1
|
Tsutsumi Y, Morita Y, Sato F, Furuta T, Uchino K, Sohn J, Haque T, Bae YC, Niwa H, Tachibana Y, Yoshida A. Cerebellar Nuclei Receiving Orofacial Proprioceptive Signals through the Mossy Fiber Pathway from the Supratrigeminal Nucleus in Rats. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1795-1810. [PMID: 37682386 DOI: 10.1007/s12311-023-01602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Proprioception from muscle spindles is necessary for motor function executed by the cerebellum. In particular, cerebellar nuclear neurons that receive proprioceptive signals and send projections to the lower brainstem or spinal cord play key roles in motor control. However, little is known about which cerebellar nuclear regions receive orofacial proprioception. Here, we investigated projections to the cerebellar nuclei from the supratrigeminal nucleus (Su5), which conveys the orofacial proprioception arising from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 resulted in a large number of labeled axon terminals bilaterally in the dorsolateral hump (IntDL) of the cerebellar interposed nucleus (Int) and the dorsolateral protuberance (MedDL) of the cerebellar medial nucleus. In addition, a moderate number of axon terminals were ipsilaterally labeled in the vestibular group Y nucleus (group Y). We electrophysiologically detected JCMS proprioceptive signals in the IntDL and MedDL. Retrograde tracing analysis confirmed bilateral projections from the Su5 to the IntDL and MedDL. Furthermore, anterograde tracer injections into the external cuneate nucleus (ECu), which receives other proprioceptive input from forelimb/neck muscles, resulted in only a limited number of ipsilaterally labeled terminals, mainly in the dorsomedial crest of the Int and the group Y. Taken together, the Su5 and ECu axons almost separately terminated in the cerebellar nuclei (except for partial overlap in the group Y). These data suggest that orofacial proprioception is differently processed in the cerebellar circuits in comparison to other body-part proprioception, thus contributing to the executive function of orofacial motor control.
Collapse
Affiliation(s)
- Yumi Tsutsumi
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yayoi Morita
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Fumihiko Sato
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Furuta
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsuro Uchino
- Department of Acupuncture, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan
| | - Jaerin Sohn
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tahsinul Haque
- Department of Preventive Sciences, College of Dentistry, Dar Al Uloom University, Riyadh, 13314, Saudi Arabia
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Korea
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Yoshihisa Tachibana
- Division of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Hyogo, 650-0017, Japan.
| | - Atsushi Yoshida
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan.
| |
Collapse
|
2
|
Bress KS, Cascio CJ. Sensorimotor regulation of facial expression - An untouched frontier. Neurosci Biobehav Rev 2024; 162:105684. [PMID: 38710425 DOI: 10.1016/j.neubiorev.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Facial expression is a critical form of nonverbal social communication which promotes emotional exchange and affiliation among humans. Facial expressions are generated via precise contraction of the facial muscles, guided by sensory feedback. While the neural pathways underlying facial motor control are well characterized in humans and primates, it remains unknown how tactile and proprioceptive information reaches these pathways to guide facial muscle contraction. Thus, despite the importance of facial expressions for social functioning, little is known about how they are generated as a unique sensorimotor behavior. In this review, we highlight current knowledge about sensory feedback from the face and how it is distinct from other body regions. We describe connectivity between the facial sensory and motor brain systems, and call attention to the other brain systems which influence facial expression behavior, including vision, gustation, emotion, and interoception. Finally, we petition for more research on the sensory basis of facial expressions, asserting that incomplete understanding of sensorimotor mechanisms is a barrier to addressing atypical facial expressivity in clinical populations.
Collapse
Affiliation(s)
- Kimberly S Bress
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Carissa J Cascio
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Powell A, Hanna C, Sajjad M, Yao R, Blum K, Gold MS, Quattrin T, Thanos PK. Exercise Influences the Brain's Metabolic Response to Chronic Cocaine Exposure in Male Rats. J Pers Med 2024; 14:500. [PMID: 38793082 PMCID: PMC11122626 DOI: 10.3390/jpm14050500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cocaine use is associated with negative health outcomes: cocaine use disorders, speedballing, and overdose deaths. Currently, treatments for cocaine use disorders and overdose are non-existent when compared to opioid use disorders, and current standard cocaine use disorder treatments have high dropout and recidivism rates. Physical exercise has been shown to attenuate addiction behavior as well as modulate brain activity. This study examined the differential effects of chronic cocaine use between exercised and sedentary rats. The effects of exercise on brain glucose metabolism (BGluM) following chronic cocaine exposure were assessed using Positron Emission Tomography (PET) and [18F]-Fluorodeoxyglucose (FDG). Compared to sedentary animals, exercise decreased metabolism in the SIBF primary somatosensory cortex. Activation occurred in the amygdalopiriform and piriform cortex, trigeminothalamic tract, rhinal and perirhinal cortex, and visual cortex. BGluM changes may help ameliorate various aspects of cocaine abuse and reinstatement. Further investigation is needed into the underlying neuronal circuits involved in BGluM changes and their association with addiction behaviors.
Collapse
Affiliation(s)
- Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Rutao Yao
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Kenneth Blum
- Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Teresa Quattrin
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
4
|
Chen TC, Lin CS. Neuroimaging meta-analysis of brain mechanisms of the association between orofacial pain and mastication. J Oral Rehabil 2023; 50:1070-1081. [PMID: 37252887 DOI: 10.1111/joor.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Temporomandibular disorders (TMD) are characterized by pain and impaired masticatory functions. The Integrated Pain Adaptation Model (IPAM) predicts that alterations in motor activity may be associated with increased pain in some individuals. The IPAM highlights the diversity of patients' responses to orofacial pain and suggests that such diversity is related to the sensorimotor network of the brain. It remains unclear whether the pattern of brain activation reflects the diversity of patients' responses underlying the association between mastication and orofacial pain. OBJECTIVE This meta-analysis aims to compare the spatial pattern of brain activation, as the primary outcome of neuroimaging studies, between studies of mastication (i.e. Study 1: mastication of healthy adults) and studies of orofacial pain (i.e. Study 2: muscle pain in healthy adults and Study 3: noxious stimulation of the masticatory system in TMD patients). METHODS Neuroimaging meta-analyses were conducted for two groups of studies: (a) mastication of healthy adults (Study 1, 10 studies) and (b) orofacial pain (7 studies), including muscle pain in healthy adults (Study 2) and noxious stimulation of the masticatory system in TMD patients (Study 3). Consistent loci of brain activation were synthesized using Activation Likelihood Estimation (ALE) with an initial cluster-forming threshold (p < .05) and a threshold of cluster size (p < .05, familywise error-corrected). RESULTS The orofacial pain studies have shown consistent activation in pain-related regions, including the anterior cingulate cortex and the anterior insula (AIns). A conjunctional analysis of mastication and orofacial pain studies showed joint activation at the left AIns, the left primary motor cortex and the right primary somatosensory cortex. CONCLUSION The meta-analytical evidence suggests that the AIns, as a key region in pain, interoception and salience processing, contributes to the pain-mastication association. These findings reveal an additional neural mechanism of the diversity of patients' responses underlying the association between mastication and orofacial pain.
Collapse
Affiliation(s)
- Ta-Chung Chen
- Division of Prosthodontics, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Shu Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Jung C, Kim J, Choi S, Seo YK, Park KS, Choi Y, Choi SM, Kwon O, Song Y, Kim J, Cho G, Cheong C, Napadow V, Jung IC, Kim H. Attenuated facial movement in depressed women is associated with symptom severity, and nucleus accumbens functional connectivity. Neuroimage Clin 2023; 38:103380. [PMID: 36989853 PMCID: PMC10074984 DOI: 10.1016/j.nicl.2023.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
It is assumed that mood can be inferred from one's facial expression. While this association may prove to be an objective marker for mood disorders, few studies have explicitly evaluated this linkage. The facial movement responses of women with major depressive disorder (n = 66) and healthy controls (n = 46) under emotional stimuli were recorded using webcam. To boost facial movements, the naturalistic audio-visual stimuli were presented. To assess consistent global patterns across facial movements, scores for facial action units were extracted and projected onto principal component using principal component analysis. The associations of component for facial movements with functional brain circuitry was also investigated. Clusters of mouth movements, such as lip press and stretch, identified by principal component analysis, were attenuated in depressive patients compared to those in healthy controls. This component of facial movements was associated with depressive symptoms, and the strengths of resting brain functional connectivity between nucleus accumbens and both posterior insular cortex and thalamus. The evaluation of facial movements may prove to be a promising quantitative marker for assessing depressive symptoms and their underlying brain circuitry.
Collapse
Affiliation(s)
- Changjin Jung
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea; Department of Electronics and Information Convergence Engineering, Kyung Hee University, Gyeonggi, South Korea
| | - Jieun Kim
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sunyoung Choi
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Young Kyung Seo
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Ki-Sun Park
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Youngeun Choi
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sung Min Choi
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ojin Kwon
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Youngkyu Song
- Bio-Chemical Analysis Team, Ochang Center, Korea Basic Science Institute, Chungbuk, South Korea
| | - Jooyeon Kim
- Bio-Chemical Analysis Team, Ochang Center, Korea Basic Science Institute, Chungbuk, South Korea
| | - Gyunggoo Cho
- Bio-Chemical Analysis Team, Ochang Center, Korea Basic Science Institute, Chungbuk, South Korea
| | - Chaejoon Cheong
- Bio-Chemical Analysis Team, Ochang Center, Korea Basic Science Institute, Chungbuk, South Korea
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Network, Harvard Medical School, Charlestown, MA, USA
| | - In Chul Jung
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, South Korea; Department of Neuropsychiatry, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea.
| | - Hyungjun Kim
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea.
| |
Collapse
|
6
|
Ji YY, Liu X, Li X, Xiao YF, Ma T, Wang J, Feng Y, Shi J, Wang MQ, Li JL, Lai JH. Activation of the Vpdm VGLUT1-VPM pathway contributes to anxiety-like behaviors induced by malocclusion. Front Cell Neurosci 2022; 16:995345. [PMID: 36605612 PMCID: PMC9807610 DOI: 10.3389/fncel.2022.995345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Occlusal disharmony has a negative impact on emotion. The mesencephalic trigeminal nucleus (Vme) neurons are the primary afferent nuclei that convey proprioceptive information from proprioceptors and low-threshold mechanoreceptors in the periodontal ligament and jaw muscles in the cranio-oro-facial regions. The dorsomedial part of the principal sensory trigeminal nucleus (Vpdm) and the ventral posteromedial nucleus (VPM) of thalamus have been proven to be crucial relay stations in ascending pathway of proprioception. The VPM sends numerous projections to primary somatosensory areas (SI), which modulate emotion processing. The present study aimed to demonstrate the ascending trigeminal-thalamic-cortex pathway which would mediate malocclusion-induced negative emotion. Unilateral anterior crossbite (UAC) model created by disturbing the dental occlusion was applied. Tract-tracing techniques were used to identify the existence of Vme-Vpdm-VPM pathway and Vpdm-VPM-SI pathway. Chemogenetic and optogenetic methods were taken to modulate the activation of VpdmVGLUT1 neurons and the Vpdm-VPM pathway. Morphological evidence indicated the involvement of the Vme-Vpdm-VPM pathway, Vpdm-VPM-SI pathway and VpdmVGLUT1-VPM pathway in orofacial proprioception in wild-type mice and vesicular glutamate transporter 1 (VGLUT1): tdTomato mice, respectively. Furthermore, chemogenetic inhibition of VpdmVGLUT1 neurons and the Vpdm-VPM pathway alleviated anxiety-like behaviors in a unilateral anterior crossbite (UAC) model, whereas chemogenetic activation induced anxiety-like behaviors in controls and did not aggravate these behaviors in UAC mice. Finally, optogenetic inhibition of the VpdmVGLUT1-VPM pathway in VGLUT1-IRES-Cre mice reversed UAC-induced anxiety comorbidity. In conclusion, these results suggest that the VpdmVGLUT1-VPM neural pathway participates in the modulation of malocclusion-induced anxiety comorbidity. These findings provide new insights into the links between occlusion and emotion and deepen our understanding of the impact of occlusal disharmony on brain dysfunction.
Collapse
Affiliation(s)
- Yuan-Yuan Ji
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, China,Department of Anatomy, School of Medicine, Northwest University, Xi’an, China,Department of Anatomy, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Xin Liu
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi’an, China,Department of Stomatology, The 960th Hospital of People’s Liberation Army, Jinan, China
| | - Xin Li
- Department of Stomatology, The 960th Hospital of People’s Liberation Army, Jinan, China
| | - Yi-Fan Xiao
- Department of Anatomy, School of Medicine, Northwest University, Xi’an, China
| | - Teng Ma
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jian Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yue Feng
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Juan Shi
- Department of Anatomy, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Mei-Qing Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi’an, China,*Correspondence: Mei-Qing Wang,
| | - Jin-Lian Li
- Department of Anatomy, School of Medicine, Northwest University, Xi’an, China,Department of Anatomy, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China,Jin-Lian Li,
| | - Jiang-Hua Lai
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, China,Jiang-Hua Lai,
| |
Collapse
|
7
|
Exercise Modulates Brain Glucose Utilization Response to Acute Cocaine. J Pers Med 2022; 12:jpm12121976. [PMID: 36556197 PMCID: PMC9788493 DOI: 10.3390/jpm12121976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Exercise, a proven method of boosting health and wellness, is thought to act as a protective factor against many neurological and psychological diseases. Recent studies on exercise and drug exposure have pinpointed some of the neurological mechanisms that may characterize this protective factor. Using positron emission tomography (PET) imaging techniques and the glucose analog [18F]-Fluorodeoxyglucose (18F-FDG), our team sought to identify how chronic aerobic exercise modulates brain glucose metabolism (BGluM) after drug-naïve rats were exposed to an acute dose of cocaine. Using sedentary rats as a control group, we observed significant differences in regional BGluM. Chronic treadmill exercise treatment coupled with acute cocaine exposure induced responses in BGluM activity in the following brain regions: postsubiculum (Post), parasubiculum (PaS), granular and dysgranular insular cortex (GI and DI, respectively), substantia nigra reticular (SNR) and compact part dorsal tier (SNCD), temporal association cortex (TeA), entopenduncular nucleus (EP), and crus 1 of the ansiform lobule (crus 1). Inhibition, characterized by decreased responses due to our exercise, was found in the ventral endopiriform nucleus (VEn). These areas are associated with memory and various motor functions. They also include and share connections with densely dopaminergic areas of the mesolimbic system. In conclusion, these findings suggest that treadmill exercise in rats mediates brain glucose response to an acute dose of cocaine differently as compared to sedentary rats. The modulated brain glucose utilization occurs in brain regions responsible for memory and association, spatial navigation, and motor control as well as corticomesolimbic regions related to reward, emotion, and movement.
Collapse
|
8
|
Tsutsumi Y, Sato F, Furuta T, Uchino K, Moritani M, Bae YC, Kato T, Tachibana Y, Yoshida A. The Cerebellar Cortex Receives Orofacial Proprioceptive Signals from the Supratrigeminal Nucleus via the Mossy Fiber Pathway in Rats. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01434-z. [PMID: 35781609 DOI: 10.1007/s12311-022-01434-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Proprioceptive sensory information from muscle spindles is essential for the regulation of motor functions. However, little is known about the motor control regions in the cerebellar cortex that receive proprioceptive signals from muscle spindles distributed throughout the body, including the orofacial muscles. Therefore, in this study, we investigated the pattern of projections in the rat cerebellar cortex derived from the supratrigeminal nucleus (Su5), which conveys orofacial proprioceptive information from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 revealed that many bilateral axon terminals (rosettes) were distributed in the granular layer of the cerebellar cortex (including the simple lobule B, crus II and flocculus) in a various sized, multiple patchy pattern. We could also detect JCMS proprioceptive signals in these cerebellar cortical regions, revealing for the first time that they receive muscle proprioceptive inputs in rats. Retrograde tracer injections confirmed that the Su5 directly sends outputs to the cerebellar cortical areas. Furthermore, we injected an anterograde tracer into the external cuneate nucleus (ECu), which receives proprioceptive signals from the forelimb and neck muscle spindles, to distinguish between the Su5- and ECu-derived projections in the cerebellar cortex. The labeled terminals from the ECu were distributed predominantly in the vermis of the cerebellar cortex. Almost no overlap was seen in the terminal distributions of the Su5 and ECu projections. Our findings demonstrate that the rat cerebellar cortex receives orofacial proprioceptive input that is processed differently from the proprioceptive signals from the other regions of the body.
Collapse
Affiliation(s)
- Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumihiko Sato
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsuro Uchino
- Faculty of Health Care Science, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan
| | - Masayuki Moritani
- Department of Physical Therapy, Faculty of Health Science, Morinomiya University of Medical Sciences, Osaka, 559-8611, Japan
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Korea
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Yoshihisa Tachibana
- Division of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Faculty of Health Care Science, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan.
| |
Collapse
|
9
|
Ettlin DA, Napimoga MH, Meira E Cruz M, Clemente-Napimoga JT. Orofacial musculoskeletal pain: An evidence-based bio-psycho-social matrix model. Neurosci Biobehav Rev 2021; 128:12-20. [PMID: 34118294 DOI: 10.1016/j.neubiorev.2021.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Pain is a multidimensional experience comprising sensory-discriminative, affective-motivational, and cognitive-evaluative dimensions. Clinical and research findings have demonstrated a complex interplay between social burdens, individual coping strategies, mood states, psychological disorders, sleep disturbances, masticatory muscle tone, and orofacial musculoskeletal pain. Accordingly, current classification systems for orofacial pain require psychosocial assessments to be an integral part of the multidimensional diagnostic process. Here, we review evidence on how psychosocial and biological factors may generate and perpetuate musculoskeletal orofacial pain. Specifically, we discuss studies investigating a putative causal relationship between stress, bruxism, and pain in the masticatory system. We present findings that attribute brain structures various roles in modulating pain perception and pain-related behavior. We also examine studies investigating how the nervous and immune system on cellular and molecular levels may account for orofacial nociceptive signaling. Furthermore, we review evidence pointing towards associations between orofacial musculoskeletal pain and neuroendocrine imbalances, sleep disturbances, and alterations of the circadian timing system. We conclude with several proposals that may help to alleviate orofacial pain in the future.
Collapse
Affiliation(s)
- Dominik A Ettlin
- Clinic of Masticatory Disorders, Orofacial Pain Unit, Center of Dental Medicine, University of Zurich, Zurich, Switzerland; Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Berne, Berne, Switzerland.
| | - Marcelo Henrique Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto e Centro De Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| | - Miguel Meira E Cruz
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto e Centro De Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil; Sleep Unit, Cardiovascular Center of University of Lisbon, Lisbon School of Medicine, Lisbon, Portugal
| | - Juliana Trindade Clemente-Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto e Centro De Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| |
Collapse
|
10
|
Tsutsumi Y, Mizuno Y, Haque T, Sato F, Furuta T, Oka A, Moritani M, Bae YC, Yamashiro T, Tachibana Y, Yoshida A. Widespread corticopetal projections from the oval paracentral nucleus of the intralaminar thalamic nuclei conveying orofacial proprioception in rats. Brain Struct Funct 2021; 226:1115-1133. [PMID: 33543335 DOI: 10.1007/s00429-021-02228-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
The oval paracentral nucleus (OPC) was initially isolated from the paracentral nucleus (PC) within the intralaminar thalamic nuclei in rats. We have recently shown that the rat OPC receives proprioceptive inputs from jaw-closing muscle spindles (JCMSs). However, it remains unknown which cortical areas receive thalamic inputs from the OPC, and whether the cortical areas receiving the OPC inputs are distinct from those receiving inputs from the other intralaminar nuclei and sensory thalamic nuclei. To address this issue, we injected an anterograde tracer, biotinylated dextranamine (BDA), into the OPC, which was electrophysiologically identified by recording of proprioceptive inputs from the JCMSs. Many BDA-labeled axonal fibers and terminals from the OPC were ipsilaterally observed in the rostral and rostroventral regions of the primary somatosensory cortex (S1), the rostral region of the secondary somatosensory cortex (S2), and the most rostrocaudal levels of the granular insular cortex (GI). In contrast, a BDA injection into the caudal PC, which was located slightly rostral to the OPC, resulted in ipsilateral labeling of axonal fibers and terminals in the rostrolateral region of the medial agranular cortex and the rostromedial region of the lateral agranular cortex. Furthermore, injections of a retrograde tracer, Fluorogold, into these S1, S2, and GI regions, resulted in preferential labeling of neurons in the ipsilateral OPC among the intralaminar and sensory thalamic nuclei. These findings reveal that the rat OPC has widespread, but strong corticopetal projections, indicating that there exist divergent corticopetal pathways from the intralaminar thalamic nucleus, which process JCMS proprioceptive sensation.
Collapse
Affiliation(s)
- Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Yuka Mizuno
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Tahsinul Haque
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.,Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, 11545, Saudi Arabia
| | - Fumihiko Sato
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Ayaka Oka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Masayuki Moritani
- Department of Physical Therapy, Faculty of Health Science, Morinomiya University of Medical Sciences, Osaka, 559-8611, Japan
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Korea
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Yoshihisa Tachibana
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Sato F, Kado S, Tsutsumi Y, Tachibana Y, Ikenoue E, Furuta T, Uchino K, Bae YC, Uzawa N, Yoshida A. Ascending projection of jaw-closing muscle-proprioception to the intralaminar thalamic nuclei in rats. Brain Res 2020; 1739:146830. [PMID: 32278724 DOI: 10.1016/j.brainres.2020.146830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022]
Abstract
An invasive intralaminar thalamic stimulation and a non-invasive application of oral splint are both effective in treating tic symptoms of patients with Tourette syndrome (TS). Therefore, these two treatments may exert some influence on the same brain region in TS patients. We thus hypothesized that the proprioceptive input arising from the muscle spindles of jaw-closing muscles (JCMSs), known to be increased by the application of oral splint, is transmitted to the intralaminar thalamic nuclei. To test this issue, we morphologically and electrophysiologically examined the thalamic projections of proprioceptive input from the JCMSs to the intralaminar thalamic nuclei of rats. We first injected an anterograde tracer, biotinylated dextranamine, into the electrophysiologically identified supratrigeminal nucleus, which is known to receive proprioceptive inputs from the JCMSs via the trigeminal mesencephalic neurons. A moderate number of biotinylated dextranamine-labeled axon terminals were bilaterally distributed in the oval paracentral nucleus (OPC) of the intralaminar thalamic nuclei. We also detected electrophysiological responses to the electrical stimulation of bilateral masseter nerves and to sustained jaw-opening in the OPC. After injection of retrograde tracer (cholera toxin B subunit or Fluorogold) into the OPC, neuronal cell bodies were retrogradely labeled in the rostrodorsal portion of the bilateral supratrigeminal nucleus. Here, we show that proprioceptive inputs from the JCMSs are conveyed to the OPC in the intralaminar nuclei via the supratrigeminal nucleus. This study can help to understand previously unrecognized pathways of proprioception ascending inputs from the brainstem to the thalamus, which may contribute to treatments of TS patients.
Collapse
Affiliation(s)
- Fumihiko Sato
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Seiya Kado
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan; Department of Oral and Maxillofacial Surgery 2, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshihisa Tachibana
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Etsuko Ikenoue
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsuro Uchino
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan; Department of Acupuncture, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo 666-0162, Japan
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery 2, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|