1
|
Li G, Cai X, Wang Y. Theta Rhythm-Based Attention Switch Training Effectively Modified Negative Attentional Bias. CNS Neurosci Ther 2024; 30:e70157. [PMID: 39704198 DOI: 10.1111/cns.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Attentional bias modification training (ABMT) is commonly employed to regulate negative attentional bias (NAB) and, in turn, to prevent or alleviate depressive symptoms. Recent advancements in attention switch theory have facilitated the development of a novel training paradigm that may enhance the efficacy of such interventions. METHODS A total of fifty-seven college students were assigned to two groups: one exhibiting NAB and the other without. Both groups underwent training with a novel paradigm integrating theta rhythm with the traditional dot-probe task (DPT). The DPT was also administered as a pre- and post-test measure. RESULTS For individuals with NAB, rhythmic DPT effectively alleviates their NAB. Additionally, within the training procedure's DPT, flashing negative stimuli elicits faster responses when the probe appears at the positive stimulus' location. Baseline attention scores can negatively predict changes in subsequent corresponding attentional performance. CONCLUSIONS This study presents a novel training paradigm-the theta rhythm-based DPT-that effectively modifies NAB. The mechanism underlying this intervention may be driven by positive salient stimuli at the critical trough, facilitating the switch of attention from negative to positive stimuli.
Collapse
Affiliation(s)
- Guo Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- School of Psychology, South China Normal University, Guangzhou, China
- Psychological Research and Counseling Center, Southwest Jiaotong University, Chengdu, China
| | - Xueli Cai
- Psychological Research and Counseling Center, Southwest Jiaotong University, Chengdu, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
2
|
Ao Y, Catal Y, Lechner S, Hua J, Northoff G. Intrinsic neural timescales relate to the dynamics of infraslow neural waves. Neuroimage 2024; 285:120482. [PMID: 38043840 DOI: 10.1016/j.neuroimage.2023.120482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023] Open
Abstract
The human brain is a highly dynamic organ that operates across a variety of timescales, the intrinsic neural timescales (INT). In addition to the INT, the neural waves featured by its phase-related processes including their cycles with peak/trough and rise/fall play a key role in shaping the brain's neural activity. However, the relationship between the brain's ongoing wave dynamics and INT remains yet unclear. In this study, we utilized functional magnetic resonance imaging (fMRI) rest and task data from the Human Connectome Project (HCP) to investigate the relationship of infraslow wave dynamics [as measured in terms of speed by changes in its peak frequency (PF)] with INT. Our findings reveal that: (i) the speed of phase dynamics (PF) is associated with distinct parts of the ongoing phase cycles, namely higher PF in peak/trough and lower PF in rise/fall; (ii) there exists a negative correlation between phase dynamics (PF) and INT such that slower PF relates to longer INT; (iii) exposure to a movie alters both PF and INT across the different phase cycles, yet their negative correlation remains intact. Collectively, our results demonstrate that INT relates to infraslow phase dynamics during both rest and task states.
Collapse
Affiliation(s)
- Yujia Ao
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yasir Catal
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephan Lechner
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, 1010 Vienna, Austria; Vienna Doctoral School Cognition, Behavior and Neuroscience, University of Vienna, 1030 Vienna, Austria
| | - Jingyu Hua
- Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Ao Y, Yang C, Drewes J, Jiang M, Huang L, Jing X, Northoff G, Wang Y. Spatiotemporal dedifferentiation of the global brain signal topography along the adult lifespan. Hum Brain Mapp 2023; 44:5906-5918. [PMID: 37800366 PMCID: PMC10619384 DOI: 10.1002/hbm.26484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
Age-related variations in many regions and/or networks of the human brain have been uncovered using resting-state functional magnetic resonance imaging. However, these findings did not account for the dynamical effect the brain's global activity (global signal [GS]) causes on local characteristics, which is measured by GS topography. To address this gap, we tested GS topography including its correlation with age using a large-scale cross-sectional adult lifespan dataset (n = 492). Both GS topography and its variation with age showed frequency-specific patterns, reflecting the spatiotemporal characteristics of the dynamic change of GS topography with age. A general trend toward dedifferentiation of GS topography with age was observed in both spatial (i.e., less differences of GS between different regions) and temporal (i.e., less differences of GS between different frequencies) dimensions. Further, methodological control analyses suggested that although most age-related dedifferentiation effects remained across different preprocessing strategies, some were triggered by neuro-vascular coupling and physiological noises. Together, these results provide the first evidence for age-related effects on global brain activity and its topographic-dynamic representation in terms of spatiotemporal dedifferentiation.
Collapse
Affiliation(s)
- Yujia Ao
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Chengxiao Yang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Jan Drewes
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Muliang Jiang
- First Affiliated HospitalGuangxi Medical UniversityNanningChina
| | - Lihui Huang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Xiujuan Jing
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Yifeng Wang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| |
Collapse
|
4
|
Zhang C, Wang Y, Jing X, Yan JH. Brain mechanisms of mental processing: from evoked and spontaneous brain activities to enactive brain activity. PSYCHORADIOLOGY 2023; 3:kkad010. [PMID: 38666106 PMCID: PMC10917368 DOI: 10.1093/psyrad/kkad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 04/28/2024]
Abstract
Within the context of the computer metaphor, evoked brain activity acts as a primary carrier for the brain mechanisms of mental processing. However, many studies have found that evoked brain activity is not the major part of brain activity. Instead, spontaneous brain activity exhibits greater intensity and coevolves with evoked brain activity through continuous interaction. Spontaneous and evoked brain activities are similar but not identical. They are not separate parts, but always dynamically interact with each other. Therefore, the enactive cognition theory further states that the brain is characterized by unified and active patterns of activity. The brain adjusts its activity pattern by minimizing the error between expectation and stimulation, adapting to the ever-changing environment. Therefore, the dynamic regulation of brain activity in response to task situations is the core brain mechanism of mental processing. Beyond the evoked brain activity and spontaneous brain activity, the enactive brain activity provides a novel framework to completely describe brain activities during mental processing. It is necessary for upcoming researchers to introduce innovative indicators and paradigms for investigating enactive brain activity during mental processing.
Collapse
Affiliation(s)
- Chi Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu 610052, China
| | - Jin H Yan
- Sports Psychology Department, China Institute of Sport Science, Beijing 100061, China
| |
Collapse
|
5
|
Wang Y, Yang C, Li G, Ao Y, Jiang M, Cui Q, Pang Y, Jing X. Frequency-dependent effective connections between local signals and the global brain signal during resting-state. Cogn Neurodyn 2023; 17:555-560. [PMID: 37007197 PMCID: PMC10050607 DOI: 10.1007/s11571-022-09831-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 03/07/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022] Open
Abstract
The psychological and physiological meanings of resting-state global brain signal (GS) and GS topography have been well confirmed. However, the causal relationship between GS and local signals was largely unknown. Based on the Human Connectome Project dataset, we investigated the effective GS topography using the Granger causality (GC) method. In consistent with GS topography, both effective GS topographies from GS to local signals and from local signals to GS showed greater GC values in sensory and motor regions in most frequency bands, suggesting that the unimodal superiority is an intrinsic architecture of GS topography. However, the significant frequency effect for GC values from GS to local signals was primarily located in unimodal regions and dominated at slow 4 frequency band whereas that from local signals to GS was mainly located in transmodal regions and dominated at slow 6 frequency band, consisting with the opinion that the more integrated the function, the lower the frequency. These findings provided valuable insight for the frequency-dependent effective GS topography, improving the understanding of the underlying mechanism of GS topography. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09831-0.
Collapse
Affiliation(s)
- Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Gen Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Muliang Jiang
- First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu, China
| |
Collapse
|
6
|
Qiao J, Wang Y, Wang S. Natural frequencies of neural activities and cognitions may serve as precise targets of rhythmic interventions to the aging brain. Front Aging Neurosci 2022; 14:988193. [PMID: 36172484 PMCID: PMC9510897 DOI: 10.3389/fnagi.2022.988193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Rhythmic neural activities are critical to the efficiency of regulatory procedures in brain functions. However, brain functions usually decline in aging as accompanied by frequency shift and temporal dedifferentiation of neural activities. Considering the strong oscillations and long-lasting after-effects induced by rhythmic brain stimulations, we suggest that non-invasive rhythmic brain stimulation technique may help restore the natural frequencies of neural activities in aging to that in younger and healthy brains. Although with tremendous work to do, this technique offers great opportunities for the restoration of normal brain functions in aging, or even in those suffering from neurodegenerative diseases and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jingwen Qiao
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Shouyan Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Qiao J, Li X, Wang Y, Wang Y, Li G, Lu P, Wang S. The Infraslow Frequency Oscillatory Transcranial Direct Current Stimulation Over the Left Dorsolateral Prefrontal Cortex Enhances Sustained Attention. Front Aging Neurosci 2022; 14:879006. [PMID: 35431889 PMCID: PMC9009338 DOI: 10.3389/fnagi.2022.879006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background The vigilance fluctuation and decrement of sustained attention have large detrimental consequences to most tasks in daily life, especially among the elderly. Non-invasive brain stimulations (e.g., transcranial direct current stimulation, tDCS) have been widely applied to improve sustained attention, however, with mixed results. Objective An infraslow frequency oscillatory tDCS approach was designed to improve sustained attention. Methods The infraslow frequency oscillatory tDCS (O-tDCS) over the left dorsolateral prefrontal cortex at 0.05 Hz was designed and compared with conventional tDCS (C-tDCS) to test whether this new protocol improves sustained attention more effectively. The sustained attention was evaluated by reaction time and accuracy. Results Compared with the C-tDCS and sham, the O-tDCS significantly enhanced sustained attention by increasing response accuracy, reducing response time, and its variability. These effects were predicted by the evoked oscillation of response time at the stimulation frequency. Conclusion Similar to previous studies, the modulation effect of C-tDCS on sustained attention is weak and unstable. In contrast, the O-tDCS effectively and systematically enhances sustained attention by optimizing vigilance fluctuation. The modulation effect of O-tDCS is probably driven by neural oscillations at the infraslow frequency range.
Collapse
Affiliation(s)
- Jingwen Qiao
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xinyu Li
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Youhao Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Gen Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Ping Lu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Shouyan Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Orkan Olcay B, Özgören M, Karaçalı B. On the characterization of cognitive tasks using activity-specific short-lived synchronization between electroencephalography channels. Neural Netw 2021; 143:452-474. [PMID: 34273721 DOI: 10.1016/j.neunet.2021.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Accurate characterization of brain activity during a cognitive task is challenging due to the dynamically changing and the complex nature of the brain. The majority of the proposed approaches assume stationarity in brain activity and disregard the systematic timing organization among brain regions during cognitive tasks. In this study, we propose a novel cognitive activity recognition method that captures the activity-specific timing parameters from training data that elicits maximal average short-lived pairwise synchronization between electroencephalography signals. We evaluated the characterization power of the activity-specific timing parameter triplets in a motor imagery activity recognition framework. The activity-specific timing parameter triplets consist of latency of the maximally synchronized signal segments from activity onset Δt, the time lag between maximally synchronized signal segments τ, and the duration of the maximally synchronized signal segments w. We used cosine-based similarity, wavelet bi-coherence, phase-locking value, phase coherence value, linearized mutual information, and cross-correntropy to calculate the channel synchronizations at the specific timing parameters. Recognition performances as well as statistical analyses on both BCI Competition-III dataset IVa and PhysioNet Motor Movement/Imagery dataset, indicate that the inter-channel short-lived synchronization calculated using activity-specific timing parameter triplets elicit significantly distinct synchronization profiles for different motor imagery tasks and can thus reliably be used for cognitive task recognition purposes.
Collapse
Affiliation(s)
- B Orkan Olcay
- Department of Electrical and Electronics Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| | - Murat Özgören
- Department of Biophysics, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus.
| | - Bilge Karaçalı
- Department of Electrical and Electronics Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
9
|
Wang Y, Ao Y, Yang Q, Liu Y, Ouyang Y, Jing X, Pang Y, Cui Q, Chen H. Spatial variability of low frequency brain signal differentiates brain states. PLoS One 2020; 15:e0242330. [PMID: 33180843 PMCID: PMC7660497 DOI: 10.1371/journal.pone.0242330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022] Open
Abstract
Temporal variability of the neural signal has been demonstrated to be closely related to healthy brain function. Meanwhile, the evolving brain functions are supported by dynamic relationships among brain regions. We hypothesized that the spatial variability of brain signal might provide important information about brain function. Here we used the spatial sample entropy (SSE) to investigate the spatial variability of neuroimaging signal during a steady-state presented face detection task. Lower SSE was found during task state than during resting state, associating with more repetitive functional interactions between brain regions. The standard deviation (SD) of SSE during the task was negatively related to the SD of reaction time, suggesting that the spatial pattern of neural activity is reorganized according to particular cognitive function and supporting the previous theory that greater variability is associated with better task performance. These results were replicated with reordered data, implying the reliability of SSE in measuring the spatial organization of neural activity. Overall, the present study extends the research scope of brain signal variability from the temporal dimension to the spatial dimension, improving our understanding of the spatiotemporal characteristics of brain activities and the theory of brain signal variability.
Collapse
Affiliation(s)
- Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- * E-mail: (YW); (HC)
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Qi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yujie Ouyang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu, China
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- * E-mail: (YW); (HC)
| |
Collapse
|
10
|
Gong L, Xu R, Qin M, Liu D, Zhang B, Bi Y, Xi C. New potential stimulation targets for noninvasive brain stimulation treatment of chronic insomnia. Sleep Med 2020; 75:380-387. [PMID: 32950883 DOI: 10.1016/j.sleep.2020.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Noninvasive brain stimulation (NIBS) was recently used as a therapeutic application in patients with insomnia. Most of the previous NIBS treatments for insomnia directly selected the dorsolateral prefrontal cortex (DLPFC) as the stimulation site. As the NIBS target is an important factor in the efficacy of NIBS, it is necessary to detect more potential cortical sites for NIBS in insomnia. METHODS A neuroimaging study-based meta-analysis was used to examine sleep-related brain regions. A sleep-associated brain region-based functional connectivity (FC) map was constructed in 50 patients with chronic insomnia disorder (CID) without any comorbidity. We also combined the meta-analysis and FC results to examine the potential surface targets for NIBS for CID. RESULTS The results identified the bilateral supplementary motor area (SMA), left superior temporal gyrus (STG), bilateral DLPFC, precentral lobule, supramarginal gyrus, angular gyrus, superior frontal gyrus, middle temporal gyrus and middle occipital gyrus as potential brain stimulation targets for insomnia treatment. Notably, the bilateral SMA, right DLPFC and left STG were identified in the FC and meta-analyses. In addition, the SMA and DLPFC were positively and STG was negatively connected with other sleep related brain regions, which indicated inhibitory and excitatory stimulation for NIBS treatment for CID, respectively. CONCLUSION Our study suggests the SMA, DLPFC and STG as preferentially selected brain targets of NIBS for CID treatment. We recommend an inhibitory stimulation over SMA and DLPFC, and an excitatory stimulation over STG for NIBS treatment. Future studies should test these new targets using NIBS treatment for insomnia.
Collapse
Affiliation(s)
- Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Ronghua Xu
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Minhuang Qin
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Duan Liu
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Bei Zhang
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Youcai Bi
- Department of Neurology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China.
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, Anhui, 230061, China.
| |
Collapse
|
11
|
Zhou Z, Cai B, Zhang G, Zhang A, Calhoun VD, Wang YP. Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fMRI. Neuroimage 2020; 221:117190. [PMID: 32711063 DOI: 10.1016/j.neuroimage.2020.117190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/15/2022] Open
Abstract
Recently, functional network connectivity (FNC) has been extended from static to dynamic analysis to explore the time-varying functional organization of brain networks. Nowadays, a majority of dynamic FNC (dFNC) analysis frameworks identified recurring FNC patterns with linear correlations based on the amplitude of fMRI time series. However, the brain is a complex dynamical system and phase synchronization provides more informative measures. This paper proposes a novel framework for the prediction/classification of behaviors and cognitions based on the dFNCs derived from phase locking value. When applying to the analysis of fMRI data from Human Connectome Project (HCP), four dFNC states are identified for the study of sleep quality. State 1 exhibits most intense phase synchronization across the whole brain. States 2 and 3 have low and weak connections, respectively. State 4 exhibits strong phase synchronization in intra and inter-connections of somatomotor, visual and cognitive control networks. Through the two-sample t-test, we reveal that for the group with bad sleep quality, state 4 shows decreased phase synchronization within and between networks such as subcortical, auditory, somatomotor and visual, but increased phase synchronization within cognitive control network, and between this network and somatomotor/visual/default-mode/cerebellar networks. The networks with increased phase synchronization in state 4 behave oppositely in state 2. Group differences are absent in state 3, and weak in state 1. We establish a prediction model by linear regression of FNC against sleep quality, and adopt a support vector machine approach for the classification. We compare the performance between conventional FNC and PLV-based dFNC with cross-validation. Results show that the PLV-based dFNC significantly outperforms the conventional FNC in terms of both predictive power and classification accuracy. We also observe that combining static and dynamic features does not significantly improve the classification over using dFNC features alone. Overall, the proposed approach provides a novel means to assess dFNC, which can be used as brain fingerprints to facilitate prediction and classification.
Collapse
Affiliation(s)
- Zhongxing Zhou
- Biomedical Engineering Department, Tulane University, New Orleans, LA, United States; Tianjin University, School of Precision Instruments and Optoelectronics Engineering, Tianjin, China
| | - Biao Cai
- Biomedical Engineering Department, Tulane University, New Orleans, LA, United States
| | - Gemeng Zhang
- Biomedical Engineering Department, Tulane University, New Orleans, LA, United States
| | - Aiying Zhang
- Biomedical Engineering Department, Tulane University, New Orleans, LA, United States
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, United States
| | - Yu-Ping Wang
- Biomedical Engineering Department, Tulane University, New Orleans, LA, United States.
| |
Collapse
|