1
|
Xie L, Martín RDS, Fink S, Singer W, Wolpert SM, Rüttiger L, Knipper M. Cochlear neural contributions to triple network changes in tinnitus, hyperacusis & misophonia? A perspective review. Hear Res 2025; 463:109305. [PMID: 40383086 DOI: 10.1016/j.heares.2025.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/11/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
What do tinnitus, the perception of sounds without an internal or external source of noise, hyperacusis, the pathological hypersensitivity to noise, or misophonia, an intolerance to certain everyday noises, have in common, and what differentiates them? A large number of excellent studies focused in the last few decades on identifying the neural correlates of tinnitus, hyperacusis, or misophonia on the basis of central triple-network changes. In this perspective review we explicitly examine, possible differential and causal involvement of peripheral components as a presumptive trigger that may drive observed triple-network changes. Based on our results, we venture to hypothesize that: (i) tinnitus, hyperacusis, and misophonia can occur despite clinically normal hearing thresholds, and are likely causally independent of sex and age, (ii) tinnitus and hyperacusis, but possibly also misophonia are related to altered auditory processing that through desynchronized (tinnitus) or hyperactive (hyperacusis, misophonia) bottom-up ascending processing potentially explains the activity changes in, e.g., default or salient brain networks, as suggested in various studies of these different diseases. (iii) In misophonia a stress-induced top-down influence, as deep as the auditory nerve fibers, may be discussed as a contributor to generating misophonia-trigger sounds, a hypothesis that can be tested in future studies. We hope that the selective consideration of a possible interaction between peripheral and central components will help to minimize the greatest handicap of these pathologies to date towards successful therapy: the lack of clarification of the underlying causative mechanism of the diseases.
Collapse
Affiliation(s)
- Li Xie
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany; Department of Otolaryngology - Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Rodrigo Donoso-San Martín
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany; Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stephan M Wolpert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Fabrizio-Stover EM, Lee CM, Oliver DL, Burghard AL. Sound-evoked plasticity differentiates tinnitus from non-tinnitus mice. Front Neurosci 2025; 19:1549163. [PMID: 40297536 PMCID: PMC12034690 DOI: 10.3389/fnins.2025.1549163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Tinnitus is the perception of non-meaningful sound in the absence of external stimuli. Although tinnitus behavior in animal models is associated with altered central nervous system activity, it is not currently possible to identify tinnitus using neuronal activity alone. In the mouse inferior colliculus (IC), a subpopulation of neurons demonstrates a sustained increase in spontaneous activity after a long-duration sound (LDS). Methods Here, we use the "LDS test" to reveal tinnitus-specific differences in sound-evoked plasticity through IC extracellular recordings and the auditory brainstem response (ABRLDS) in CBA/CaJ mice after sound exposure and behavioral tinnitus assessment. Results Sound-exposed mice showed stronger and shorter tone-evoked responses in the IC compared to unexposed controls, but these differences were not strong predictors of tinnitus. In contrast, in the LDS test, non-tinnitus mice had a significantly stronger suppression in tone-evoked spike rate compared to tinnitus and unexposed control mice. ABR peak amplitudes also revealed robust differences between tinnitus and non-tinnitus mice, with ABR peaks from non-tinnitus mice exhibiting significantly stronger suppression in the LDS test compared to tinnitus and control mice. No significant differences were seen between cohorts in ABR amplitude, latency, wave V:I ratio, wave V:III ratio, I-V intra-peak latency, and I-VI intra-peak latency. We found high-frequency tone stimuli better suited to reveal tinnitus-specific differences for both extracellular IC and ABR recordings. Discussion We successfully used the LDS test to demonstrate that tinnitus-specific differences in sound-evoked plasticity can be shown using both multi-unit near-field recordings in the IC and non-invasive far-field recordings, providing a foundation for future electrophysiological research into the causes and treatment of tinnitus.
Collapse
Affiliation(s)
- Emily M. Fabrizio-Stover
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Christopher M. Lee
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Douglas L. Oliver
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Alice L. Burghard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
3
|
Niemczak C, Skoe E, Leigh S, Zhang L, Dotzenrod M, Kieley A, Stone S, Parsonnet J, Martin C, Ealer C, Clavier O, Gui J, Waszkiewicz A, Roth R, Buckey J. Altered auditory brainstem responses are post-acute sequela of SARS-CoV-2 (PASC). Sci Rep 2025; 15:9387. [PMID: 40102496 PMCID: PMC11920441 DOI: 10.1038/s41598-025-93664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
The Post-acute Sequela of SARS-CoV-2 (PASC) syndrome, also known as Long-COVID, often presents with subjective symptoms such as brain fog and cognitive fatigue. Increased tinnitus, and decreased hearing in noise ability also occur with PASC, yet whether auditory manifestations of PASC are linked with the cognitive symptoms is not known. Electrophysiology, specifically the Auditory Brainstem Response (ABR), provides objective measures of auditory processing. We hypothesized that ABR findings would be linked to PASC and with subjective feelings of cognitive fatigue. Eighty-two individuals, 37 with PASC (mean age: 47.5, Female: 83%) and 45 healthy controls (mean age: 38.5, Female: 76%), were studied with an auditory test battery that included audiometry and ABR measures. Peripheral hearing thresholds did not differ between groups. The PASC group had a higher prevalence of tinnitus, anxiety, depression, and hearing handicap in addition to increased subjective cognitive fatigue. ABR latency findings showed a significantly greater increase in the wave V latency for PASC subjects when a fast (61.1 clicks/sec) compared to a slow click (21.1 clicks/sec) was used. The increase in latency correlated with cognitive fatigue scores and predicted PASC status. The ABR V/I amplitude ratio was examined as a measure of central gain. Although these ratios were not significantly elevated in the full PASC group, to minimize the cofounding effect of age, the cohort was median split on age. Elevated V/I amplitude ratios were significant predictors of both predicted PASC group classification and cognitive fatigue scores in the younger PASC subjects compared to age-matched controls providing evidence of elevated central gain in younger individuals with PASC. More frequent tinnitus also significantly predicted higher subjective cognitive fatigue scores. Our findings suggest that PASC may alter the central auditory pathway and lead to slower conduction and elevated auditory neurophysiology responses at the midbrain, a pattern associated with the typical aging process. This study marks a significant stride toward establishing an objective measure of subjective cognitive fatigue through assessment of the central auditory system.
Collapse
Affiliation(s)
- Christopher Niemczak
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, USA.
- Geisel School of Medicine at Dartmouth, Hanover, USA.
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, Storrs, USA
- Connecticut Institute for Brain and Cognitive Sciences, Storrs, USA
- University of Connecticut, Storrs, USA
| | | | - Linda Zhang
- Geisel School of Medicine at Dartmouth, Hanover, USA
| | - Megan Dotzenrod
- Department of Speech, Language, and Hearing Sciences, Storrs, USA
| | - Annalise Kieley
- Department of Speech, Language, and Hearing Sciences, Storrs, USA
| | - Simon Stone
- Research Data Services, Dartmouth College Libraries, Hanover, USA
| | - Jeffrey Parsonnet
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, USA
| | - Christina Martin
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, USA
| | | | | | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, USA
| | - Angela Waszkiewicz
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, USA
| | - Robert Roth
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, USA
| | - Jay Buckey
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, USA
- Geisel School of Medicine at Dartmouth, Hanover, USA
| |
Collapse
|
4
|
Soylemez E, Apaydin AS, Aydoğan Z, Şen NH, Yasar M, Argadal ÖG. Comparative Analysis of the Efficacy of Transcutaneous Electrical Nerve Stimulation in Somatic and Idiopathic Tinnitus Patients. Brain Behav 2025; 15:e70429. [PMID: 40103239 PMCID: PMC11919736 DOI: 10.1002/brb3.70429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/05/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the effectiveness of transcutaneous electrical nerve stimulation (TENS) treatment in patients with chronic somatic tinnitus (CST) originating from the neck and idiopathic chronic subjective tinnitus (ICST). METHODS The study was conducted on 21 CST and 25 ICST individuals. These individuals were divided into two groups. Active TENS therapy was applied to one group, and a placebo was applied to the other group. Tinnitus Handicap Inventory (THI), Visual Analog Scale (VAS), Beck Anxiety Inventory (BAI), and Short Form-36 (SF-36) were applied to the individuals before and after the therapy. RESULTS In the CST group that received active treatment, significant improvements were noted in THI, VAS-tinnitus, VAS-neck pain, and SF-36 (energy and pain) after treatment (p < 0.05). In the ICST group that received active treatment, significant improvements were observed in tinnitus loudness, THI, tinnitus loudness, BAI, VAS-Tinnitus, and SF-36 (physical function, mental health, and physical role limitations) after treatment (p < 0.05). CONCLUSION Although cervical TENS therapy is considered to be a more effective treatment method for neck-related CST patients, our placebo-controlled comparative study demonstrates that cervical TENS can be effectively used to alleviate tinnitus and improve the quality of life in both CST and ICST patients.
Collapse
Affiliation(s)
- Emre Soylemez
- Department of AudiometryKarabuk UniversityKarabukTurkiye
| | | | - Zehra Aydoğan
- Department of AudiologyAnkara UniversityAnkaraTurkiye
| | - Neslihan Hazal Şen
- Department of Physical Therapy and RehabilitationKarabuk UniversityKarabukTurkiye
| | - Murat Yasar
- Department of OtorhinolaryngologyKastamonu UniversityKastamonuTurkiye
| | | |
Collapse
|
5
|
Choo OS, Park JM, Park E, Chang J, Lee MY, Lee HY, Moon IS, Song JJ, Lee KY, Song JJ, Nam EC, Park SN, Shim HJ, Rah YC, Seo JH. Consensus Statements on Tinnitus Assessment and Treatment Outcome Evaluation: A Delphi Study by the Korean Tinnitus Study Group. J Korean Med Sci 2025; 40:e93. [PMID: 39995260 PMCID: PMC11858605 DOI: 10.3346/jkms.2025.40.e93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Tinnitus is a multifactorial condition with no universally accepted assessment guidelines. The Korean Tinnitus Study Group previously established consensus statements on the definition, classification, and diagnostic tests for tinnitus. As a continuation of this effort, this study aims to establish expert consensus on tinnitus assessment and treatment outcome evaluation, specifically tailored to the Korean clinical context. METHODS A modified Delphi method involving 26 otology experts from across Korea was used. A two-round Delphi survey was conducted to evaluate statements related to tinnitus assessment before and after treatment. Statements were rated on a scale of 1 to 9 for the level of agreement. Consensus was defined as ≥ 70% agreement (score of 7-9) and ≤ 15% disagreement (score of 1-3). Statistical measures such as content validity ratio and Kendall's coefficient of concordance (W) were calculated to assess agreement levels. RESULTS Of the 46 assessment-related statements, 17 (37%) reached consensus, though overall pre-treatment assessments showed weak agreement (Kendall's W = 0.319). Key areas of agreement included the use of the visual analogue scale, numeric rating scale, and validated questionnaires for pre-treatment evaluation. Five statements, such as the use of computed tomography, magnetic resonance imaging, and angiography for diagnosing pulsatile tinnitus, achieved over 90% agreement. For treatment outcome measurements, 8 of 12 statements (67%) reached a consensus, with moderate agreement (Kendall's W = 0.513). Validated questionnaires and psychoacoustic tests were recommended for evaluating treatment effects within 12 weeks. While standardized imaging for pulsatile tinnitus and additional clinical tests were strongly recommended, full consensus was not achieved across all imaging modalities. CONCLUSION This study provides actionable recommendations for tinnitus assessment and treatment evaluation, emphasizing the use of standardized tools and individualized approaches based on patient needs. These findings offer a practical framework to enhance consistency and effectiveness in tinnitus management within Korean clinical settings.
Collapse
Affiliation(s)
- Oak-Sung Choo
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jung Mee Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Gangneung Asan Hospital, College of Medicine University of Ulsan, Gangneung, Korea
| | - Euyhyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jiwon Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Min Young Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, Korea
| | - Ho Yun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - In Seok Moon
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eui-Cheol Nam
- Department of Otolaryngology, Kangwon National University Hospital, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Shi Nae Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Joon Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea.
| | - Jae-Hyun Seo
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
6
|
Hong H, Trussell LO. Noise-induced hearing loss enhances Ca 2+-dependent spontaneous bursting activity in lateral cochlear efferents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631771. [PMID: 39829915 PMCID: PMC11741279 DOI: 10.1101/2025.01.07.631771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons. This spontaneous firing exhibits a characteristic burst pattern dependent on Ca2+ channels, and we therefore also examined the effects of noise-induced hearing loss on the function of these and other ion channels. The burst pattern was sustained by an interaction between inactivating Ca2+ currents contributed largely by L-type channels, and steady outward currents mediated by Ba2+-sensitive inwardly-rectifying and two-pore domain K+ channels. One week following exposure to loud broadband noise, hearing thresholds were significantly elevated, and the duration of AP bursts was increased, likely as a result of an enhanced Ca2+ current. Additional effects of noise-induced hearing loss included alteration of Ca2+-dependent inactivation of Ca2+ currents and a small elevation of outward K+ currents. We propose that noise-induced hearing loss enhances efferent activity and may thus amplify the release of neurotransmitters and neuromodulators (i.e., neuropeptides), potentially altering sensory coding within the damaged cochlea.
Collapse
Affiliation(s)
- Hui Hong
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
- Bellucci Translational Hearing Center, Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, 68178
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
| |
Collapse
|
7
|
Smith SS, Jahn KN, Sugai JA, Hancock KE, Polley DB. The human pupil and face encode sound affect and provide objective signatures of tinnitus and auditory hypersensitivity disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.571929. [PMID: 38187580 PMCID: PMC10769427 DOI: 10.1101/2023.12.22.571929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Sound is jointly processed along acoustic and emotional dimensions. These dimensions can become distorted and entangled in persons with sensory disorders, producing a spectrum of loudness hypersensitivity, phantom percepts, and - in some cases - debilitating sound aversion. Here, we looked for objective signatures of disordered hearing (DH) in the human face. Pupil dilations and micro facial movement amplitudes scaled with sound valence in neurotypical listeners but not DH participants with chronic tinnitus (phantom ringing) and sound sensitivity. In DH participants, emotionally evocative sounds elicited abnormally large pupil dilations but blunted and invariant facial reactions that jointly provided an accurate prediction of individual tinnitus and hyperacusis questionnaire handicap scores. By contrast, EEG measures of central auditory gain identified steeper neural response growth functions but no association with symptom severity. These findings highlight dysregulated affective sound processing in persons with bothersome tinnitus and sound sensitivity disorders and introduce approaches for their objective measurement.
Collapse
Affiliation(s)
- Samuel S Smith
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
- Lead contact
| | - Kelly N Jahn
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| | - Jenna A Sugai
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
| | - Ken E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| |
Collapse
|
8
|
Hesse G, Kastellis G. Interventions against hearing loss as an integral component of successful tinnitus therapy. HNO 2024; 72:51-55. [PMID: 37792096 PMCID: PMC10798928 DOI: 10.1007/s00106-023-01331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 10/05/2023]
Abstract
Tinnitus very often develops from acute or chronic hearing loss, mainly inner ear deafness. The frequency of the tinnitus mostly corresponds to the frequency range of the hearing loss and is enhanced by down-regulation of inhibition in the central auditory pathway for these frequencies, in addition to focused attention and enhanced arousal for the disturbing sound. Therefore, interventions to improve hearing such as mid-ear surgery or-more often-electronic devices including hearing aids or cochlear implants (CI) are important for the treatment of tinnitus. In this review, the current German S3 guideline "Chronic tinnitus" and recent literature are discussed.
Collapse
Affiliation(s)
- Gerhard Hesse
- Ohr- und Hörinstitut und Tinnitus-Klinik, Krankenhaus Bad Arolsen, Große Allee 50, 34454, Bad Arolsen, Germany.
- Universität Witten-Herdecke, Witten, Germany.
| | - Georg Kastellis
- Ohr- und Hörinstitut und Tinnitus-Klinik, Krankenhaus Bad Arolsen, Große Allee 50, 34454, Bad Arolsen, Germany
| |
Collapse
|
9
|
Morse K, Vander Werff K. The Effect of Tinnitus and Related Characteristics on Subcortical Auditory Processing. Ear Hear 2023; 44:1344-1353. [PMID: 37127904 DOI: 10.1097/aud.0000000000001376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVES The primary aim of this study was to evaluate whether individuals with tinnitus exhibited evidence of reduced inhibition and increased excitation at the subcortical auditory processing level. Based on the proposed mechanism of tinnitus generation, including peripheral auditory insult that triggers reduced inhibition and subcortical hyperactivity, it was hypothesized that a tinnitus group would yield reduced amplitudes for the most peripheral auditory brainstem response (ABR) component (wave I) and larger amplitudes for the most central ABR component (wave V) relative to controls matched on factors of age, sex, and hearing loss. Further, this study assessed the relative influence of tinnitus presence versus other related individual characteristics, including hearing loss, age, noise exposure history, and speech perception in noise on these ABR outcomes. DESIGN Subcortical processing was examined using click-evoked ABR in an independent groups experimental design. A group of adults who perceived daily unilateral or bilateral tinnitus were matched with a control group counterpart without tinnitus by age, hearing, and sex (in each group n = 18; 10 females, 8 males). Amplitudes for ABR waves I, III, V, and the V/I ratio were compared between groups by independent t-tests. The relative influence of tinnitus (presence/absence), age (in years), noise exposure history (subjective self-report), hearing loss (audiometric thresholds), and speech perception in noise (SNR-50) was determined based on the proportional reduction in error associated with accounting for each variable of interest using multiple regression. RESULTS Between-group trends were consistent with smaller amplitudes for all ABR components in individuals with tinnitus. Contrary to our hypotheses, however, none of the tinnitus compared with control group differences in ABR outcomes were statistically significant. In the multiple regression models, none of the factors including tinnitus presence, age, noise exposure history, hearing loss, and speech perception in noise significantly predicted ABR V/I ratio outcomes. CONCLUSIONS The presence of reduced inhibition and subcortical hyperactivity in the tinnitus group was not supported in the current study. There were trends in ABR outcomes consistent with reduced peripheral to central brainstem auditory activity in the tinnitus group, but none of the group differences reached significance. It should also be noted that the tinnitus group had poorer extended high-frequency thresholds compared with controls. Regardless, neither tinnitus presence nor any of the proposed related characteristics were found to significantly influence the ABR V/I ratio. These findings suggest that either reduced subcortical inhibition was not a primary underlying mechanism for the tinnitus perceived by these subjects, or that ABR was not a reliable indicator of reduced subcortical inhibition possibly due to characteristics of the sample including a skewed distributions toward young and normal hearing individuals with little tinnitus distress.
Collapse
Affiliation(s)
- Kenneth Morse
- Division of Communication Sciences and Disorders, West Virginia University, Morgantown, West Virginia, USA
| | - Kathy Vander Werff
- Department of Communication Sciences and Disorders, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
10
|
Hesse G, Kastellis G. [Interventions against hearing loss are an integral component of successful tinnitus therapy. German version]. HNO 2023; 71:656-661. [PMID: 37552280 DOI: 10.1007/s00106-023-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 08/09/2023]
Abstract
Tinnitus very often develops from acute or chronic hearing loss, mainly inner ear deafness. The frequency of the tinnitus mostly corresponds to the frequency range of the hearing loss and is enhanced by down-regulation of inhibition in the central auditory pathway for these frequencies, in addition to focused attention and enhanced arousal for the disturbing sound. Therefore, interventions to improve hearing such as mid-ear surgery or-more often-electronic devices including hearing aids or cochlear implants (CI) are important for the treatment of tinnitus. In this review, the current German S3 guideline "Chronic tinnitus" and recent literature are discussed.
Collapse
Affiliation(s)
- Gerhard Hesse
- Ohr- und Hörinstitut und Tinnitus-Klinik, Krankenhaus Bad Arolsen, Große Allee 50, 34454, Bad Arolsen, Deutschland.
- Universität Witten-Herdecke, Witten, Deutschland.
| | - Georg Kastellis
- Ohr- und Hörinstitut und Tinnitus-Klinik, Krankenhaus Bad Arolsen, Große Allee 50, 34454, Bad Arolsen, Deutschland
| |
Collapse
|
11
|
Henry JA. Sound Therapy to Reduce Auditory Gain for Hyperacusis and Tinnitus. Am J Audiol 2022; 31:1067-1077. [DOI: 10.1044/2022_aja-22-00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose:
Hyperacusis is the most common of the different types of sound tolerance conditions. It has been defined as physical discomfort or pain when any sound reaches a certain level of loudness that would be comfortable for most people. Because hyperacusis and tinnitus occur together so often, it has been theorized that they have a common neural mechanism. A leading contender for that mechanism is enhancement of auditory gain. The purpose of this tutorial is to review the evidence that sound/acoustic therapy can reduce auditory gain and, thereby, can increase loudness tolerance for people with hyperacusis and/or suppress the percept of tinnitus.
Method:
The scientific literature was informally reviewed to identify and elucidate relationships between tinnitus, hyperacusis, sound therapy, and auditory gain.
Results:
Evidence exists, both in animal and human studies, that enhanced auditory gain is associated with hyperacusis and tinnitus. Further evidence supports the theory that certain forms of sound therapy can reduce neural hyperactivity, thereby reducing auditory gain. The evidence for sound therapy reducing auditory gain is stronger for hyperacusis than it is for tinnitus.
Conclusions:
Based on results from numerous studies, sound therapy clearly has application as a method of desensitization for hyperacusis. Enhanced auditory gain might be responsible for tinnitus, but other mechanisms have been theorized. A review of the relevant literature leads to the conclusion that some form(s) of sound therapy has the potential to suppress or eliminate tinnitus on a long-term basis. Systematic research is needed to evaluate this premise.
Collapse
Affiliation(s)
- James A. Henry
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health & Science University, Portland
| |
Collapse
|
12
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
13
|
Williams ZJ, Suzman E, Woynaroski TG. Prevalence of Decreased Sound Tolerance (Hyperacusis) in Individuals With Autism Spectrum Disorder: A Meta-Analysis. Ear Hear 2021; 42:1137-1150. [PMID: 33577214 PMCID: PMC8349927 DOI: 10.1097/aud.0000000000001005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Hyperacusis, defined as decreased tolerance to sound at levels that would not trouble most individuals, is frequently observed in individuals with autism spectrum disorder (ASD). Despite the functional impairment attributable to hyperacusis, little is known about its prevalence or natural history in the ASD population. The objective of this study was to conduct a systematic review and meta-analysis estimating the current and lifetime prevalence of hyperacusis in children, adolescents, and adults with ASD. By precisely estimating the burden of hyperacusis in the ASD population, the present study aims to enhance recognition of this particular symptom of ASD and highlight the need for additional research into the causes, prevention, and treatment of hyperacusis in persons on the spectrum. DESIGN We searched PubMed and ProQuest to identify peer-reviewed articles published in English after January 1993. We additionally performed targeted searches of Google Scholar and the gray literature, including studies published through May 2020. Eligible studies included at least 20 individuals with diagnosed ASD of any age and reported data from which the proportion of ASD individuals with current and/or lifetime hyperacusis could be derived. To account for multiple prevalence estimates derived from the same samples, we utilized three-level Bayesian random-effects meta-analyses to estimate the current and lifetime prevalence of hyperacusis. Bayesian meta-regression was used to assess potential moderators of current hyperacusis prevalence. To reduce heterogeneity due to varying definitions of hyperacusis, we performed a sensitivity analysis on the subset of studies that ascertained hyperacusis status using the Autism Diagnostic Interview-Revised (ADI-R), a structured parent interview. RESULTS A total of 7783 nonduplicate articles were screened, of which 67 were included in the review and synthesis. Hyperacusis status was ascertained in multiple ways across studies, with 60 articles employing interviews or questionnaires and seven using behavioral observations or objective measures. The mean (range) age of samples in the included studies was 7.88 years (1.00 to 34.89 years). The meta-analysis of interview/questionnaire measures (k(3) = 103, nASD = 13,093) estimated the current and lifetime prevalence of hyperacusis in ASD to be 41.42% (95% CrI, 37.23 to 45.84%) and 60.58% (50.37 to 69.76%), respectively. A sensitivity analysis restricted to prevalence estimates derived from the ADI-R (k(3) = 25, nASD = 5028) produced similar values. The estimate of current hyperacusis prevalence using objective/observational measures (k(3) = 8, nASD = 488) was 27.30% (14.92 to 46.31%). Heterogeneity in the full sample of interview/questionnaire measures was substantial but not significantly explained by any tested moderator. However, prevalence increased sharply with increasing age in studies using the ADI-R (BF10 = 93.10, R2Het = 0.692). CONCLUSIONS In this meta-analysis, we found a high prevalence of current and lifetime hyperacusis in individuals with ASD, with a majority of individuals on the autism spectrum experiencing hyperacusis at some point in their lives. The high prevalence of hyperacusis in individuals with ASD across the lifespan highlights the need for further research on sound tolerance in this population and the development of services and/or interventions to reduce the burden of this common symptom.
Collapse
Affiliation(s)
- Zachary J. Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
| | - Evan Suzman
- Graduate Program in Biomedical Sciences, Vanderbilt University, Nashville, TN
| | - Tiffany G. Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
14
|
Longenecker RJ, Gu R, Homan J, Kil J. Development of Tinnitus and Hyperacusis in a Mouse Model of Tobramycin Cochleotoxicity. Front Mol Neurosci 2021; 14:715952. [PMID: 34539342 PMCID: PMC8440845 DOI: 10.3389/fnmol.2021.715952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides (AG) antibiotics are a common treatment for recurrent infections in cystic fibrosis (CF) patients. AGs are highly ototoxic, resulting in a range of auditory dysfunctions. It was recently shown that the acoustic startle reflex (ASR) can assess behavioral evidence of hyperacusis and tinnitus in an amikacin cochleotoxicity mouse model. The goal of this study was to establish if tobramycin treatment led to similar changes in ASR behavior and to establish whether ebselen can prevent the development of these maladaptive neuroplastic symptoms. CBA/Ca mice were divided into three groups: Group 1 served as a control and did not receive tobramycin or ebselen, Group 2 received tobramycin (200 mg/kg/s.c.) and the vehicle (DMSO/saline/i.p.) daily for 14 continuous days, and Group 3 received the same dose/schedule of tobramycin as Group 2 and ebselen at (20 mg/kg/i.p.). Auditory brainstem response (ABR) and ASR hearing assessments were collected at baseline and 2, 6, 10, 14, and 18 weeks from the start of treatment. ASR tests included input/output (I/O) functions which assess general hearing and hyperacusis, and Gap-induced prepulse inhibition of the acoustic startle (GPIAS) to assess tinnitus. At 18 weeks, histologic analysis showed predominantly normal appearing hair cells and spiral ganglion neuron (SGN) synapses. Following 14 days of tobramycin injections, 16 kHz thresholds increased from baseline and fluctuated over the 18-week recovery period. I/O functions revealed exaggerated startle response magnitudes in 50% of mice over the same period. Gap detection deficits, representing behavioral evidence of tinnitus, were observed in a smaller subset (36%) of animals. Interestingly, increases in ABR wave III/wave I amplitude ratios were observed. These tobramycin data corroborate previous findings that AGs can result in hearing dysfunctions. We show that a 14-day course of tobramycin treatment can cause similar levels of hearing loss and tinnitus, when compared to a 14-day course of amikacin, but less hyperacusis. Evidence suggests that tinnitus and hyperacusis might be common side effects of AG antibiotics.
Collapse
Affiliation(s)
| | - Rende Gu
- Sound Pharmaceuticals Inc., Seattle, WA, United States
| | | | - Jonathan Kil
- Sound Pharmaceuticals Inc., Seattle, WA, United States
| |
Collapse
|
15
|
Smit AL, Stegeman I, Eikelboom RH, Baguley DM, Bennett RJ, Tegg-Quinn S, Bucks RS, Stokroos RJ, Hunter M, Atlas MD. Prevalence of Hyperacusis and Its Relation to Health: The Busselton Healthy Ageing Study. Laryngoscope 2021; 131:E2887-E2896. [PMID: 34291459 PMCID: PMC9292021 DOI: 10.1002/lary.29768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022]
Abstract
Importance The prevalence of hyperacusis and its relationship with mental and general health is unknown in a nonclinical sample. Therefore, we aimed to determine the prevalence of hyperacusis and its relation with hearing, general and mental health in a population‐based study. Study Design Prospective population‐based study. Material and Methods This study uses data from the Busselton Healthy Ageing Study (BHAS). A sample of 5,107 eligible inhabitants aged 45 to 70 years completed a detailed questionnaire and a clinical assessment. A positive answer to “Do you consider yourself sensitive or intolerant to everyday sounds” was used to indicate hyperacusis. Logistic regression was used to examine the association between hearing, mental and general health factors, and hyperacusis. Results Of 5,107 participants, 775 (15.2%) reported hyperacusis. The majority of participants with hyperacusis reported an occasional effect on daily life (72.0%). Being female, older in age, having a lower income, physical or mental health difficulties, more severe hearing loss, and tinnitus were all associated with the presence of hyperacusis. Individuals who experience hearing impairment, poorer general or mental health have a higher possibility of hyperacusis having an effect on their daily life. Conclusions In this community population‐based cohort study, we found a prevalence of hyperacusis of 15.2%. Individuals with hearing loss, mental health problems, and lower physical health have a higher possibility of experiencing effects on their daily life associated with their hyperacusis. Unravelling the relationship between hyperacusis hearing, general and mental health can be of major importance for a better understanding of the condition and its consequences. Level of Evidence 2 Laryngoscope, 131:E2887–E2896, 2021
Collapse
Affiliation(s)
- Adriana L Smit
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Stegeman
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert H Eikelboom
- Ear Sciences Centre, The University of Western Australia, Nedlands, Australia.,Department of Speech Language Pathology and Audiology, University of Pretoria, Pretoria, South Africa.,Ear Science Institute Australia, Subiaco, Australia
| | - David M Baguley
- Hearing Sciences, Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, U.K.,NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, U.K
| | - Rebecca J Bennett
- Ear Sciences Centre, The University of Western Australia, Nedlands, Australia.,Ear Science Institute Australia, Subiaco, Australia
| | - Susan Tegg-Quinn
- Ear Sciences Centre, The University of Western Australia, Nedlands, Australia.,Ear Science Institute Australia, Subiaco, Australia.,School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Romola S Bucks
- School of Psychological Science, The University of Western Australia, Perth, Australia
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael Hunter
- Busselton Health Study Centre, Busselton Population Medical Research Institute, Perth, Australia.,School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Marcus D Atlas
- Ear Sciences Centre, The University of Western Australia, Nedlands, Australia.,Ear Science Institute Australia, Subiaco, Australia
| |
Collapse
|
16
|
Brinkmann P, Kotz SA, Smit JV, Janssen MLF, Schwartze M. Auditory thalamus dysfunction and pathophysiology in tinnitus: a predictive network hypothesis. Brain Struct Funct 2021; 226:1659-1676. [PMID: 33934235 PMCID: PMC8203542 DOI: 10.1007/s00429-021-02284-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/21/2021] [Indexed: 01/12/2023]
Abstract
Tinnitus is the perception of a 'ringing' sound without an acoustic source. It is generally accepted that tinnitus develops after peripheral hearing loss and is associated with altered auditory processing. The thalamus is a crucial relay in the underlying pathways that actively shapes processing of auditory signals before the respective information reaches the cerebral cortex. Here, we review animal and human evidence to define thalamic function in tinnitus. Overall increased spontaneous firing patterns and altered coherence between the thalamic medial geniculate body (MGB) and auditory cortices is observed in animal models of tinnitus. It is likely that the functional connectivity between the MGB and primary and secondary auditory cortices is reduced in humans. Conversely, there are indications for increased connectivity between the MGB and several areas in the cingulate cortex and posterior cerebellar regions, as well as variability in connectivity between the MGB and frontal areas regarding laterality and orientation in the inferior, medial and superior frontal gyrus. We suggest that these changes affect adaptive sensory gating of temporal and spectral sound features along the auditory pathway, reflecting dysfunction in an extensive thalamo-cortical network implicated in predictive temporal adaptation to the auditory environment. Modulation of temporal characteristics of input signals might hence factor into a thalamo-cortical dysrhythmia profile of tinnitus, but could ultimately also establish new directions for treatment options for persons with tinnitus.
Collapse
Affiliation(s)
- Pia Brinkmann
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands.
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jasper V Smit
- Department of Ear Nose and Throat/Head and Neck Surgery, Zuyderland Medical Center, Sittard/Heerlen, the Netherlands
| | - Marcus L F Janssen
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands
| |
Collapse
|
17
|
Refat F, Wertz J, Hinrichs P, Klose U, Samy H, Abdelkader RM, Saemisch J, Hofmeier B, Singer W, Rüttiger L, Knipper M, Wolpert S. Co-occurrence of Hyperacusis Accelerates With Tinnitus Burden Over Time and Requires Medical Care. Front Neurol 2021; 12:627522. [PMID: 33815254 PMCID: PMC8012887 DOI: 10.3389/fneur.2021.627522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Although tinnitus represents a major global burden, no causal therapy has yet been established. Ongoing controversies about the neuronal pathophysiology of tinnitus hamper efforts in developing advanced therapies. Hypothesizing that the unnoticed co-occurrence of hyperacusis and differences in the duration of tinnitus may possibly differentially influence the neural correlate of tinnitus, we analyzed 33 tinnitus patients without (T-group) and 20 tinnitus patients with hyperacusis (TH-group). We found crucial differences between the T-group and the TH-group in the increase of annoyance, complaints, tinnitus loudness, and central neural gain as a function of tinnitus duration. Hearing thresholds did not differ between T-group and TH-group. In the TH-group, the tinnitus complaints (total tinnitus score) were significantly greater from early on and the tinnitus intensity distinctly increased over time from ca. 12 to 17 dB when tinnitus persisted more than 5 years, while annoyance responses to normal sound remained nearly constant. In contrast, in the T-group tinnitus complaints remained constant, although the tinnitus intensity declined over time from ca. 27 down to 15 dB beyond 5 years of tinnitus persistence. This was explained through a gradually increased annoyance to normal sound over time, shown by a hyperacusis questionnaire. Parallel a shift from a mainly unilateral (only 17% bilateral) to a completely bilateral (100%) tinnitus percept occurred in the T-group, while bilateral tinnitus dominated in the TH-group from the start (75%). Over time in the T-group, ABR wave V amplitudes (and V/I ratios) remained reduced and delayed. By contrast, in the TH-group especially the ABR wave III and V (and III/I ratio) continued to be enhanced and shortened in response to high-level sound stimuli. Interestingly, in line with signs of an increased co-occurrence of hyperacusis in the T-group over time, ABR wave III also slightly increased in the T-group. The findings disclose an undiagnosed co-occurrence of hyperacusis in tinnitus patients as a main cause of distress and the cause of complaints about tinnitus over time. To achieve urgently needed and personalized therapies, possibly using the objective tools offered here, a systematic sub-classification of tinnitus and the co-occurrence of hyperacusis is recommended.
Collapse
Affiliation(s)
- Fatma Refat
- Audio-Vestibular Unit, Department of Ear Nose Throat, Minia University, Minia, Egypt.,Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Jakob Wertz
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Pauline Hinrichs
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Hesham Samy
- Audio-Vestibular Unit, Department of Ear Nose Throat, Minia University, Minia, Egypt
| | | | - Jörg Saemisch
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Benedikt Hofmeier
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Stephan Wolpert
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Metabolic changes in the brain and blood of rats following acoustic trauma, tinnitus and hyperacusis. PROGRESS IN BRAIN RESEARCH 2021; 262:399-430. [PMID: 33931189 DOI: 10.1016/bs.pbr.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been increasingly recognized that tinnitus is likely to be generated by complex network changes. Acoustic trauma that causes tinnitus induces significant changes in multiple metabolic pathways in the brain. However, it is not clear whether those metabolic changes in the brain could also be reflected in blood samples and whether metabolic changes could discriminate acoustic trauma, hyperacusis and tinnitus. We analyzed brain and serum metabolic changes in rats following acoustic trauma or a sham procedure using metabolomics. Hearing levels were recorded before and after acoustic trauma and behavioral measures to quantify tinnitus and hyperacusis were conducted at 4 weeks following acoustic trauma. Tissues from 11 different brain regions and serum samples were collected at about 3 months following acoustic trauma. Among the acoustic trauma animals, eight exhibited hyperacusis-like behavior and three exhibited tinnitus-like behavior. Using Gas chromatography-mass spectrometry and multivariate statistical analysis, significant metabolic changes were found in acoustic trauma animals in both the brain and serum samples with a number of metabolic pathways significantly perturbated. Furthermore, metabolic changes in the serum were able to differentiate sham from acoustic trauma animals, as well as sham from hyperacusis animals, with high accuracy. Our results suggest that serum metabolic profiling in combination with machine learning analysis may be a promising approach for identifying biomarkers for acoustic trauma, hyperacusis and potentially, tinnitus.
Collapse
|
19
|
The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants. J Neurosci 2021; 40:7190-7202. [PMID: 32938634 DOI: 10.1523/jneurosci.1314-19.2020] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The literature suggests various tinnitus mechanisms, most of which invoke changes in spontaneous firing rates of central auditory neurons resulting from modification of neural gain. Here, we present an alternative model based on evidence that tinnitus is: (1) rare in people who are congenitally deaf, (2) common in people with acquired deafness, and (3) potentially suppressed by active cochlear implants used for hearing restoration. We propose that tinnitus can only develop after fast auditory fiber activity has stimulated the synapse formation between fast-spiking parvalbumin positive (PV+) interneurons and projecting neurons in the ascending auditory path and coactivated frontostriatal networks after hearing onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by PV+ interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus resolution, attention-driven contrast improvement, and augmentation of auditory responses in central auditory pathways (neural gain) after damage of slow auditory fibers. When fast auditory fiber activity is lost, tonic PV+ interneuron activity is diminished, resulting in the prolonged response latencies, sudden hyperexcitability, enhanced cortical synchrony, elevated spontaneous γ oscillations, and impaired attention/stress-control that have been described in previous tinnitus models. Moreover, because fast processing is gained through sensory experience, tinnitus would not exist in congenital deafness. Electrical cochlear stimulation may have the potential to reestablish tonic inhibitory networks and thus suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may catalyze cooperative efforts to develop tinnitus therapies.
Collapse
|
20
|
Longenecker RJ, Gu R, Homan J, Kil J. A Novel Mouse Model of Aminoglycoside-Induced Hyperacusis and Tinnitus. Front Neurosci 2020; 14:561185. [PMID: 33041759 PMCID: PMC7530258 DOI: 10.3389/fnins.2020.561185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides (AG) such as amikacin are commonly used in cystic fibrosis patients with opportunistic pulmonary infections including multi-drug resistant mycobacterium tuberculous and non-tuberculous mycobacterium. Unfortunately, this class of drugs is known to cause peripheral damage to the cochlea leading to hearing loss that can fluctuate and become permanent over time or multiple exposures. However, whether amikacin can lead to central auditory dysfunction like hyperacusis (increased sensitivity to sound) or tinnitus (perception of sound in the absence of acoustic stimulation) is not well-described in the literature. Thus, an animal model needs to be developed that documents these side effects in order to develop therapeutic solutions to reduce AG-induced auditory dysfunction. Here we present pioneer work in mice which demonstrates that amikacin can lead to fluctuating behavioral evidence of hyperacusis and tinnitus as assessed by the acoustic startle reflex. Additionally, electrophysiological assessments of hearing via auditory brainstem response demonstrate increased central activity in the auditory brainstem. These data together suggest that peripheral AG-induced dysfunction can lead to central hyperactivity and possible behavioral manifestations of hyperacusis and tinnitus. Importantly, we demonstrate that ebselen, a novel investigational drug that acts as both an antioxidant and anti-inflammatory, can mitigate AG-induced hyperacusis.
Collapse
Affiliation(s)
| | - Rende Gu
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| | | | - Jonathan Kil
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| |
Collapse
|
21
|
Bourez PH, Fournier P, Noreña AJ. The difference in poststimulus suppression between residual inhibition and forward masking. PROGRESS IN BRAIN RESEARCH 2020; 262:23-56. [PMID: 33931182 DOI: 10.1016/bs.pbr.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phenomenon of tinnitus masking (TM) and residual inhibition (RI) of tinnitus are two ways to investigate how external sounds interact with tinnitus: TM provides insight on the fusion between external sound activity and tinnitus related activity while RI provides insight on how the external sound might suppress the tinnitus related activity for a period of time. Differences in masking level between the tinnitus and an external tone with tinnitus characteristics (frequency, loudness) have previously shown a high level of heterogeneity. The difference in poststimulus suppression between the two, that is, residual inhibition for the former, and forward masking for the latter, has never been explored. This study aims to investigate minimum masking levels (MMLs) and minimum residual inhibition levels (MRILs) of tinnitus and of an external tone mimicking tinnitus while using diotic and dichotic noises. Pulsed narrowband noises (1 octave width and centered at 1kHz, frequency of the hearing loss slope, tinnitus frequency) and white noise were randomly presented to 20 tinnitus participants and 20 controls with an external tone mimicking tinnitus (4kHz, intensity level corresponding to tinnitus loudness). The MML values obtained for the masking of tinnitus and for the mimicking external sounds were very similar. On the other hand, the MRILs were significantly different between the tinnitus and the mimicking external sounds within tinnitus participants. They were also different between the tinnitus participants and the controls. Overall, for both within and between comparisons, the MRIL values were much higher to produce a poststimulus suppression for the mimicking sound than for the tinnitus. The results showed no significant differences between the diotic and dichotic conditions. These results corroborate other findings suggesting that the tinnitus-related neural activity is very different from the stimulus-related neural activity. The consequences of this last finding are discussed.
Collapse
Affiliation(s)
- P H Bourez
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Philippe Fournier
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Arnaud J Noreña
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France.
| |
Collapse
|
22
|
Hafner A, Schoisswohl S, Simoes J, Schlee W, Schecklmann M, Langguth B, Neff P. Impact of personality on acoustic tinnitus suppression and emotional reaction to stimuli sounds. PROGRESS IN BRAIN RESEARCH 2020; 260:187-203. [PMID: 33637217 DOI: 10.1016/bs.pbr.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Acoustic stimulation was shown to be effective in short-term suppression of tinnitus. However, tinnitus cannot be suppressed in all patients. Recent insights from mental health research suggests that personality traits may be important factors in prediction of treatment outcomes or improvement of tinnitus over time. No previous acoustic stimulation study investigated the effects of personality traits on tinnitus suppression and rating of sound stimuli. OBJECTIVES The aim of this study was therefore to examine whether personality is capable to predict tinnitus suppression in chronic tinnitus patients as well as related emotional stimulus evaluation. METHODS Personality data (Big Five Index 2; BFI-2) of two acoustic stimulation experiments were pooled for this analysis. Both experiments were conducted at the University of Regensburg, Germany in the time period between April 2018 and October 2019 and consisted of individual designed noise and amplitude modulated tones matched to the participants' tinnitus pitch. Logistic regressions or linear mixed effect models were performed with tinnitus suppression as well as valence and arousal data as dependent variables and BFI-2 personality dimensions as predictors. RESULTS 28% of the participants showed pronounced short-term tinnitus suppression after acoustic stimulation (50% reduction in subjective tinnitus loudness). Analyzing BFI-2 data, no significant impact of the big five personality traits (neuroticism, agreeableness, extraversion, conscientiousness, openness) were found, neither on acoustic tinnitus suppression, nor on emotional stimulus evaluation, namely arousal. CONCLUSION Personality was not shown to be a predictive factor, neither for acoustic stimulation, nor for emotional reaction to stimuli sounds in our studies. However, since tinnitus cannot be suppressed by acoustic stimulation in all patients, future studies should investigate other explaining factors such as patient-related or (neuro)physiological characteristics.
Collapse
Affiliation(s)
- Anita Hafner
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany.
| | - Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany
| | - Jorge Simoes
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany
| | - Winfried Schlee
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany
| | - Patrick Neff
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany; University Research Priority Program Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Abstract
Many individuals with tinnitus report experiencing hyperacusis (enhanced sensitivity to sounds). However, estimates of the association between hyperacusis and tinnitus is lacking. Here, we investigate this relationship in a Swedish study. A total of 3645 participants (1984 with tinnitus and 1661 without tinnitus) were enrolled via LifeGene, a study from the general Swedish population, aged 18-90 years, and provided information on socio-demographic characteristics, as well as presence of hyperacusis and its severity. Tinnitus presence and severity were self-reported or assessed using the Tinnitus Handicap Inventory (THI). Phenotypes of tinnitus with (n = 1388) or without (n = 1044) hyperacusis were also compared. Of 1661 participants without tinnitus, 1098 (66.1%) were women and 563 were men (33.9%), and the mean (SD) age was 45.1 (12.9). Of 1984 participants with tinnitus, 1034 (52.1%) were women and 950 (47.9%) were men, and the mean (SD) age was 47.7 (14.0) years. Hyperacusis was associated with any tinnitus [Odds ratio (OR) 3.51, 95% confidence interval (CI) 2.99-4.13], self-reported severe tinnitus (OR 7.43, 95% CI 5.06-10.9), and THI ≥ 58 (OR 12.1, 95% CI 7.06-20.6). The association with THI ≥ 58 was greater with increasing severity of hyperacusis, the ORs being 8.15 (95% CI 4.68-14.2) for moderate and 77.4 (95% CI 35.0-171.3) for severe hyperacusis. No difference between sexes was observed in the association between hyperacusis and tinnitus. The occurrence of hyperacusis in severe tinnitus is as high as 80%, showing a very tight relationship. Discriminating the pathophysiological mechanisms between the two conditions in cases of severe tinnitus will be challenging, and optimized study designs are necessary to better understand the mechanisms behind the strong relationship between hyperacusis and tinnitus.
Collapse
|
24
|
Hyperacusis in Children with Attention Deficit Hyperactivity Disorder: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093045. [PMID: 32349379 PMCID: PMC7246428 DOI: 10.3390/ijerph17093045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
The association between hyperacusis and developmental disorders such as autism spectrum disorders has been extensively reported in the literature; however, the specific prevalence of hyperacusis in attention deficit hyperactivity disorder (ADHD) has never been investigated. In this preliminary study, we evaluated the presence of hyperacusis in a small sample of children affected by ADHD compared to a control group of healthy children. Thirty normal hearing children with a diagnosis of ADHD and 30 children matched for sex and age were enrolled in the study. All children underwent audiological and multidisciplinary neuropsychiatric evaluation. Hearing was assessed using pure tone audiometry and immittance test; ADHD was diagnosed following the Diagnostic and Statistical Manual of Mental Disorder criteria. Hyperacusis was assessed through the administration of a questionnaire to parents and an interview with children. Hyperacusis was diagnosed in 11 children (36.7%) in the study group and in four children (13.3%) in the control group; this difference was statistically significant (p = 0.03). The preliminary results of this study suggest a higher presence of hyperacusis in children with attention deficit hyperactivity disorder compared to control children. More studies on larger samples are necessary to confirm these results.
Collapse
|
25
|
D-Stellate Neurons of the Ventral Cochlear Nucleus Decrease in Auditory Nerve-Evoked Activity during Age-Related Hearing Loss. Brain Sci 2019; 9:brainsci9110302. [PMID: 31683609 PMCID: PMC6896102 DOI: 10.3390/brainsci9110302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Age-related hearing loss (ARHL) is associated with weakened inhibition in the central auditory nervous system including the cochlear nucleus. One of the main inhibitory neurons of the cochlear nucleus is the D-stellate neuron, which provides extensive glycinergic inhibition within the local neural network. It remains unclear how physiological activities of D-stellate neurons change during ARHL and what are the underlying mechanisms. Using in vitro whole-cell patch clamp technique, we studied the intrinsic membrane properties of D-stellate neurons, the changes of their firing properties, and the underlying mechanisms in CBA/CaJ mice at the ages of 3–4 months (young), 17–19 months (middle age), and 27–33 months (aged). We found that the intrinsic membrane properties of D-stellate neurons were unchanged among these three age groups. However, these neurons showed decreased firing rate with age in response to sustained auditory nerve stimulation. Further investigation showed that auditory nerve-evoked excitatory postsynaptic currents (EPSCs) were significantly reduced in strength with age. These findings suggest that D-stellate neurons receive weakened synaptic inputs from the auditory nerve and decreased sound driven activity with age, which are expected to reduce the overall inhibition and enhance the central gain in the cochlear nucleus during ARHL.
Collapse
|
26
|
Jamesdaniel S, Elhage KG, Rosati R, Ghosh S, Arnetz B, Blessman J. Tinnitus and Self-Perceived Hearing Handicap in Firefighters: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3958. [PMID: 31627382 PMCID: PMC6844073 DOI: 10.3390/ijerph16203958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Firefighters are susceptible to auditory dysfunction due to long-term exposure to noise from sirens, air horns, equipment, and tools used in forcible entry, ventilation, and extrication. In addition, they are exposed to ototoxic chemicals, particularly, during overhaul operations. Studies indicate that 40% of firefighters have hearing loss in the noise-sensitive frequencies of 4 and 6 kHz. Noise-induced hearing loss (NIHL) is often accompanied by tinnitus, which is characterized by ringing noise in the ears. The presence of phantom sounds can adversely affect the performance of firefighters. However, there has been limited research conducted on the prevalence of tinnitus in firefighters. We enrolled firefighters from Michigan, with at least 5 years of continuous service. The hearing handicap inventory for adults (HHIA) was used to determine the difficulty in hearing perceived by the firefighters and the tinnitus functional index (TFI) was used to determine the severity of tinnitus. Self-perceived hearing handicap was reported by 36% of the participants, while tinnitus was reported by 48% of the participants. The TFI survey indicated that 31% perceived tinnitus as a problem. More importantly, self-perceived hearing handicap was significantly associated with the incidence of tinnitus in firefighters, suggesting a potential link between occupational exposure to ototraumatic agents and tinnitus in firefighters.
Collapse
Affiliation(s)
- Samson Jamesdaniel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA.
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Kareem G Elhage
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA.
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA.
| | - Samiran Ghosh
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Bengt Arnetz
- Department of Family Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA.
| | - James Blessman
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|