1
|
Zhang S, Yang J, Xu J, Li J, Xu L, Jin N, Li X. Integrative mRNA and miRNA Expression Profiles from Developing Zebrafish Head Highlight Brain-Preference Genes and Regulatory Networks. Mol Neurobiol 2025; 62:2148-2162. [PMID: 39083243 PMCID: PMC11772381 DOI: 10.1007/s12035-024-04364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/10/2024] [Indexed: 01/28/2025]
Abstract
Zebrafish is an emerging animal model for studying molecular mechanism underlying neurodevelopmental disorder due to its advantage characters. miRNAs are small non-coding RNAs that play a key role in brain development. Understanding of dynamic transcriptional and post-transcriptional molecules and their regulation during the head development is important for the study of neurodevelopmental disorder. In this study, we performed the high-throughput sequencing of mRNAs and miRNAs in developing zebrafish head from pharyngula to early larval stages and carried out bioinformatic analysis including differential expression and functional enrichment as well as joint analysis of miRNAs and mRNAs, and also compared with other related public sequencing datasets to aid our interpretation. A large number of differential expression genes with a large fold change were detected during the head development. Further clustering and functional enrichment analyses indicated that genes in late stage were most related with synaptic signaling. Overlap test analysis showed a significant enrichment of brain-preference and synapse-associated gene set in the head transcriptome compared with the whole embryo transcriptome. We also constructed miRNA-mRNA network for those brain-preference genes and focused on those densely connected network components. CRISPR-Cas9-mediated snap25b mutants led to embryonic development defects and decreases locomotor activity. Altogether, the present study provides developmental profiles of head-enriched mRNAs and miRNAs at three critical windows for nervous system development, which may contribute to the study of neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shuqiang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Researchand, Evaluation of Tissue Engineering Technology Products , Nantong University, Nantong, 226001, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Researchand, Evaluation of Tissue Engineering Technology Products , Nantong University, Nantong, 226001, China
| | - Jie Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Researchand, Evaluation of Tissue Engineering Technology Products , Nantong University, Nantong, 226001, China
| | - Jing Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
- The School of Medical Humanities, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lian Xu
- Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Nana Jin
- Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
2
|
Bogue D, Ryan G, Wassmer E, Research Consortium GE, Naik S. VAMP2 Gene-Related Neurodevelopmental Disorder: A Differential Diagnosis for Rett/Angelman-Type Spectrum of Disorders. Mol Syndromol 2023; 14:449-456. [PMID: 37901860 PMCID: PMC10601795 DOI: 10.1159/000530150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/08/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction VAMP2 is an instrumental protein in neuronal synaptic transmission in the brain, facilitating neurotransmitter release. It is encoded by the VAMP2 gene, and pathogenic variants in this gene cause neurodevelopmental features including early onset axial hypotonia, intellectual disability, and features of autism spectrum disorder. To date, only three types of allelic variants (loss of function, in-frame deletions, and missense variants) in the VAMP2 gene have been previously reported in 11 patients with learning difficulties. Here, we describe a patient in whom a novel de novo pathogenic variant in the VAMP2 gene was identified. Case Presentation A 15-month-old girl presented with early onset hypotonia, global developmental delay, learning difficulties, microcephaly, nystagmus, strabismus, and stereotypies. Later, she developed a sleep disorder, challenging behaviour with self-injury, and scoliosis. Gene agnostic analysis of whole genome sequencing data identified a novel de novo heterozygous missense variant c.197G>C (p.Arg66Pro) in the VAMP2 gene SNARE motif region. Discussion This is the fourth report describing VAMP2 gene-related neurodevelopmental disorder. This report adds to the genotype-phenotype correlation and highlights this condition as an important differential diagnosis of Rett/Angelman-type spectrum of disorders. Patients presenting with features of either Rett syndrome or Angelman syndrome, in whom genetic testing is not suggestive, should be evaluated for variants in the VAMP2 gene, given the significant overlap in clinical presentation of these disorders.
Collapse
Affiliation(s)
- Danielle Bogue
- West Midlands Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Evangeline Wassmer
- Department of Neurology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
- Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | | | - Swati Naik
- West Midlands Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
3
|
Uzay B, Kavalali ET. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023; 15:1148957. [PMID: 37066095 PMCID: PMC10102358 DOI: 10.3389/fnsyn.2023.1148957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.
Collapse
Affiliation(s)
- Burak Uzay
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
4
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
5
|
Lin PY, Ma ZZ, Mahgoub M, Kavalali ET, Monteggia LM. A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep 2021; 36:109513. [PMID: 34407417 PMCID: PMC8404212 DOI: 10.1016/j.celrep.2021.109513] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/14/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Ketamine produces rapid antidepressant action in patients with major depression or treatment-resistant depression. Studies have identified brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), as necessary for the antidepressant effects and underlying ketamine-induced synaptic potentiation in the hippocampus. Here, we delete BDNF or TrkB in presynaptic CA3 or postsynaptic CA1 regions of the Schaffer collateral pathway to investigate the rapid antidepressant action of ketamine. The deletion of Bdnf in CA3 or CA1 blocks the ketamine-induced synaptic potentiation. In contrast, ablation of TrkB only in postsynaptic CA1 eliminates the ketamine-induced synaptic potentiation. We confirm BDNF-TrkB signaling in CA1 is required for ketamine's rapid behavioral action. Moreover, ketamine application elicits dynamin1-dependent TrkB activation and downstream signaling to trigger rapid synaptic effects. Taken together, these data demonstrate a requirement for BDNF-TrkB signaling in CA1 neurons in ketamine-induced synaptic potentiation and identify a specific synaptic locus in eliciting ketamine's rapid antidepressant effects.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Z Zack Ma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA
| | - Melissa Mahgoub
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA.
| |
Collapse
|
6
|
Liu C, Hu Q, Chen Y, Wu L, Liu X, Liang D. Behavioral and Gene Expression Analysis of Stxbp6-Knockout Mice. Brain Sci 2021; 11:brainsci11040436. [PMID: 33805317 PMCID: PMC8066043 DOI: 10.3390/brainsci11040436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Since the first report that Stxbp6, a brain-enriched protein, regulates the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, little has been discovered about its functions over the past two decades. To determine the effects of Stxbp6 loss on nervous-system-associated phenotypes and underlying mechanisms, we constructed a global Stxbp6-knockout mouse. We found that Stxbp6-null mice survive normally, with normal behavior, but gained less weight relative to age- and sex-matched wildtype mice. RNA-seq analysis of the cerebral cortex of Stxbp6-null mice relative to wildtype controls identified 126 differentially expressed genes. Of these, 57 were upregulated and 69 were downregulated. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the most significant enriched KEGG term was “complement and coagulation cascades”. Our results suggest some potential regulatory pathways of Stxbp6 in the central nervous system, providing a remarkable new resource for understanding Stxbp6 function at the organism level.
Collapse
|
7
|
Alten B, Zhou Q, Shin OH, Esquivies L, Lin PY, White KI, Sun R, Chung WK, Monteggia LM, Brunger AT, Kavalali ET. Role of Aberrant Spontaneous Neurotransmission in SNAP25-Associated Encephalopathies. Neuron 2020; 109:59-72.e5. [PMID: 33147442 DOI: 10.1016/j.neuron.2020.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 01/19/2023]
Abstract
SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex, composed of synaptobrevin, syntaxin, and SNAP25, forms the essential fusion machinery for neurotransmitter release. Recent studies have reported several mutations in the gene encoding SNAP25 as a causative factor for developmental and epileptic encephalopathies of infancy and childhood with diverse clinical manifestations. However, it remains unclear how SNAP25 mutations give rise to these disorders. Here, we show that although structurally clustered mutations in SNAP25 give rise to related synaptic transmission phenotypes, specific alterations in spontaneous neurotransmitter release are a key factor to account for disease heterogeneity. Importantly, we identified a single mutation that augments spontaneous release without altering evoked release, suggesting that aberrant spontaneous release is sufficient to cause disease in humans.
Collapse
Affiliation(s)
- Baris Alten
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Qiangjun Zhou
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ok-Ho Shin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Pei-Yi Lin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Rong Sun
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Wendy K Chung
- Department of Pediatrics (in Medicine), Columbia University Medical Center, New York, NY 10032, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
8
|
Simmons RL, Li H, Alten B, Santos MS, Jiang R, Paul B, Lalani SJ, Cortesi A, Parks K, Khandelwal N, Smith-Packard B, Phoong MA, Chez M, Fisher H, Scheuerle AE, Shinawi M, Hussain SA, Kavalali ET, Sherr EH, Voglmaier SM. Overcoming presynaptic effects of VAMP2 mutations with 4-aminopyridine treatment. Hum Mutat 2020; 41:1999-2011. [PMID: 32906212 PMCID: PMC10898792 DOI: 10.1002/humu.24109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
Clinical and genetic features of five unrelated patients with de novo pathogenic variants in the synaptic vesicle-associated membrane protein 2 (VAMP2) reveal common features of global developmental delay, autistic tendencies, behavioral disturbances, and a higher propensity to develop epilepsy. For one patient, a cognitively impaired adolescent with a de novo stop-gain VAMP2 mutation, we tested a potential treatment strategy, enhancing neurotransmission by prolonging action potentials with the aminopyridine family of potassium channel blockers, 4-aminopyridine and 3,4-diaminopyridine, in vitro and in vivo. Synaptic vesicle recycling and neurotransmission were assayed in neurons expressing three VAMP2 variants by live-cell imaging and electrophysiology. In cellular models, two variants decrease both the rate of exocytosis and the number of synaptic vesicles released from the recycling pool, compared with wild-type. Aminopyridine treatment increases the rate and extent of exocytosis and total synaptic charge transfer and desynchronizes GABA release. The clinical response of the patient to 2 years of off-label aminopyridine treatment includes improved emotional and behavioral regulation by parental report, and objective improvement in standardized cognitive measures. Aminopyridine treatment may extend to patients with pathogenic variants in VAMP2 and other genes influencing presynaptic function or GABAergic tone, and tested in vitro before treatment.
Collapse
Affiliation(s)
- Roxanne L. Simmons
- Department of Neurology, Weill Institute for Neurosciences and Institute of Human Genetics. University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Haiyan Li
- Department of Psychiatry, Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Baris Alten
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
| | - Magda S. Santos
- Department of Psychiatry, Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Ruiji Jiang
- Department of Neurology, Weill Institute for Neurosciences and Institute of Human Genetics. University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Brianna Paul
- Department of Neurology, Weill Institute for Neurosciences and Institute of Human Genetics. University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Sanam J. Lalani
- Department of Neurology, Weill Institute for Neurosciences and Institute of Human Genetics. University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Audrey Cortesi
- Department of Neurology, Weill Institute for Neurosciences and Institute of Human Genetics. University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Kendall Parks
- Department of Neurology, Weill Institute for Neurosciences and Institute of Human Genetics. University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Nitin Khandelwal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Malay A. Phoong
- Department of Neuroscience, Pediatric Neuropsychology, Sutter Medical Foundation, Sacramento, CA, USA
| | - Michael Chez
- Neuroscience Medical Group, Sutter Medical Foundation, Sacramento, CA, USA
| | - Heather Fisher
- Department of Genetics, Children’s Medical Center of Texas, Dallas, Texas, USA
| | - Angela E. Scheuerle
- Department of Pediatrics, Division of Genetics and Metabolism, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Shaun A. Hussain
- Department of Pediatrics, UCLA Mattel Children’s Hospital and Geffen School of Medicine, Los Angeles, CA, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
| | - Elliott H. Sherr
- Department of Neurology, Weill Institute for Neurosciences and Institute of Human Genetics. University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Susan M. Voglmaier
- Department of Psychiatry, Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience University of California San Francisco, School of Medicine, San Francisco, CA, USA
| |
Collapse
|
9
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
10
|
Mishima T, Fujiwara T, Kofuji T, Saito A, Terao Y, Akagawa K. Syntaxin 1B regulates synaptic GABA release and extracellular GABA concentration, and is associated with temperature-dependent seizures. J Neurochem 2020; 156:604-613. [PMID: 32858780 DOI: 10.1111/jnc.15159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 11/29/2022]
Abstract
De novo heterozygous mutations in the STX1B gene, encoding syntaxin 1B, cause a familial, fever-associated epilepsy syndrome. Syntaxin 1B is an essential component of the pre-synaptic neurotransmitter release machinery as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein that regulates the exocytosis of synaptic vesicles. It is also involved in regulating the functions of the SLC6 family of neurotransmitter transporters that reuptake neurotransmitters, including inhibitory neurotransmitters, such as γ-aminobutyric acid (GABA) and glycine. The purpose of the present study was to elucidate the molecular mechanisms underlying the development of febrile seizures by examining the effects of syntaxin 1B haploinsufficiency on inhibitory synaptic transmission during hyperthermia in a mouse model. Stx1b gene heterozygous knockout (Stx1b+/- ) mice showed increased susceptibility to febrile seizures and drug-induced seizures. In cultured hippocampal neurons, we examined the temperature-dependent properties of neurotransmitter release and reuptake by GABA transporter-1 (GAT-1) at GABAergic neurons using whole-cell patch-clamp recordings. The rate of spontaneous quantal GABA release was reduced in Stx1b+/- mice. The hyperthermic temperature increased the tonic GABAA current in wild-type (WT) synapses, but not in Stx1b+/- synapses. In WT neurons, recurrent bursting activities were reduced in a GABA-dependent manner at hyperthermic temperature; however, this was abolished in Stx1b+/- neurons. The blockade of GAT-1 increased the tonic GABAA current and suppressed recurrent bursting activities in Stx1b+/- neurons at the hyperthermic temperature. These data suggest that functional abnormalities associated with GABA release and reuptake in the pre-synaptic terminals of GABAergic neurons may increase the excitability of the neural circuit with hyperthermia.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tomonori Fujiwara
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Faculty of Health and Medical Care, Saitama Medical University, Hidaka, Saitama, Japan
| | - Takefumi Kofuji
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Ayako Saito
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kimio Akagawa
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
11
|
Banks GT, Guillaumin MCC, Heise I, Lau P, Yin M, Bourbia N, Aguilar C, Bowl MR, Esapa C, Brown LA, Hasan S, Tagliatti E, Nicholson E, Bains RS, Wells S, Vyazovskiy VV, Volynski K, Peirson SN, Nolan PM. Forward genetics identifies a novel sleep mutant with sleep state inertia and REM sleep deficits. SCIENCE ADVANCES 2020; 6:eabb3567. [PMID: 32851175 PMCID: PMC7423362 DOI: 10.1126/sciadv.abb3567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/29/2020] [Indexed: 05/17/2023]
Abstract
Switches between global sleep and wakefulness states are believed to be dictated by top-down influences arising from subcortical nuclei. Using forward genetics and in vivo electrophysiology, we identified a recessive mouse mutant line characterized by a substantially reduced propensity to transition between wake and sleep states with an especially pronounced deficit in initiating rapid eye movement (REM) sleep episodes. The causative mutation, an Ile102Asn substitution in the synaptic vesicular protein, VAMP2, was associated with morphological synaptic changes and specific behavioral deficits, while in vitro electrophysiological investigations with fluorescence imaging revealed a markedly diminished probability of vesicular release in mutants. Our data show that global shifts in the synaptic efficiency across brain-wide networks leads to an altered probability of vigilance state transitions, possibly as a result of an altered excitability balance within local circuits controlling sleep-wake architecture.
Collapse
Affiliation(s)
- Gareth T. Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Mathilde C. C. Guillaumin
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ines Heise
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Petrina Lau
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Minghui Yin
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Nora Bourbia
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Carlos Aguilar
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Chris Esapa
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Laurence A. Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sibah Hasan
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Erica Tagliatti
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Elizabeth Nicholson
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rasneer Sonia Bains
- Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Vladyslav V. Vyazovskiy
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kirill Volynski
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patrick M. Nolan
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| |
Collapse
|
12
|
Vardar G, Gerth F, Schmitt XJ, Rautenstrauch P, Trimbuch T, Schubert J, Lerche H, Rosenmund C, Freund C. Epilepsy-causing STX1B mutations translate altered protein functions into distinct phenotypes in mouse neurons. Brain 2020; 143:2119-2138. [DOI: 10.1093/brain/awaa151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 01/21/2023] Open
Abstract
AbstractSyntaxin 1B (STX1B) is a core component of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that is critical for the exocytosis of synaptic vesicles in the presynapse. SNARE-mediated vesicle fusion is assisted by Munc18-1, which recruits STX1B in the auto-inhibited conformation, while Munc13 catalyses the fast and efficient pairing of helices during SNARE complex formation. Mutations within the STX1B gene are associated with epilepsy. Here we analysed three STX1B mutations by biochemical and electrophysiological means. These three paradigmatic mutations cause epilepsy syndromes of different severity, from benign fever-associated seizures in childhood to severe epileptic encephalopathies. An insertion/deletion (K45/RMCIE, L46M) mutation (STX1BInDel), causing mild epilepsy and located in the early helical Habc domain, leads to an unfolded protein unable to sustain neurotransmission. STX1BG226R, causing epileptic encephalopathies, strongly compromises the interaction with Munc18-1 and reduces expression of both proteins, the size of the readily releasable pool of vesicles, and Ca2+-triggered neurotransmitter release when expressed in STX1-null neurons. The mutation STX1BV216E, also causing epileptic encephalopathies, only slightly diminishes Munc18-1 and Munc13 interactions, but leads to enhanced fusogenicity and increased vesicular release probability, also in STX1-null neurons. Even though the synaptic output remained unchanged in excitatory hippocampal STX1B+/− neurons exogenously expressing STX1B mutants, the manifestation of clear and distinct molecular disease mechanisms by these mutants suggest that certain forms of epilepsies can be conceptualized by assigning mutations to structurally sensitive regions of the STX1B−Munc18-1 interface, translating into distinct neurophysiological phenotypes.
Collapse
Affiliation(s)
- Gülçin Vardar
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Germany
| | - Fabian Gerth
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Xiao Jakob Schmitt
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Pia Rautenstrauch
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Germany
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | | | - Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
| |
Collapse
|
13
|
Matteoli M, Menna E, Honer WG, Fernández-Chacón R. Editorial on the Special Issue on SNARE Proteins: A Long Journey of Science in Brain Health and Disease. Neuroscience 2019; 420:1-3. [PMID: 31634514 DOI: 10.1016/j.neuroscience.2019.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michela Matteoli
- CNR-Institute of Neuroscience, via Vanvitelli 32, 20129 Milano, Italy; IRCCS Humanitas - Neuro Center, via Manzoni 56, 20089 Rozzano, Italy
| | - Elisabetta Menna
- CNR-Institute of Neuroscience, via Vanvitelli 32, 20129 Milano, Italy; IRCCS Humanitas - Neuro Center, via Manzoni 56, 20089 Rozzano, Italy
| | - William G Honer
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Rafael Fernández-Chacón
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica and CIBERNED, Avda. Manuel Siurot s/n, 41013 Seville, Spain
| |
Collapse
|