1
|
Li Y, Liu Y, He Z, Li Z, Xiang H. Circadian Alterations in Brain Metabolism Linked to Cognitive Deficits During Hepatic Ischemia-Reperfusion Injury Using [ 1H- 13C]-NMR Metabolomics. Biomedicines 2024; 12:2536. [PMID: 39595102 PMCID: PMC11592224 DOI: 10.3390/biomedicines12112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Hepatic ischemia-reperfusion injury (HIRI) is known to affect cognitive functions, with particular concern for its impact on brain metabolic dynamics. Circadian rhythms, as a crucial mechanism for internal time regulation within organisms, significantly influence metabolic processes in the brain. This study aims to explore how HIRI affects hippocampal metabolism and its circadian rhythm differences in mice, and to analyze how these changes are associated with cognitive impairments. Methods: A C57BL/6 male mouse model was used, simulating HIRI through hepatic ischemia-reperfusion surgery, with a sham operation conducted for the control group. Cognitive functions were evaluated using open field tests, Y-maze tests, and novel object recognition tests. Magnetic resonance spectroscopic imaging (MRSI) technology, combined with intravenous injection of [2-13C]-acetate and [1-13C]-glucose, was utilized to analyze metabolic changes in the hippocampus of HIRI mice at different circadian time points (Zeitgeber Time ZT0, 8:00 and ZT12, 20:00). Circadian rhythms regulate behavioral, physiological, and metabolic rhythms through transcriptional feedback loops, with ZT0 at dawn (lights on) and ZT12 at dusk (lights off). Results: HIRI mice exhibited significant cognitive impairments in behavioral tests, particularly in spatial memory and learning abilities. MRSI analysis revealed significant circadian rhythm differences in the concentration of metabolites in the hippocampus, with the enrichment concentrations of lactate, alanine, glutamate, and taurine showing different trends at ZT0 compared to ZT12, highlighting the important influence of circadian rhythms on metabolic dysregulation induced by HIRI. Conclusions: This study highlights the significant impact of HIRI on brain metabolic dynamics in mice, especially in the hippocampal area, and for the first time reveals the differences in these effects within circadian rhythms. These findings not only emphasize the association between HIRI-induced cognitive impairments and changes in brain metabolism but also point out the crucial role of circadian rhythms in this process, offering new metabolic targets and timing considerations for therapeutic strategies against HIRI-related cognitive disorders.
Collapse
Affiliation(s)
- Yijing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (Y.L.); (Z.H.)
| | - Yanbo Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (Y.L.); (Z.H.)
| | - Zhigang He
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (Y.L.); (Z.H.)
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (Y.L.); (Z.H.)
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (Y.L.); (Z.H.)
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
2
|
Castellanos LCS, Gatto RG, Malnati GOM, Montes MM, Uchitel OD, Weissmann C. Redistribution of ASIC1a channels triggered by IL-6: Potential role of ASIC1a in neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166927. [PMID: 37907140 DOI: 10.1016/j.bbadis.2023.166927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Cytokines, particularly IL-6, play a crucial role in modulating immune responses in the central nervous system (CNS). Elevated IL-6 levels have been observed in neuroinflammatory conditions, as well as in the sera and brains of patients with neurodegenerative diseases such as Parkinson's, Huntington's, Multiple Sclerosis, and Alzheimer's. Additionally, alterations in regional brain pH have been noted in these conditions. Acid-sensing ion channels (ASICs), including ASIC1a, activated by low pH levels, are highly abundant in the CNS and have recently been associated with various neurological disorders. Our study examined the impact of IL-6 on ASIC1a channels in cell cultures, demonstrating IL-6-induced the redistribution of cytosolic ASIC1a channels to the cell membrane. This redistribution was accompanied by increased ASIC1a current amplitude upon activation, as well as elevated levels of phosphorylated CaMKII and ERK kinases. Additionally, we observed posttranslational modifications on the ASIC1a channel itself. These findings provide insight into a potential link between inflammatory processes and neurodegenerative mechanisms, highlighting ASIC1a channels as promising therapeutic targets in these conditions.
Collapse
Affiliation(s)
| | - Rodolfo Gabriel Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Mayra Micaela Montes
- Instituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-UBA-CONICET, LFBM, Argentina
| | - Osvaldo Daniel Uchitel
- Instituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-UBA-CONICET, LFBM, Argentina
| | - Carina Weissmann
- Instituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-UBA-CONICET, LFBM, Argentina.
| |
Collapse
|
3
|
Wang Y, Jia L, Wei M, Lyu J, Sheng M, Sun Y, Dong Z, Han W, Ren Y, Weng Y, Yu W. Circulating Exosomes Mediate Neurodegeneration Following Hepatic Ischemia-reperfusion Through Inducing Microglial Pyroptosis in the Developing Hippocampus. Transplantation 2023; 107:2364-2376. [PMID: 37291725 PMCID: PMC10593148 DOI: 10.1097/tp.0000000000004664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Poor neurodevelopmental outcomes after pediatric liver transplantation seriously affect the long-term quality of life of recipients, in whom hepatic ischemia reperfusion (HIR) is considered to play a pivotal role. However, the link between HIR and brain injury remains unclear. Because circulating exosomes are considered as the key mediators of information transmission over long distances, we aimed to assess the role of circulating exosomes in HIR-induced hippocampal injury in young rats. METHODS We administered exosomes extracted from the sera of HIR model rats to normal young rats via the tail vein. Western blotting, enzyme-linked immunosorbent assay, histological examination, and real-time quantitative polymerase chain reaction were used to evaluate the role of exosomes in neuronal injury and activation of microglial pyroptosis in the developing hippocampus. Primary microglial cells were cocultured with exosomes to further assess the effect of exosomes on microglia. To further explore the potential mechanism, GW4869 or MCC950 was used to block exosome biogenesis or nod-like receptor family protein 3, respectively. RESULTS Serum-derived exosomes played a crucial role in linking HIR with neuronal degeneration in the developing hippocampus. Microglia were found to be the target cells of ischemia-reperfusion derived exosomes (I/R-exosomes). I/R-exosomes were taken up by microglia and promoted the occurrence of microglial pyroptosis in vivo and in vitro. Moreover, the exosome-induced neuronal injury was alleviated by suppressing the occurrence of pyroptosis in the developing hippocampus. CONCLUSIONS Microglial pyroptosis induced by circulating exosomes plays a vital role in developing hippocampal neuron injury during HIR in young rats.
Collapse
Affiliation(s)
- Yidan Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Min Wei
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Jingshu Lyu
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Ying Sun
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Zhonglan Dong
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Wenhui Han
- School of Medicine, Nankai University, Tianjin, China
| | - Yinghui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
4
|
Dong Z, Jia L, Han W, Wang Y, Sheng M, Ren Y, Weng Y, Li H, Yu W. The protective effect of lncRNA NEAT1/miR-122-5p/Wnt1 axis on hippocampal damage in hepatic ischemic reperfusion young mice. Cell Signal 2023; 107:110668. [PMID: 37004832 DOI: 10.1016/j.cellsig.2023.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Hepatic ischemic reperfusion (HIR) is a common pathophysiological process in many surgical procedures such as liver transplantation (LT) and hepatectomy. And it is also an important factor leading to perioperative distant organ damage. Children undergoing major liver surgery are more susceptible to various pathophysiological processes, including HIR, since their brains are still developing and the physiological functions are still incomplete, which can lead to brain damage and postoperative cognitive impairment, thus seriously affecting the long-term prognosis of the children. However, the present treatments of mitigating HIR-induced hippocampal damage are not proven to be effective. The important role of microRNAs (miRNAs) in the pathophysiological processes of many diseases and in the normal development of the body has been confirmed in several studies. The current study explored the role of miR-122-5p in HIR-induced hippocampal damage progression. HIR-induced hippocampal damage mouse model was induced by clamping the left and middle lobe vessels of the liver of young mice for 1 h, removing the vessel clamps and re-perfusing them for 6 h. The changes in the level of miR-122-5p in the hippocampal tissues were measured, and its influences on the activity as well as apoptotic rate of neuronal cells were investigated. Short interfering RNA modified with 2'-O-methoxy substitution targeting long-stranded non-coding RNA (lncRNA) nuclear enriched transcript 1 (NEAT1) as well as miR-122-5p antagomir were used to further clarify the role played by the corresponding molecules in hippocampal injury in young mice with HIR. The result obtained in our study was that the expression of miR-122-5p in the hippocampal tissue of young mice receiving HIR is reduced. Upregulated expression of miR-122-5p reduces the viability of neuronal cells and promotes the development of apoptosis, thereby aggravating the damage of hippocampal tissue in HIR young mice. Additionally, in the hippocampal tissue of young mice receiving HIR, lncRNA NEAT1 exerts some anti-apoptotic effects by binding to miR-122-5p, promoting the expression of Wnt1 pathway. An essential observation of this study was the binding of lncRNA NEAT1 to miR-122-5p, which upregulates Wnt1 and inhibits HIR-induced hippocampal damage in young mice.
Collapse
|
5
|
Ren L, Yan H. Targeting AGEs-RAGE pathway inhibits inflammation and presents neuroprotective effect against hepatic ischemia-reperfusion induced hippocampus damage. Clin Res Hepatol Gastroenterol 2022; 46:101792. [PMID: 34400367 DOI: 10.1016/j.clinre.2021.101792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The present study aimed to investigate the role of AGEs-RAGE signaling and its potential as a treatment target in hepatic ischemia-reperfusion (HIR)-induced hippocampus damage. METHODS HIR operation was conducted in mice, followed by collection of hippocampus tissue at 1 day, 3 days and 7 days. Additionally, low dose, moderate dose and high dose FPS-ZM1 (RAGE inhibitor) was intraperitoneally injected into HIR mice. Besides, sham operation was conduced in mice which served as control. RESULTS HIR increased the hippocampal damage and enhanced its neuron apoptosis within 3 days, which recovered to some extent from day 3 to day 7 post operation. Meanwhile, the expressions of AGEs, RAGE, the downstream proteins in AGEs-RAGE signaling pathway (including PI3K, pAKT, pNKκB p65 and pERK1/2), and the inflammatory cytokines (including IL-1β, IL-6, TNF-α) were increased within 3 days, but were reduced from day 3 to day 7 post operation by HIR. Notably, moderate and high dose of FPS-ZM1 attenuated hippocampal damage, inhibited its neuron apoptosis, inactivated AGEs-RAGE signaling, and suppressed the expressions of inflammatory cytokines (including IL-1β, IL-6, TNF-α); but lose dose of FPS-ZM1 failed to achieve these effects. CONCLUSIONS Targeting AGEs-RAGE pathway inhibits inflammation and presents neuroprotective effect against HIR-induced hippocampus damage.
Collapse
Affiliation(s)
- Lingyun Ren
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hong Yan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
6
|
Dexmedetomidine Ameliorates Hippocampus Injury and Cognitive Dysfunction Induced by Hepatic Ischemia/Reperfusion by Activating SIRT3-Mediated Mitophagy and Inhibiting Activation of the NLRP3 Inflammasome in Young Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7385458. [PMID: 34493950 PMCID: PMC8418694 DOI: 10.1155/2020/7385458] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Hepatic ischemia-reperfusion (HIR) has been proven to trigger oxidative stress and pyroptosis in the hippocampus. Sirtuin 3 (SIRT3) is an essential mitochondrial protein deacetylase regulating oxidative stress and mitophagy. Dexmedetomidine (Dex) has been demonstrated to confer neuroprotection in different brain injury models. However, whether the protective effects of Dex following HIR are orchestrated by activation of SIRT3-mediated mitophagy and inhibition of NOD-like receptor protein 3 (NLRP3) inflammasome activation remains unknown. Herein, two-week-old rats were treated with Dex or a selective SIRT3 inhibitor (3-TYP)/autophagy inhibitor (3-MA) and then subjected to HIR. The results revealed that Dex treatment effectively attenuated neuroinflammation and cognitive deficits via upregulating SIRT3 expression and activity. Furthermore, Dex treatment inhibited the activation of NLRP3 inflammasome, while 3-TYP and 3-MA eliminated the protective effects of Dex, suggesting that SIRT3-mediated mitophagy executes the protective effects of Dex. Moreover, 3-TYP treatment downregulated the expression level of SIRT3 downstream proteins: forkhead-box-protein 3α (FOXO3α), superoxide dismutase 2 (SOD2), peroxiredoxin 3 (PRDX3), and cyclophilin D (CYP-D), which were barely influenced by 3-MA treatment. Notably, both 3-TYP and 3-MA were able to offset the antioxidative and antiapoptosis effects of Dex, indicating that SIRT3-mediated mitophagy may be the last step and the major pathway executing the neuroprotective effects of Dex. In conclusion, Dex inhibits HIR-induced NLRP3 inflammasome activation mainly by triggering SIRT3-mediated mitophagy.
Collapse
|
7
|
Castellanos LCS, Rozenfeld P, Gatto RG, Reisin RC, Uchitel OD, Weissmann C. Upregulation of ASIC1a channels in an in vitro model of Fabry disease. Neurochem Int 2020; 140:104824. [DOI: 10.1016/j.neuint.2020.104824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023]
|
8
|
Mao Z, He S, Mesnard C, Synowicki P, Zhang Y, Chung L, Wiesman AI, Wilson TW, Monaghan DT. NMDA receptors containing GluN2C and GluN2D subunits have opposing roles in modulating neuronal oscillations; potential mechanism for bidirectional feedback. Brain Res 2019; 1727:146571. [PMID: 31786200 DOI: 10.1016/j.brainres.2019.146571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
NMDA receptor (NMDAR) antagonists such as ketamine, can reproduce many of the symptoms of schizophrenia. A reliable indicator of NMDAR channel blocker action in vivo is the augmentation of neuronal oscillation power. Since the coordinated and rhythmic activation of neuronal assemblies (oscillations) is necessary for perception, cognition and working memory, their disruption (inappropriate augmentation or inhibition of oscillatory power or inter-regional coherence) both in psychiatric conditions and with NMDAR antagonists may reflect the underlying defects causing schizophrenia symptoms. NMDAR antagonists and knockout (KO) mice were used to evaluate the role of GluN2C and GluN2D NMDAR subunits in generating NMDAR antagonist-induced oscillations. We find that basal oscillatory power was elevated in GluN2C-KO mice, especially in the low gamma frequencies while there was no statistically significant difference in basal oscillations between WT and GluN2D-KO mice. Compared to wildtype (WT) mice, NMDAR channel blockers caused a greater increase in oscillatory power in GluN2C-KO mice and were relatively ineffective in inducing oscillations in GluN2D-KO mice. In contrast, preferential blockade of GluN2A- and GluN2B-containing receptors induced oscillations that did not appear to be changed in either KO animal. We propose a model wherein NMDARs containing GluN2C in astrocytes and GluN2D in interneurons serve to detect local cortical excitatory synaptic activity and provide excitatory and inhibitory feedback, respectively, to local populations of postsynaptic excitatory neurons and thereby bidirectionally modulate oscillatory power.
Collapse
Affiliation(s)
- Zhihao Mao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Shengxi He
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Christopher Mesnard
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Paul Synowicki
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Yuning Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Lucy Chung
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
9
|
Exosomes Mediate Hippocampal and Cortical Neuronal Injury Induced by Hepatic Ischemia-Reperfusion Injury through Activating Pyroptosis in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3753485. [PMID: 31814872 PMCID: PMC6878784 DOI: 10.1155/2019/3753485] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023]
Abstract
Background The neuronal injury and cognitive dysfunction after liver transplantation have severe effects on the prognosis and life quality of patients. Accumulating evidence suggests that both exosomes and pyroptosis could participate in hepatic ischemia-reperfusion injury (HIRI) and play key roles in neuronal death. However, the link between exosomes and neuronal pyroptosis in HIRI awaits further investigation. Methods After establishing the HIRI rat models, we primarily studied the role of pyroptosis in hippocampal and cortical neuron injury through detecting NOD-like receptor protein 3 (NLRP3), pro-caspase-1, cleaved-caspase-1, apoptosis-associated speck-like protein containing CARD (ASC), gasdermin D (GSDMD), interleukin-1beta (IL-1β), and interleukin-18 (IL-18) expressions with western blotting, immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Then, we intravenously injected normal male rats with exosomes isolated from the sera of HIRI-challenged rats and pretreated rats with MCC950, a specific inhibitor of NLRP3, and carried out the same assay. We also detected the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) in the hippocampal and cortical tissues. Results The results indicated that NLRP3 inflammasome and caspase-1-dependent pyroptosis were activated in the hippocampus and cortex of HIRI rats. Furthermore, serum-derived exosomes from HIRI-challenged rats not only had the ability to cross the blood-brain barrier (BBB) but also had the similar effects on neuronal pyroptosis. Moreover, ROS and MDA productions were induced in the HIRI and exosome-challenged groups. In addition, to some degree, MCC950 could alleviate HIRI-mediated hippocampal and cortical neuronal pyroptosis. Conclusion This study experimentally demonstrated that circulating exosomes play a critical role in HIRI-mediated hippocampal and cortical injury through regulating neuronal pyroptosis.
Collapse
|
10
|
Yang Y, Liang S, Li Y, Gao F, Cao Y, Zhao X, Gao G, Li L. Effects of early administration of insulin-like growth factor-1 on cognitive function in septic encephalopathy. Neuropsychiatr Dis Treat 2019; 15:323-337. [PMID: 30774344 PMCID: PMC6353230 DOI: 10.2147/ndt.s190845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Both protective and therapeutic functions of insulin-like growth factor-1 (IGF-1) in brain injury have been reported, but its effects on cognitive sequelae after septic encephalopathy (SE) remain unclear. MATERIALS AND METHODS This study was divided into three parts, and a septic model was built by cecal ligation and puncture (CLP). First, survival analysis was performed, and IGF-1's effects on long-term cognition and depressive emotion were assessed. Second, the characteristics of IGF-1 function in cognition were evaluated. Finally, cytochrome C, caspase-9, tumor necrosis factor receptor (TNFR), and caspase-8 levels as well as cell apoptosis in the hippocampus were evaluated. RESULTS IGF-1 did not reduce mortality or alleviate depressive symptoms in septic rats, but improved the memory of noxious stimulation and spatial learning and memory. These effects were observed only when IGF-1 was administered within 0-6 hours after CLP. Moreover, cytochrome C and caspase-9 expression levels were increased at 6 hours after CLP in the hippocampus, while TNFR and caspase-8 amounts were not increased until 12 hours after CLP. Cell apoptosis increased at 12 hours after CLP, but was inhibited by IGF-1. CONCLUSION Cognitive impairment in rats recovering from SE is associated with cell apoptosis in the hippocampus. Supplementation of IGF-1 reduces cell apoptosis by preventing the over-expression of cytochrome C and TNFR, and results in improved cognitive function. However, improvement only occurs when IGF-1 is administered at the early stage (within 6 hours) of sepsis. As cytochrome C activation occurs earlier than that of TNFR in this study, cytochrome C may be the main factor inducing apoptosis in early SE.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710038, China, ;
| | - Shengru Liang
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710032, China
| | - Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710038, China, ;
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710038, China, ;
| | - Yuan Cao
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710032, China
| | - Xiaoyu Zhao
- Department of Neurosurgery, The 986th Hospital of Chinese People's Libertation Army, Xi'an, Shaanxi Province 710054, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710038, China, ;
| | - Lihong Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710038, China, ;
| |
Collapse
|