1
|
Ge Y, Wang YT. GluN2B-containing NMDARs in the mammalian brain: pharmacology, physiology, and pathology. Front Mol Neurosci 2023; 16:1190324. [PMID: 37324591 PMCID: PMC10264587 DOI: 10.3389/fnmol.2023.1190324] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
Glutamate N-methyl-D-aspartate receptor (NMDAR) is critical for promoting physiological synaptic plasticity and neuronal viability. As a major subpopulation of the NMDAR, the GluN2B subunit-containing NMDARs have distinct pharmacological properties, physiological functions, and pathological relevance to neurological diseases compared with other NMDAR subtypes. In mature neurons, GluN2B-containing NMDARs are likely expressed as both diheteromeric and triheteromeric receptors, though the functional importance of each subpopulation has yet to be disentangled. Moreover, the C-terminal region of the GluN2B subunit forms structural complexes with multiple intracellular signaling proteins. These protein complexes play critical roles in both activity-dependent synaptic plasticity and neuronal survival and death signaling, thus serving as the molecular substrates underlying multiple physiological functions. Accordingly, dysregulation of GluN2B-containing NMDARs and/or their downstream signaling pathways has been implicated in neurological diseases, and various strategies to reverse these deficits have been investigated. In this article, we provide an overview of GluN2B-containing NMDAR pharmacology and its key physiological functions, highlighting the importance of this receptor subtype during both health and disease states.
Collapse
Affiliation(s)
- Yang Ge
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
3
|
Zhang Y, Liang J, Cao N, Gao J, Xie Y, Zhou S, Tang X. ASIC1α up-regulates MMP-2/9 expression to enhance mobility and proliferation of liver cancer cells via the PI3K/AKT/mTOR pathway. BMC Cancer 2022; 22:778. [PMID: 35840921 PMCID: PMC9287982 DOI: 10.1186/s12885-022-09874-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
A major challenge in the treatment of liver cancer is that a large proportion of patients fail to achieve long-term disease control, with death from liver cancer cell migration and invasion. Acid-sensitive ion channel 1α (ASIC1α) is involved in the migration, invasion, and proliferation of liver cancer cells. Therefore, we explored the mechanism of ASIC1α-mediated liver cancer cell migration and invasion. We determined the levels of ASIC1α by western blotting and immunofluorescence in HepG2 and SK-Hep1 cells cultured in various acidic conditions. In addition, wound healing assay, transwell invasion assay, and MTT assay were conducted to assess the migration, invasion, and proliferation abilities of liver cancer cells. Western blotting was conducted to determine the levels of MMP2, MMP9, ASIC1α, p-PI3Kp85, t-PI3Kp85, p-AKT(Ser473), t-AKT, p-mTOR (Ser2448), t-mTOR. We first found that the levels of ASIC1α in the HepG2 and SK-Hep1 cells in acidic conditions (pH 6.5) were significantly increased. Inhibition and knockdown of ASIC1α down-regulated MMP-2/9 expression and inhibited the migration, invasion, and proliferation of HepG2 and SK-Hep1 cells; overexpression of ASIC1α had the opposite effect. We further demonstrated that ASIC1α up-regulates MMP-2/9 via activation of the PI3K/AKT/mTOR pathway, thereby promoting migration, invasion, and proliferation of liver cancer cells. Overexpression of MMP-2/9 and activation of AKT reversed these effects on liver cancer cells caused by inhibition of ASIC1α. We conclude that ASIC1α can regulate migration, invasion, and proliferation of liver cancer cells through the MMP-2/9/PI3K/AKT/mTOR pathway. These observations may provide a new reference for liver cancer chemotherapy.
Collapse
Affiliation(s)
- Yinci Zhang
- Medcial School, Anhui University of Science & Technology, Huainan, 232001, China.,Institute of Environment-Friendly Materials and Occupational Health of Anhui, University of Science and Technology, Wuhu, 241003, China
| | - Jiaojiao Liang
- Medcial School, Anhui University of Science & Technology, Huainan, 232001, China.,Institute of Environment-Friendly Materials and Occupational Health of Anhui, University of Science and Technology, Wuhu, 241003, China
| | - Niandie Cao
- Medcial School, Anhui University of Science & Technology, Huainan, 232001, China.,Institute of Environment-Friendly Materials and Occupational Health of Anhui, University of Science and Technology, Wuhu, 241003, China
| | - Jiafeng Gao
- Medcial School, Anhui University of Science & Technology, Huainan, 232001, China.,Institute of Environment-Friendly Materials and Occupational Health of Anhui, University of Science and Technology, Wuhu, 241003, China
| | - Yinghai Xie
- Medcial School, Anhui University of Science & Technology, Huainan, 232001, China.,First Affiliated Hospital, Anhui University of Science & Technology, Huainan, 232001, China
| | - Shuping Zhou
- Medcial School, Anhui University of Science & Technology, Huainan, 232001, China.,First Affiliated Hospital, Anhui University of Science & Technology, Huainan, 232001, China
| | - Xiaolong Tang
- Medcial School, Anhui University of Science & Technology, Huainan, 232001, China. .,Institute of Environment-Friendly Materials and Occupational Health of Anhui, University of Science and Technology, Wuhu, 241003, China.
| |
Collapse
|
4
|
Qiao Q, Qu Z, Tian S, Cao H, Zhang Y, Sun C, Jia L, Wang W. Ketogenic Diet Alleviates Hippocampal Neurodegeneration Possibly via ASIC1a and the Mitochondria-Mediated Apoptotic Pathway in a Rat Model of Temporal Lobe Epilepsy. Neuropsychiatr Dis Treat 2022; 18:2181-2198. [PMID: 36187562 PMCID: PMC9521243 DOI: 10.2147/ndt.s376979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The ketogenic diet (KD) is a proven therapy for refractory epilepsy. Although the anti-seizure properties of this diet are understood to a certain extent, the exploration of its neuroprotective effects and underlying mechanisms is still in its infancy. Tissue acidosis is a common feature of epileptogenic foci. Interestingly, the activation of acid-sensing ion channel 1a (ASIC1a), which mediates Ca2+-dependent neuronal injury during acidosis, has been found to be inhibited by ketone bodies in vitro. This prompted us to investigate whether the neuroprotective effects induced by the KD occur via ASIC1a and interconnected downstream mechanisms in a rat model of temporal lobe epilepsy. METHODS Male Sprague-Dawley rats were fed either the KD or a normal diet for four weeks after undergoing pilocarpine-induced status epilepticus (SE). The effects of KD on epileptogenesis, cognitive impairment and hippocampal neuron injury in the epileptic rats were subsequently evaluated by video electroencephalogram, Morris water maze test and Nissl staining, respectively. The expression of ASIC1a and cleaved caspase-3 in the hippocampus were determined using Western blot analysis during the chronic period following SE. Moreover, the intracellular Ca2+ concentration, mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mROS) and cell apoptosis of hippocampal cells were detected by flow cytometry. RESULTS We found that the KD treatment strongly attenuated the spontaneous recurrent seizures, ameliorated learning and memory impairments and prevented hippocampal neuronal injury and apoptosis. The KD was also shown to inhibit the upregulation of ASIC1a and the ensuing intracellular Ca2+ overload in the hippocampus of the epileptic rats. Furthermore, the seizure-induced structure disruption of neuronal mitochondria, loss of MMP and accumulation of mROS were reversed by the KD treatment, suggesting that it has protective effects on mitochondria. Finally, the activation of caspase-3 was also inhibited by the KD. CONCLUSION These findings indicate that the KD suppresses mitochondria-mediated apoptosis possibly by regulating ASIC1a to exert neuroprotective effects. This may provide a mechanistic explanation of the therapeutic effects of KD.
Collapse
Affiliation(s)
- Qi Qiao
- The Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhenzhen Qu
- The Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Shuang Tian
- The Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, People's Republic of China
| | - Huifang Cao
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yange Zhang
- The Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Can Sun
- The Department of Neurology, The Third Hospital of Peking University, Beijing, People's Republic of China
| | - Lijing Jia
- The Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Weiping Wang
- The Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
5
|
Cullinan MM, Klipp RC, Bankston JR. Regulation of acid-sensing ion channels by protein binding partners. Channels (Austin) 2021; 15:635-647. [PMID: 34704535 PMCID: PMC8555555 DOI: 10.1080/19336950.2021.1976946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are a family of proton-gated cation channels that contribute to a diverse array of functions including pain sensation, cell death during ischemia, and more broadly to neurotransmission in the central nervous system. There is an increasing interest in understanding the physiological regulatory mechanisms of this family of channels. ASICs have relatively short N- and C-termini, yet a number of proteins have been shown to interact with these domains both in vitro and in vivo. These proteins can impact ASIC gating, localization, cell-surface expression, and regulation. Like all ion channels, it is important to understand the cellular context under which ASICs function in neurons and other cells. Here we will review what is known about a number of these potentially important regulatory molecules.
Collapse
Affiliation(s)
- Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Osmakov DI, Korolkova YV, Lubova KI, Maleeva EE, Andreev YA, Kozlov SA. The Role of the C-terminal Intracellular
Domain in Acid-Sensing Ion Channel 3 Functioning. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
8
|
NMDARs in Cell Survival and Death: Implications in Stroke Pathogenesis and Treatment. Trends Mol Med 2020; 26:533-551. [PMID: 32470382 DOI: 10.1016/j.molmed.2020.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
Stroke is a leading cause of death and disability in developed countries. N-methyl-D-aspartate glutamate receptors (NMDARs) have important roles in stroke pathology and recovery. Depending on their subtypes and locations, these NMDARs may promote either neuronal survival or death. Recently, the functions of previously overlooked NMDAR subtypes during stroke were characterized, and NMDARs expressed at different subcellular locations were found to have synergistic rather than opposing functions. Moreover, the complexity of the neuronal survival and death signaling pathways following NMDAR activation was further elucidated. In this review, we summarize the recent developments in these areas and discuss how delineating the dual roles of NMDARs in stroke has directed the development of novel neuroprotective therapeutics for stroke.
Collapse
|
9
|
Mango D, Nisticò R. Role of ASIC1a in Normal and Pathological Synaptic Plasticity. Rev Physiol Biochem Pharmacol 2020; 177:83-100. [PMID: 32789788 DOI: 10.1007/112_2020_45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na+ channel superfamily, are broadly distributed in the mammalian nervous system where they play important roles in a variety of physiological processes, including neurotransmission and memory-related behaviors. In the last few years, we and others have investigated the role of ASIC1a in different forms of synaptic plasticity especially in the CA1 area of the hippocampus. This review summarizes the latest research linking ASIC1a to synaptic function either in physiological or pathological conditions. A better understanding of how these channels are regulated in brain circuitries relevant to synaptic plasticity and memory may offer novel targets for pharmacological intervention in neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Dalila Mango
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- School of Pharmacy, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
10
|
Mango D, Nisticò R. Acid-Sensing Ion Channel 1a Is Involved in N-Methyl D-Aspartate Receptor-Dependent Long-Term Depression in the Hippocampus. Front Pharmacol 2019; 10:555. [PMID: 31178731 PMCID: PMC6537656 DOI: 10.3389/fphar.2019.00555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/02/2019] [Indexed: 11/29/2022] Open
Abstract
Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na+ channel superfamily, are largely expressed in the mammalian nervous system. ASIC1a is highly permeable to Ca2+ and are involved in many physiological processes, including synaptic plasticity, learning, and memory. To clarify the role of ASIC1a in synaptic transmission and plasticity, we investigated N-methyl D-aspartate (NMDA) receptor-dependent long-term depression (LTD) in the CA1 region of the hippocampus. We found that: (1) ASIC1a mediates a component of ASIC1a excitatory postsynaptic currents (EPSCs); (2) ASIC1a plays a role in electrical LTD induced by LFS protocol both in P13-18 and P30-40 animals; (3) ASIC1a is involved in chemical LTD induced by brief bath application of NMDA both in P13-18 and P30-40 animals; and finally (4) a functional interaction between ASIC1a and NMDA receptors occurs during LTD. These findings suggest a new role for ASIC1a in specific forms of synaptic plasticity in the mouse hippocampus.
Collapse
Affiliation(s)
- D Mango
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy
| | - R Nisticò
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Biology, School of Pharmacy, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|