1
|
Shimizu K, Inage K, Chikubu H, Orita S, Shiga Y, Inoue M, Eguchi Y, Morita M, Ichihara A, Ono A, Ohtori S. Screening system for assessing suitability of cognitive behavioral therapy for chronic low back pain. Sci Rep 2025; 15:11491. [PMID: 40181063 PMCID: PMC11968998 DOI: 10.1038/s41598-025-95948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
An objective method to evaluate patient suitability for cognitive behavioral therapy (CBT) for chronic low back pain (LBP) is currently lacking. Inappropriate application can result in prolonged hospital visits and increased medical costs. Therefore, identifying an objective biomarker for evaluating suitability is crucial. This study focused on electroencephalogram (EEG) complexity as a potential biomarker for evaluating CBT suitability for chronic LBP, assessing its discriminative ability and identifying factors that impede treatment. Complexity was analyzed as multiscale fuzzy sample entropy (MFSE). Fifty patients with suspected psychosocial factors causing LBP along with 20 healthy volunteers were included. The analysis included 25 responders and 25 non-responders for CBT. MFSE showed significant effects of scale factor [F(19,171) = 14.82, p < 0.01, partial η2 = 0.622] and interaction between group and scale factor [F(38,171) = 7.34, p < 0.01, partial η2 = 0.620]. The low-frequency band MFSE score had an odds ratio of 10.768 (95% confidence interval: 8.263-10.044, p < 0.001). The low-frequency band showed a high discriminative ability (area under the curve: 0.825), with a cut-off value of 1.25. The low-frequency FMSE is a superior biomarker for predicting suitability for CBT. This method can quickly evaluate suitability, reducing the burden on medical professionals and patients, and lowering medical costs.
Collapse
Affiliation(s)
- Keisuke Shimizu
- The Future Medicine Education and Research Organization, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroto Chikubu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Inoue
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mitsuo Morita
- Division of Rehabilitation Medicine, Chiba University Hospital, Chiba, Japan
| | - Akiko Ichihara
- Liaison Office for Community Medical Care, Chiba University Hospital, Chiba, Japan
| | - Arika Ono
- Liaison Office for Community Medical Care, Chiba University Hospital, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Liu XX, Chen XH, Zheng ZW, Jiang Q, Li C, Yang L, Chen X, Mao XF, Yuan HY, Feng LL, Jiang Q, Shi WX, Sasaki T, Fukunaga K, Chen Z, Han F, Lu YM. BOD1 regulates the cerebellar IV/V lobe-fastigial nucleus circuit associated with motor coordination. Signal Transduct Target Ther 2022; 7:170. [PMID: 35641478 PMCID: PMC9156688 DOI: 10.1038/s41392-022-00989-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebellar ataxias are characterized by a progressive decline in motor coordination, but the specific output circuits and underlying pathological mechanism remain poorly understood. Through cell-type-specific manipulations, we discovered a novel GABAergic Purkinje cell (PC) circuit in the cerebellar IV/V lobe that projected to CaMKIIα+ neurons in the fastigial nucleus (FN), which regulated sensorimotor coordination. Furthermore, transcriptomics profiling analysis revealed various cerebellar neuronal identities, and we validated that biorientation defective 1 (BOD1) played an important role in the circuit of IV/V lobe to FN. BOD1 deficit in PCs of IV/V lobe attenuated the excitability and spine density of PCs, accompany with ataxia behaviors. Instead, BOD1 enrichment in PCs of IV/V lobe reversed the hyperexcitability of CaMKIIα+ neurons in the FN and ameliorated ataxia behaviors in L7-Cre; BOD1f/f mice. Together, these findings further suggest that specific regulation of the cerebellar IV/V lobePCs → FNCaMKIIα+ circuit might provide neuromodulatory targets for the treatment of ataxia behaviors.
Collapse
Affiliation(s)
- Xiu-Xiu Liu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Xing-Hui Chen
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhi-Wei Zheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
| | - Qin Jiang
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
| | - Chen Li
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Lin Yang
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Xing-Feng Mao
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Hao-Yang Yuan
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
| | - Li-Li Feng
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wei-Xing Shi
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China. .,Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, 210029, Nanjing, China. .,Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, 215002, Suzhou, China.
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China. .,Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|