronal excitability and synaptic transmission depends on different time courses of ChABC digestion.
Collapse
Affiliation(s)
- Luping Liu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yujie Zhang
- The Pediatric Neurology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Jun Ju
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
11
|
Rupert DD, Shea SD. Parvalbumin-Positive Interneurons Regulate Cortical Sensory Plasticity in Adulthood and Development Through Shared Mechanisms. Front Neural Circuits 2022; 16:886629. [PMID: 35601529 PMCID: PMC9120417 DOI: 10.3389/fncir.2022.886629] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin-positive neurons are the largest class of GABAergic, inhibitory neurons in the central nervous system. In the cortex, these fast-spiking cells provide feedforward and feedback synaptic inhibition onto a diverse set of cell types, including pyramidal cells, other inhibitory interneurons, and themselves. Cortical inhibitory networks broadly, and cortical parvalbumin-expressing interneurons (cPVins) specifically, are crucial for regulating sensory plasticity during both development and adulthood. Here we review the functional properties of cPVins that enable plasticity in the cortex of adult mammals and the influence of cPVins on sensory activity at four spatiotemporal scales. First, cPVins regulate developmental critical periods and adult plasticity through molecular and structural interactions with the extracellular matrix. Second, they activate in precise sequence following feedforward excitation to enforce strict temporal limits in response to the presentation of sensory stimuli. Third, they implement gain control to normalize sensory inputs and compress the dynamic range of output. Fourth, they synchronize broad network activity patterns in response to behavioral events and state changes. Much of the evidence for the contribution of cPVins to plasticity comes from classic models that rely on sensory deprivation methods to probe experience-dependent changes in the brain. We support investigating naturally occurring, adaptive cortical plasticity to study cPVin circuits in an ethologically relevant framework, and discuss recent insights from our work on maternal experience-induced auditory cortical plasticity.
Collapse
Affiliation(s)
- Deborah D. Rupert
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, United States
| | - Stephen D. Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
12
|
Dannenhoffer CA, Gómez-A A, Macht VA, Jawad R, Sutherland EB, Vetreno RP, Crews FT, Boettiger CA, Robinson DL. Impact of adolescent intermittent ethanol exposure on interneurons and their surrounding perineuronal nets in adulthood. Alcohol Clin Exp Res 2022; 46:759-769. [PMID: 35307830 PMCID: PMC9117471 DOI: 10.1111/acer.14810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Binge alcohol exposure during adolescence results in long-lasting alterations in the brain and behavior. For example, adolescent intermittent ethanol (AIE) exposure in rodents results in long-term loss of functional connectivity among prefrontal cortex (PFC) and striatal regions as well as a variety of neurochemical, molecular, and epigenetic alterations. Interneurons in the PFC and striatum play critical roles in behavioral flexibility and functional connectivity. For example, parvalbumin (PV) interneurons are known to contribute to neural synchrony and cholinergic interneurons contribute to strategy selection. Furthermore, extracellular perineuronal nets (PNNs) that surround some interneurons, particularly PV+ interneurons, further regulate cellular plasticity. The effect of AIE exposure on the expression of these markers within the PFC is not well understood. METHODS The present study tested the hypothesis that AIE exposure reduces the expression of PV+ and choline acetyltransferase (ChAT)+ interneurons in the adult PFC and striatum and increases the related expression of PNNs (marked by binding of Wisteria floribunda agglutinin lectin) in adulthood. Male rats were exposed to AIE (5 g/kg/day, 2-days-on/2-days-off, i.e., P25 to P54) or water (CON), and brain tissue was harvested in adulthood (>P80). Immunohistochemistry and co-immunofluorescence were used to assess the expression of ChAT, PV, and PNNs within the adult PFC and striatum following AIE exposure. RESULTS ChAT and PV interneuron densities in the striatum and PFC were unchanged after AIE exposure. However, PNN density in the PFC of AIE-exposed rats was greater than in CON rats. Moreover, significantly more PV neurons were surrounded by PNNs in AIE-exposed subjects than controls in both PFC subregions assessed: orbitofrontal cortex (CON = 34%; AIE = 40%) and medial PFC (CON = 10%; AIE = 14%). CONCLUSIONS These findings indicate that, following AIE exposure, PV interneuron expression in the adult PFC and striatum is unaltered, while PNNs surrounding these neurons are increased. This increase in PNNs may restrict the plasticity of the ensheathed neurons, thereby contributing to impaired microcircuitry in frontostriatal connectivity and related behavioral impairments.
Collapse
Affiliation(s)
- Carol A. Dannenhoffer
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
| | - Alexander Gómez-A
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
| | - Victoria A. Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
| | - Rayyanoor Jawad
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
| | - E. Blake Sutherland
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill
- Neuroscience Curriculum, University of North Carolina at Chapel Hill
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
- Neuroscience Curriculum, University of North Carolina at Chapel Hill
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
13
|
Enzymatic Degradation of Cortical Perineuronal Nets Reverses GABAergic Interneuron Maturation. Mol Neurobiol 2022; 59:2874-2893. [PMID: 35233718 PMCID: PMC9016038 DOI: 10.1007/s12035-022-02772-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/16/2022] [Indexed: 12/03/2022]
Abstract
Perineuronal nets (PNNs) are specialised extracellular matrix structures which preferentially enwrap fast-spiking (FS) parvalbumin interneurons and have diverse roles in the cortex. PNN maturation coincides with closure of the critical period of cortical plasticity. We have previously demonstrated that BDNF accelerates interneuron development in a c-Jun-NH2-terminal kinase (JNK)–dependent manner, which may involve upstream thousand-and-one amino acid kinase 2 (TAOK2). Chondroitinase-ABC (ChABC) enzymatic digestion of PNNs reportedly reactivates ‘juvenile-like’ plasticity in the adult CNS. However, the mechanisms involved are unclear. We show that ChABC produces an immature molecular phenotype in cultured cortical neurons, corresponding to the phenotype prior to critical period closure. ChABC produced different patterns of PNN-related, GABAergic and immediate early (IE) gene expression than well-characterised modulators of mature plasticity and network activity (GABAA-R antagonist, bicuculline, and sodium-channel blocker, tetrodotoxin (TTX)). ChABC downregulated JNK activity, while this was upregulated by bicuculline. Bicuculline, but not ChABC, upregulated Bdnf expression and ERK activity. Furthermore, we found that BDNF upregulation of semaphorin-3A and IE genes was TAOK mediated. Our data suggest that ChABC heightens structural flexibility and network disinhibition, potentially contributing to ‘juvenile-like’ plasticity. The molecular phenotype appears to be distinct from heightened mature synaptic plasticity and could relate to JNK signalling. Finally, we highlight that BDNF regulation of plasticity and PNNs involves TAOK signalling.
Collapse
|
14
|
Chen CC, Brumberg JC. Sensory Experience as a Regulator of Structural Plasticity in the Developing Whisker-to-Barrel System. Front Cell Neurosci 2022; 15:770453. [PMID: 35002626 PMCID: PMC8739903 DOI: 10.3389/fncel.2021.770453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cellular structures provide the physical foundation for the functionality of the nervous system, and their developmental trajectory can be influenced by the characteristics of the external environment that an organism interacts with. Historical and recent works have determined that sensory experiences, particularly during developmental critical periods, are crucial for information processing in the brain, which in turn profoundly influence neuronal and non-neuronal cortical structures that subsequently impact the animals' behavioral and cognitive outputs. In this review, we focus on how altering sensory experience influences normal/healthy development of the central nervous system, particularly focusing on the cerebral cortex using the rodent whisker-to-barrel system as an illustrative model. A better understanding of structural plasticity, encompassing multiple aspects such as neuronal, glial, and extra-cellular domains, provides a more integrative view allowing for a deeper appreciation of how all aspects of the brain work together as a whole.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,Department of Neuroscience, Duke Kunshan University, Suzhou, China
| | - Joshua C Brumberg
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,The Biology (Neuroscience) and Psychology (Behavioral and Cognitive Neuroscience) PhD Programs, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
15
|
Inhibitory control in neuronal networks relies on the extracellular matrix integrity. Cell Mol Life Sci 2021; 78:5647-5663. [PMID: 34128077 PMCID: PMC8257544 DOI: 10.1007/s00018-021-03861-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/14/2022]
Abstract
Inhibitory control is essential for the regulation of neuronal network activity, where excitatory and inhibitory synapses can act synergistically, reciprocally, and antagonistically. Sustained excitation-inhibition (E-I) balance, therefore, relies on the orchestrated adjustment of excitatory and inhibitory synaptic strength. While growing evidence indicates that the brain’s extracellular matrix (ECM) is a crucial regulator of excitatory synapse plasticity, it remains unclear whether and how the ECM contributes to inhibitory control in neuronal networks. Here we studied the simultaneous changes in excitatory and inhibitory connectivity after ECM depletion. We demonstrate that the ECM supports the maintenance of E-I balance by retaining inhibitory connectivity. Quantification of synapses and super-resolution microscopy showed that depletion of the ECM in mature neuronal networks preferentially decreases the density of inhibitory synapses and the size of individual inhibitory postsynaptic scaffolds. The reduction of inhibitory synapse density is partially compensated by the homeostatically increasing synaptic strength via the reduction of presynaptic GABAB receptors, as indicated by patch-clamp measurements and GABAB receptor expression quantifications. However, both spiking and bursting activity in neuronal networks is increased after ECM depletion, as indicated by multi-electrode recordings. With computational modelling, we determined that ECM depletion reduces the inhibitory connectivity to an extent that the inhibitory synapse scaling does not fully compensate for the reduced inhibitory synapse density. Our results indicate that the brain’s ECM preserves the balanced state of neuronal networks by supporting inhibitory control via inhibitory synapse stabilization, which expands the current understanding of brain activity regulation. ![]()
Collapse
|
16
|
McKenna M, Shackelford D, Pontes C, Ball B, Nance E. Multiple Particle Tracking Detects Changes in Brain Extracellular Matrix and Predicts Neurodevelopmental Age. ACS NANO 2021; 15:8559-8573. [PMID: 33969999 PMCID: PMC8281364 DOI: 10.1021/acsnano.1c00394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain extracellular matrix (ECM) structure mediates many aspects of neural development and function. Probing structural changes in brain ECM could thus provide insights into mechanisms of neurodevelopment, the loss of neural function in response to injury, and the detrimental effects of pathological aging and neurological disease. We demonstrate the ability to probe changes in brain ECM microstructure using multiple particle tracking (MPT). We performed MPT of colloidally stable polystyrene nanoparticles in organotypic rat brain slices collected from rats aged 14-70 days old. Our analysis revealed an inverse relationship between nanoparticle diffusive ability in the brain extracellular space and age. Additionally, the distribution of effective ECM pore sizes in the cortex shifted to smaller pores throughout development. We used the raw data and features extracted from nanoparticle trajectories to train a boosted decision tree capable of predicting chronological age with high accuracy. Collectively, this work demonstrates the utility of combining MPT with machine learning for measuring changes in brain ECM structure and predicting associated complex features such as chronological age. This will enable further understanding of the roles brain ECM play in development and aging and the specific mechanisms through which injuries cause aberrant neuronal function. Additionally, this approach has the potential to develop machine learning models capable of detecting the presence of injury or indicating the extent of injury based on changes in the brain microenvironment microstructure.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - David Shackelford
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ceza Pontes
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Brendan Ball
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Radiology, University of Washington, Seattle, Washington 98195, United States
- Center on Human Development and Disability, University of Washington, Seattle, Washington 98195, United States
- eScience Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Wingert JC, Sorg BA. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Front Synaptic Neurosci 2021; 13:673210. [PMID: 34040511 PMCID: PMC8141737 DOI: 10.3389/fnsyn.2021.673210] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround specific neurons in the brain and spinal cord, appear during critical periods of development, and restrict plasticity during adulthood. Removal of PNNs can reinstate juvenile-like plasticity or, in cases of PNN removal during early developmental stages, PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin (PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These inhibitory interneurons profoundly inhibit the network of surrounding neurons via their elaborate contacts with local pyramidal neurons, and they are key contributors to gamma oscillations generated across several brain regions. Among other functions, these gamma oscillations regulate plasticity associated with learning, decision making, attention, cognitive flexibility, and working memory. The detailed mechanisms by which PNN removal increases plasticity are only beginning to be understood. Here, we review the impact of PNN removal on several electrophysiological features of their underlying PV interneurons and nearby pyramidal neurons, including changes in intrinsic and synaptic membrane properties, brain oscillations, and how these changes may alter the integration of memory-related information. Additionally, we review how PNN removal affects plasticity-associated phenomena such as long-term potentiation (LTP), long-term depression (LTD), and paired-pulse ratio (PPR). The results are discussed in the context of the role of PV interneurons in circuit function and how PNN removal alters this function.
Collapse
Affiliation(s)
- Jereme C Wingert
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Barbara A Sorg
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| |
Collapse
|
18
|
Xia D, Li L, Yang B, Zhou Q. Altered Relationship Between Parvalbumin and Perineuronal Nets in an Autism Model. Front Mol Neurosci 2021; 14:597812. [PMID: 33912009 PMCID: PMC8072465 DOI: 10.3389/fnmol.2021.597812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 03/16/2021] [Indexed: 12/26/2022] Open
Abstract
Altered function or presence of inhibitory neurons is documented in autism spectrum disorders (ASD), but the mechanism underlying this alternation is poorly understood. One major subtype of inhibitory neurons altered is the parvalbumin (PV)-containing neurons with reduced density and intensity in ASD patients and model mice. A subpopulation of PV+ neurons expresses perineuronal nets (PNN). To better understand whether the relationship between PV and PNN is altered in ASD, we measured quantitatively the intensities of PV and PNN in single PV+ neurons in the prelimbic prefrontal cortex (PrL-PFC) of a valproic acid (VPA) model of ASD at different ages. We found a decreased PV intensity but increased PNN intensity in VPA mice. The relationship between PV and PNN intensities is altered in VPA mice, likely due to an "abnormal" subpopulation of neurons with an altered PV-PNN relationship. Furthermore, reducing PNN level using in vivo injection of chondroitinase ABC corrects the PV expression in adult VPA mice. We suggest that the interaction between PV and PNN is disrupted in PV+ neurons in VPA mice which may contribute to the pathology in ASD.
Collapse
Affiliation(s)
- Dan Xia
- Key Laboratory of Chemical Genome, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China.,Center for Child Care and Mental Health, Shenzhen Children's Hospital, Shenzhen, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Binrang Yang
- Center for Child Care and Mental Health, Shenzhen Children's Hospital, Shenzhen, China
| | - Qiang Zhou
- Key Laboratory of Chemical Genome, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
19
|
Mascio G, Bucci D, Notartomaso S, Liberatore F, Antenucci N, Scarselli P, Imbriglio T, Caruso S, Gradini R, Cannella M, Di Menna L, Bruno V, Battaglia G, Nicoletti F. Perineuronal nets are under the control of type-5 metabotropic glutamate receptors in the developing somatosensory cortex. Transl Psychiatry 2021; 11:109. [PMID: 33597513 PMCID: PMC7889908 DOI: 10.1038/s41398-021-01210-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
mGlu5 metabotropic glutamate receptors are highly functional in the early postnatal life, and regulate developmental plasticity of parvalbumin-positive (PV+) interneurons in the cerebral cortex. PV+ cells are enwrapped by perineuronal nets (PNNs) at the closure of critical windows of cortical plasticity. Changes in PNNs have been associated with neurodevelopmental disorders. We found that the number of Wisteria Fluoribunda Agglutinin (WFA)+ PNNs and the density of WFA+/PV+ cells were largely increased in the somatosensory cortex of mGlu5-/- mice at PND16. An increased WFA+ PNN density was also observed after pharmacological blockade of mGlu5 receptors in the first two postnatal weeks. The number of WFA+ PNNs in mGlu5-/- mice was close to a plateau at PND16, whereas continued to increase in wild-type mice, and there was no difference between the two genotypes at PND21 and PND60. mGlu5-/- mice at PND16 showed increases in the transcripts of genes involved in PNN formation and a reduced expression and activity of type-9 matrix metalloproteinase in the somatosensory cortex suggesting that mGlu5 receptors control both PNN formation and degradation. Finally, unilateral whisker stimulation from PND9 to PND16 enhanced WFA+ PNN density in the contralateral somatosensory cortex only in mGlu5+/+ mice, whereas whisker trimming from PND9 to PND16 reduced WFA+ PNN density exclusively in mGlu5-/- mice, suggesting that mGlu5 receptors shape the PNN response to sensory experience. These findings disclose a novel undescribed mechanism of PNN regulation, and lay the groundwork for the study of mGlu5 receptors and PNNs in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Giada Mascio
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Domenico Bucci
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | | | | | - Nico Antenucci
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | | | - Stefano Caruso
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Roberto Gradini
- grid.7841.aDepartment of Experimental Medicine, Sapienza University, Rome, Italy
| | - Milena Cannella
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Luisa Di Menna
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Valeria Bruno
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy. .,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
20
|
O'Dell DE, Schreurs BG, Smith-Bell C, Wang D. Disruption of rat deep cerebellar perineuronal net alters eyeblink conditioning and neuronal electrophysiology. Neurobiol Learn Mem 2021; 177:107358. [PMID: 33285318 PMCID: PMC8279724 DOI: 10.1016/j.nlm.2020.107358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 01/26/2023]
Abstract
The perineuronal net (PNN) is a specialized type of extracellular matrix found in the central nervous system. The PNN forms on fast spiking neurons during postnatal development but the ontogeny of PNN development has yet to be elucidated. By studying the development and prevalence of the PNN in the juvenile and adult rat brain, we may be able to understand the PNN's role in development and learning and memory. We show that the PNN is fully developed in the deep cerebellar nuclei (DCN) of rats by P18. By using enzymatic digestion of the PNN with chondroitinase ABC (ChABC), we are able to study how digestion of the PNN affects cerebellar-dependent eyeblink conditioning in vivo and perform electrophysiological recordings from DCN neurons in vitro. In vivo degradation of the PNN resulted in significant differences in eyeblink conditioning amplitude and area. Female animals in the vehicle group demonstrated higher levels of conditioning as well as significantly higher post-probe conditioned responses compared to males in that group, differences not present in the ChABC group. In vitro, we found that DCN neurons with a disrupted PNN following exposure to ChABC had altered membrane properties, fewer rebound spikes, and decreased intrinsic excitability. Together, this study further elucidates the role of the PNN in cerebellar learning in the DCN and is the first to demonstrate PNN degradation may erase sex differences in delay conditioning.
Collapse
Affiliation(s)
- Deidre E O'Dell
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States.
| | - Bernard G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States
| | - Carrie Smith-Bell
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States
| | - Desheng Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States
| |
Collapse
|
21
|
Chen H, Lasek AW. Perineuronal nets in the insula regulate aversion-resistant alcohol drinking. Addict Biol 2020; 25:e12821. [PMID: 31433552 DOI: 10.1111/adb.12821] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/13/2019] [Accepted: 07/17/2019] [Indexed: 01/14/2023]
Abstract
One of the most pernicious characteristics of alcohol use disorder is the compulsion to drink despite negative consequences. The insular cortex controls decision making under conditions of risk or conflict. Cortical activity is tightly controlled by inhibitory interneurons that are often enclosed by specialized extracellular matrix structures known as perineuronal nets (PNNs), which regulate neuronal excitability and plasticity. The density of PNNs in the insula increases after repeated bouts of binge drinking, suggesting that they may play a role in the transition from social to compulsive, or aversion-resistant, drinking. Here, we investigated whether insular PNNs play a role in aversion-resistant alcohol drinking using a mouse model in which ethanol was adulterated with the bitter tastant quinine. Disrupting PNNs in the insula rendered mice more sensitive to quinine-adulterated ethanol but not ethanol alone. Activation of the insula, as measured by c-fos expression, occurred during aversion-resistant drinking and was further enhanced by elimination of PNNs. These results demonstrate that PNNs control the activation of the insula during aversion-resistant drinking and suggest that proper excitatory/inhibitory balance is important for decision making under conditions of conflict. Disrupting PNNs in the insula or optimizing insula activation may be a novel strategy to reduce aversion-resistant drinking.
Collapse
Affiliation(s)
- Hu Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| | - Amy W. Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
22
|
Pirbhoy PS, Rais M, Lovelace JW, Woodard W, Razak KA, Binder DK, Ethell IM. Acute pharmacological inhibition of matrix metalloproteinase-9 activity during development restores perineuronal net formation and normalizes auditory processing in Fmr1 KO mice. J Neurochem 2020; 155:538-558. [PMID: 32374912 DOI: 10.1111/jnc.15037] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Individuals with Fragile X Syndrome (FXS) and autism spectrum disorder (ASD) exhibit cognitive impairments, social deficits, increased anxiety, and sensory hyperexcitability. Previously, we showed that elevated levels of matrix metalloproteinase-9 (MMP-9) may contribute to abnormal development of parvalbumin (PV) interneurons and perineuronal nets (PNNs) in the developing auditory cortex (AC) of Fmr1 knock-out (KO) mice, which likely underlie auditory hypersensitivity. Thus, MMP-9 may serve as a potential target for treatment of auditory hypersensitivity in FXS. Here, we used the MMP-2/9 inhibitor, SB-3CT, to pharmacologically inhibit MMP-9 activity during a specific developmental period and to test whether inhibition of MMP-9 activity reverses neural oscillation deficits and behavioral impairments by enhancing PNN formation around PV cells in Fmr1 KO mice. Electroencephalography (EEG) was used to measure resting state and sound-evoked electrocortical activity in auditory and frontal cortices of postnatal day (P)22-23 male mice before and one-day after treatment with SB-3CT (25 mg/kg) or vehicle. At P27-28, animal behaviors were tested to measure the effects of the treatment on anxiety and hyperactivity. Results show that acute inhibition of MMP-9 activity improved evoked synchronization to auditory stimuli and ameliorated mouse behavioral deficits. MMP-9 inhibition enhanced PNN formation, increased PV levels and TrkB phosphorylation yet reduced Akt phosphorylation in the AC of Fmr1 KO mice. Our results show that MMP-9 inhibition during early postnatal development is beneficial in reducing some auditory processing deficits in the FXS mouse model and may serve as a candidate therapeutic for reversing sensory hypersensitivity in FXS and possibly other ASDs.
Collapse
Affiliation(s)
- Patricia S Pirbhoy
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Walker Woodard
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Khaleel A Razak
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| |
Collapse
|
23
|
Anderson MD, Paylor JW, Scott GA, Greba Q, Winship IR, Howland JG. ChABC infusions into medial prefrontal cortex, but not posterior parietal cortex, improve the performance of rats tested on a novel, challenging delay in the touchscreen TUNL task. ACTA ACUST UNITED AC 2020; 27:222-235. [PMID: 32414940 PMCID: PMC7233150 DOI: 10.1101/lm.050245.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 02/27/2020] [Indexed: 01/04/2023]
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround subsets of neurons throughout the central nervous system (CNS). They are made up of chondroitin sulfate proteoglycans (CSPGs), hyaluronan, tenascin-R, and many other link proteins that together make up their rigid and lattice-like structure. Modulation of PNNs can alter synaptic plasticity and thereby affect learning, memory, and cognition. In the present study, we degraded PNNs in the medial prefrontal (mPFC) and posterior parietal (PPC) cortices of Long–Evans rats using the enzyme chondroitinase ABC (ChABC), which cleaves apart CSPGs. We then measured the consequences of PNN degradation on spatial working memory (WM) with a trial-unique, non-matching-to location (TUNL) automated touchscreen task. All rats were trained with a standard 6 sec delay and 20 sec inter-trial interval (ITI) and then tested under four different conditions: a 6 sec delay, a variable 2 or 6 sec delay, a 2 sec delay with a 1 sec ITI (interference condition), and a 20 sec delay. Rats that received mPFC ChABC treatment initially performed TUNL with higher accuracy, more selection trials completed, and fewer correction trials completed compared to controls in the 20 sec delay condition but did not perform differently from controls in any other condition. Rats that received PPC ChABC treatment did not perform significantly differently from controls in any condition. Posthumous immunohistochemistry confirmed an increase in CSPG degradation products (C4S stain) in the mPFC and PPC following ChABC infusions while WFA staining intensity and parvalbumin positive neuron number were decreased following mPFC, but not PPC, ChABC infusions. These findings suggest that PNNs in the mPFC play a subtle role in spatial WM, but PNNs in the PPC do not. Furthermore, it appears that PNNs in the mPFC are involved in adapting to a challenging novel delay, but that they do not play an essential role in spatial WM function.
Collapse
Affiliation(s)
- Michael D Anderson
- Department of Anatomy, Physiology and Pharmacology University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - John W Paylor
- Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Gavin A Scott
- Department of Anatomy, Physiology and Pharmacology University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology and Pharmacology University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ian R Winship
- Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - John G Howland
- Department of Anatomy, Physiology and Pharmacology University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
24
|
Griffiths BB, Madden AMK, Edwards KA, Zup SL, Stary CM. Age-dependent sexual dimorphism in hippocampal cornu ammonis-1 perineuronal net expression in rats. Brain Behav 2019; 9:e01265. [PMID: 30912298 PMCID: PMC6520292 DOI: 10.1002/brb3.1265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/21/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Perineuronal nets (PNNs) are extracellular matrices that encompass parvalbumin-expressing parvalbumin positive (PVALB+) fast-spiking inhibitory interneurons where they protect and stabilize afferent synapses. Recent observations that gonadal hormones influence PVALB+ neuron development suggest that PNN regulation may be sexually dimorphic. Sex differences in PNN abundance and complexity have been reported in sexually dimorphic nuclei in zebra finch brains; however, corresponding differences in mammalian brains have not been investigated. METHODS In this study we assessed the number of cortical and hippocampal PNNs in juvenile and young adult male and female rats using fluorescent immunohistochemistry for PVALB and the PNN marker Wisteria Floribunda Lectin. RESULTS We report here that PNNs are numerous and well developed in hippocampal cornu ammonis-1 of adult males but are lower in juvenile and possibly adult females. No significant differences were observed between sexes in cornu ammonis-3 or adjacent neocortex. There was an observed developmental difference in the neocortex as juveniles had more PVALB+ cells, but fewer PNN+ cells, than adults. CONCLUSIONS Because PNNs are integral for several hippocampal-mediated learning and memory tasks, these observations have potential sex-dependent translational implications for clinical strategies targeting cognitive dysfunction.
Collapse
Affiliation(s)
- Brian B Griffiths
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California
| | - Amanda M K Madden
- Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, Massachusetts
| | - Kimbra A Edwards
- Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, Massachusetts.,Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts
| | - Susan L Zup
- Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, Massachusetts.,Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California
| |
Collapse
|