1
|
Slika E, Fuchs PA, Wood MB. Virally mediated enhancement of efferent inhibition reduces acoustic trauma in wild-type murine cochleas. Mol Ther Methods Clin Dev 2025; 33:101455. [PMID: 40236498 PMCID: PMC11999434 DOI: 10.1016/j.omtm.2025.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Noise-induced hearing loss (NIHL) poses an emerging global health problem with only ear protection or sound avoidance as preventive strategies. The cochlea receives some protection from medial olivocochlear efferent neurons, providing a potential target for therapeutic enhancement. Cholinergic efferents release acetylcholine (ACh) to hyperpolarize and shunt the outer hair cells (OHCs), reducing sound-evoked activation. The (α9)2(α10)3 nicotinic ACh receptor (nAChR) on the OHCs mediates this effect. Transgenic knockin mice with a gain-of-function nAChR (α9L9'T) suffer less NIHL. α9 knockout mice are more vulnerable to NIHL but can be rescued by viral transduction of the α9L9'T subunit. In this study, an HA-tagged gain-of-function α9 isoform was expressed in wild-type mice to reduce NIHL. Synaptic integration of the virally expressed nAChR subunit was confirmed by HA immunopuncta localized to the postsynaptic membrane of OHCs. After noise exposure, AAV2.7m8-CAG-α9L9'T-HA (α9L9'T-HA)-injected mice had less hearing loss (auditory brainstem response [ABR] thresholds and threshold shifts) than did control mice. ABRs of α9L9'T-HA-injected mice also had larger wave-1 amplitudes and better recovery of wave-1 amplitudes post noise exposure. Thus, virally expressed α9L9'T combines effectively with native α9 and α10 subunits to mitigate NIHL in wild-type cochleas.
Collapse
Affiliation(s)
- Eleftheria Slika
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul A. Fuchs
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan Beers Wood
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2025; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
3
|
Diuba A, Gratias P, Jeffers PWC, Nouvian R, Puel JL, Kujawa SG, Bourien J. Phenotypic changes of auditory nerve fibers after excitotoxicity. Proc Natl Acad Sci U S A 2025; 122:e2412332122. [PMID: 40168123 PMCID: PMC12002199 DOI: 10.1073/pnas.2412332122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/25/2025] [Indexed: 04/03/2025] Open
Abstract
There is a substantial body of evidence elucidating the pathophysiological aspects of excitotoxicity in the mammalian cochlea. However, the question of whether the resultant damage is reversible remains unresolved. To replicate an excitotoxic event, we investigated the long-term effects of kainate application in gerbil cochleae. Surprisingly, despite persistent synapse loss, the compound action potential of the auditory nerve fully recovered. This functional retrieval was associated with a phenotypic change in auditory nerve fibers. Thresholds were improved along the tonotopic axis. High-spontaneous rate (SR) fibers largely populated the apical region, while low-SR fibers from the basal region exhibited sound-driven activity indistinguishable from control high-SR fibers. This functional phenotype change may support the full recovery of neural response thresholds and amplitudes after excitotoxicity. Furthermore, hyperresponsiveness of the auditory nerve fibers could be a crucial factor in the development of hyperactivity in the central auditory pathways, a common occurrence following acoustic overstimulation.
Collapse
Affiliation(s)
- Artem Diuba
- Institute for Neuroscience of Montpellier, University of Montpellier, INSERM, Montpellier34000, France
| | - Paul Gratias
- Institute for Neuroscience of Montpellier, University of Montpellier, INSERM, Montpellier34000, France
| | - Penelope W. C. Jeffers
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA02114
- Division of Medical Sciences, Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA02115
| | - Régis Nouvian
- Institute for Neuroscience of Montpellier, University of Montpellier, INSERM, Montpellier34000, France
| | - Jean-Luc Puel
- Institute for Neuroscience of Montpellier, University of Montpellier, INSERM, Montpellier34000, France
- Audiocampus, University of Montpellier, Montpellier34000, France
| | - Sharon G. Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA02114
- Division of Medical Sciences, Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA02115
| | - Jérôme Bourien
- Institute for Neuroscience of Montpellier, University of Montpellier, INSERM, Montpellier34000, France
- Audiocampus, University of Montpellier, Montpellier34000, France
| |
Collapse
|
4
|
Luo Y, Wu H, Min X, Chen Y, Deng W, Chen M, Yang C, Xiong H. SIRT1 prevents noise-induced hearing loss by enhancing cochlear mitochondrial function. Cell Commun Signal 2025; 23:160. [PMID: 40176044 PMCID: PMC11963675 DOI: 10.1186/s12964-025-02152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
Exposure to traumatic noise triggers cochlear damage and consequently causes permanent sensorineural hearing loss. However, effective treatment strategies for noise-induced hearing loss (NIHL) are lacking. Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that plays a critical role in multiple physiological and pathological events. However, its role in NIHL pathogenesis remains elusive. This study revealed that SIRT1 expression in the cochlea progressively decreases in a mouse model of NIHL. Hair cell-specific knockout of SIRT1 exacerbates the noise-induced loss of outer and inner hair cell synaptic ribbons, retraction of cochlear nerve terminals, and oxidative stress, leading to more severe NIHL. Conversely, adeno-associated virus (AAV)-mediated SIRT1 overexpression effectively attenuated most noise-induced cochlear damage and alleviated NIHL. Transcriptomic analysis revealed that SIRT1 deficiency impairs glucose metabolism and inhibits antioxidant pathways in the cochlea following exposure to noise. Further investigation revealed that SIRT1 exerts an antioxidant effect, at least in part, through AMPK activation in cultured auditory HEI-OC1 cells exposed to oxidative stress. Collectively, these findings indicate that SIRT1 is essential for the maintenance of redox balance and mitochondrial function in the cochlea after traumatic noise exposure, thus providing a promising therapeutic target for NIHL treatment.
Collapse
Affiliation(s)
- Yuelian Luo
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haoyang Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Min
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenting Deng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minjun Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuxuan Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Jiang Y, Bradshaw JJ, Sharma R, Gan RZ. Multiscale Finite Element Modeling of Human Ear for Acoustic Wave Transmission Into Cochlea and Hair Cells Fatigue Failure. J Biomech Eng 2025; 147:041002. [PMID: 39790080 DOI: 10.1115/1.4067577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses and failures of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics. This study harnessed a multiscale FE model to investigate the mechanical behaviors of ear tissues in response to acoustic wave and developed a fatigue mechanical model to describe the outer hair cells (OHCs) failure. A three-dimensional (3D) multiscale FE model consisting of a macroscale model of the ear canal, middle ear, and three-chambered cochlea and a microscale OC model on a representative basilar membrane section, including the hair cells, membranes, and supporting cells, was established. Harmonic acoustic mode was used in the FE model for simulating various acoustic pressures and frequencies. The cochlear basilar membrane and the cochlear pressure induced by acoustic pressures were derived from the macroscale model and used as inputs for microscale OC model. The OC model identified the stress and strain concentrations in the reticular lamina (RL) at the root of stereocilia hair bundles and in the Deiter's cells at the connecting ends with OHCs, indicating the potential mechanical damage sites. OHCs were under cyclic loading and the alternating stress was quantified by the FE model. A fatigue mechanism for OHCs was established based on the modeling results and experimental data. This mechanism would be used for predicting fatigue failure and the resulting hearing loss.
Collapse
Affiliation(s)
- Yijie Jiang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019
| | - John J Bradshaw
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019
- University of Oklahoma
| | - Roshan Sharma
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019
- University of Oklahoma
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019
| |
Collapse
|
6
|
Li S, Qiu Y, Li A, Lu J, Ji X, Hao W, Cheng C, Gao X. Characterization of the Expression and Role of Striatin-Interacting Protein 2 in Mouse Cochlea. Otol Neurotol 2025; 46:e139-e146. [PMID: 39965243 DOI: 10.1097/mao.0000000000004449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
HYPOTHESIS In this study, we aimed to examine the cochlear expression pattern and function of Striatin-interacting protein 2 (STRIP2) by using animal models. BACKGROUND Sensorineural hearing loss often results from genetic defects in hair cell (HC) development and function. STRIP2 is a part of the striatin-interacting phosphatase and kinase (STRIPAK) complex, which plays important regulatory roles in cell fate determination, proliferation, cytoskeletal organization, and cell morphology. A recent study revealed Strip2 as the candidate gene that regulates positive selection in HC lineages. However, its role in the inner ear has not been identified. METHODS Strip2 knockout mouse model was used to examine the cochlear expression pattern and function of STRIP2. Auditory brainstem response test was used to evaluate the hearing function of mice. Immunostaining and scanning electron microscope were used to study hair cells, synapses, and stereocilia of cochlea. RESULTS Immunostaining showed that cytoplasmic STRIP2 expression in hair cells increased from postnatal day (P) 3 to P14. Despite having normal hearing thresholds, hair cell numbers, and stereocilia morphology until P90, the deletion of Strip2 resulted in a mild reduction in ribbon synapse density, suggesting a late onset of cochlear synaptic defects. CONCLUSION Our results revealed that STRIP2 was abundantly expressed in hair cells; however, the hearing function of Strip2-/- mice was comparable to that of control mice until P90, and a mild decrease in ribbon synapse number was detected at P60 and P90. Further studies on STRIP2 and its associated complexes will provide new insights into the pathways involved in inner ear development and function.
Collapse
Affiliation(s)
| | - Yue Qiu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | | | - Jie Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xinya Ji
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Wenli Hao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | | | | |
Collapse
|
7
|
Shenoy S, Bhatt K, Yazdani Y, Rahimian H, Djalilian HR, Abouzari M. A Systematic Review: State of the Science on Diagnostics of Hidden Hearing Loss. Diagnostics (Basel) 2025; 15:742. [PMID: 40150084 PMCID: PMC11940875 DOI: 10.3390/diagnostics15060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: A sizeable population of patients with normal pure-tone audiograms endorse a consistent difficulty of following conversations in noisy environments. Termed hidden hearing loss (HHL), this condition evades traditional diagnostic methods for hearing loss and thus is significantly under-diagnosed and untreated. This review sought to identify emerging methods of diagnosing HHL via measurement of its histopathologic correlate: cochlear synaptopathy, the loss of synapses in the auditory nerve pathway. Methods: A thorough literature search of multiple databases was conducted to identify studies with objective, electrophysiological measures of synaptopathy. The PRISMA protocol was employed to establish criteria for the selection of relevant literature. Results: A total of 21 studies were selected with diagnostic methods, including the auditory brainstem response (ABR), electrocochleography (EcochG), middle ear muscle reflex (MEMR), and frequency-following response (FFR). Measures that may indicate the presence of synaptopathy include a reduced wave I amplitude of ABR, reduced SP amplitude of EcochG, and abnormal MEMR, among other measurements. Behavioral measures were often performed alongside electrophysiological measures, the most common of which was the speech-in-noise assessment. Conclusions: ABR was the most common diagnostic method for assessing HHL. Though ABR, EcochG, and MEMR may be sensitive to measuring synaptopathy, more literature comparing these methods is necessary. A two-pronged approach combining behavioral and electrophysiological measures may prove useful as a criterion for diagnosing and estimating the extent of pathology in affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Mehdi Abouzari
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Mokhatrish MM, Dighriri RM, Otaif AA, Otaif AA, Jahlan RA, Daghreeri AA, Hakami HT, Mobarki AM, Daghriri BF, Hakami FM, Dighriri OM. Awareness of and the relationship between noise-induced hearing loss and the use of personal listening devices in Jazan region, Saudi Arabia. Front Public Health 2025; 13:1505442. [PMID: 40061459 PMCID: PMC11885267 DOI: 10.3389/fpubh.2025.1505442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/31/2025] [Indexed: 05/13/2025] Open
Abstract
Objectives Noise-induced hearing loss (NIHL) is a significant global health issue, exacerbated by the increasing use of personal listening devices (PLDs). This study aims to assess the awareness of NIHL and its association with PLD use among residents in the Jazan region of Saudi Arabia. Materials and methods A descriptive, cross-sectional study was conducted among Saudi adults in Jazan. A structured questionnaire was used to gather data on demographics, health-related characteristics, PLD usage patterns, and awareness of NIHL. Results The study included 428 participants, with 53.3% males and 45.6% aged 18-25. Most participants used PLDs frequently, with 43.0% listening for an hour or less daily. Awareness of NIHL was moderate, with 81.1% recognizing the harmful effects of loud noise on hearing. However, misconceptions about early signs and prevention of hearing loss (HL) were prevalent. The mean HL score was 8.9 (SD: 2.8) out of 20; which reflects low level of HL among the study participants. Males were 1.6 folds more likely to have higher level of HL compared to females (p = 0.015). Participants who prefer high volume level (above 70 dB) were more than 2-folds likely to have higher level of HL compared to others (p < 0.01). Conclusion The study highlights moderate level of awareness of NIHL and the risks of PLDs in Jazan region of Saudi Arabia. However, implementing preventive measures, especially among younger demographics, remains a challenge. The findings suggest the need for targeted public health interventions and technology to strengthen hearing conservation strategies.
Collapse
Affiliation(s)
- Mohammad M. Mokhatrish
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ramzi M. Dighriri
- Department of Otolaryngology-Head & Neck Surgery, Armed Forces Hospital, Jazan, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fink D. What is the safe noise exposure level to prevent noise-induced hearing loss? JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:124-128. [PMID: 38637639 PMCID: PMC11876062 DOI: 10.1038/s41370-024-00660-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024]
|
10
|
De Poortere N, Keshishzadeh S, Keppler H, Dhooge I, Verhulst S. Intrasubject variability in potential early markers of sensorineural hearing damage. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:3480-3495. [PMID: 39565141 DOI: 10.1121/10.0034423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/27/2024] [Indexed: 11/21/2024]
Abstract
The quest for noninvasive early markers for sensorineural hearing loss (SNHL) has yielded diverse measures of interest. However, comprehensive studies evaluating the test-retest reliability of multiple measures and stimuli within a single study are scarce, and a standardized clinical protocol for robust early markers of SNHL remains elusive. To address these gaps, this study explores the intra-subject variability of various potential electroencephalogram- (EEG-) biomarkers for cochlear synaptopathy (CS) and other SNHL-markers in the same individuals. Fifteen normal-hearing young adults underwent repeated measures of (extended high-frequency) pure-tone audiometry, speech-in-noise intelligibility, distortion-product otoacoustic emissions (DPOAEs), and auditory evoked potentials; comprising envelope following responses (EFR) and auditory brainstem responses (ABR). Results confirm high reliability in pure-tone audiometry, whereas the matrix sentence-test exhibited a significant learning effect. The reliability of DPOAEs varied across three evaluation methods, each employing distinct SNR-based criteria for DPOAE-datapoints. EFRs exhibited superior test-retest reliability compared to ABR-amplitudes. Our findings emphasize the need for careful interpretation of presumed noninvasive SNHL measures. While tonal-audiometry's robustness was corroborated, we observed a confounding learning effect in longitudinal speech audiometry. The variability in DPOAEs highlights the importance of consistent ear probe replacement and meticulous measurement techniques, indicating that DPOAE test-retest reliability is significantly compromised under less-than-ideal conditions. As potential EEG-biomarkers of CS, EFRs are preferred over ABR-amplitudes based on the current study results.
Collapse
Affiliation(s)
- Nele De Poortere
- Department of Rehabilitation Sciences-Audiology, Ghent University, Ghent, Belgium
| | - Sarineh Keshishzadeh
- Department of Information Technology-Hearing Technology @ WAVES, Ghent University, Ghent, Belgium
| | - Hannah Keppler
- Department of Rehabilitation Sciences-Audiology, Ghent University, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Ear, Nose and Throat, Ghent University Hospital, Ghent, Belgium
| | - Sarah Verhulst
- Department of Information Technology-Hearing Technology @ WAVES, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Strelkova OS, Osgood RT, Tian C, Zhang X, Hale E, De-la-Torre P, Hathaway DM, Indzhykulian AA. PKHD1L1 is required for stereocilia bundle maintenance, durable hearing function and resilience to noise exposure. Commun Biol 2024; 7:1423. [PMID: 39482437 PMCID: PMC11527881 DOI: 10.1038/s42003-024-07121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1) is a human deafness gene, responsible for autosomal recessive deafness-124 (DFNB124). Sensory hair cells of the cochlea are essential for hearing, relying on the mechanosensitive stereocilia bundle at their apical pole for their function. PKHD1L1 is a stereocilia protein required for the formation of the developmentally transient stereocilia surface coat. In this study, we carry out an in depth characterization of PKHD1L1 expression in mice during development and adulthood, analyze hair-cell bundle morphology and hearing function in aging PKHD1L1-deficient mouse lines, and assess their susceptibility to noise damage. Our findings reveal that PKHD1L1-deficient mice display no disruption to bundle cohesion or tectorial membrane attachment-crown formation during development. However, starting from 6 weeks of age, PKHD1L1-deficient mice display missing stereocilia and disruptions to bundle coherence. Both conditional and constitutive PKHD1L1 knockout mice develop high-frequency hearing loss progressing to lower frequencies with age. Furthermore, PKHD1L1-deficient mice are susceptible to permanent hearing loss following moderate acoustic overexposure, which induces only temporary hearing threshold shifts in wild-type mice. These results suggest a role for PKHD1L1 in establishing robust sensory hair bundles during development, necessary for maintaining bundle cohesion and function in response to acoustic trauma and aging.
Collapse
Affiliation(s)
- Olga S Strelkova
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Richard T Osgood
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Chunjie Tian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Xinyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Evan Hale
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Pedro De-la-Torre
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Daniel M Hathaway
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Artur A Indzhykulian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Slika E, Fuchs PA, Wood MB. Virally-Mediated Enhancement of Efferent Inhibition Reduces Acoustic Trauma in Wild Type Murine Cochleas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612688. [PMID: 39314296 PMCID: PMC11419007 DOI: 10.1101/2024.09.12.612688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Noise-induced hearing loss (NIHL) poses an emerging global health problem with only ear protection or sound avoidance as preventive strategies. In addition, however, the cochlea receives some protection from medial olivocochlear (MOC) efferent neurons, providing a potential target for therapeutic enhancement. Cholinergic efferents release ACh (Acetylycholine) to hyperpolarize and shunt the outer hair cells (OHCs), reducing sound-evoked activation. The (α9)2(α10)3 nicotinic ACh receptor (nAChR) on the OHCs mediates this effect. Transgenic knock-in mice with a gain-of-function nAChR (α9L9'T) suffer less NIHL. α9 knockout mice are more vulnerable to NIHL but can be rescued by viral transduction of the α9L9'T subunit. In this study, an HA-tagged gain-of-function α9 isoform was expressed in wildtype mice in an attempt to reduce NIHL. Synaptic integration of the virally-expressed nAChR subunit was confirmed by HA-immunopuncta in the postsynaptic membrane of OHCs. After noise exposure, α9L9'T-HA injected mice had less hearing loss (auditory brainstem response (ABR) thresholds and threshold shifts) than did control mice. ABRs of α9L9'T-HA injected mice also had larger wave1 amplitudes and better recovery of wave one amplitudes post noise exposure. Thus, virally-expressed α9L9'T combines effectively with native α9 and α10 subunits to mitigate NIHL in wildtype cochleas.
Collapse
Affiliation(s)
- Eleftheria Slika
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Paul A. Fuchs
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Megan Beers Wood
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| |
Collapse
|
13
|
Schubert NMA, Reijntjes DOJ, van Tuinen M, Vijayakumar S, Jones TA, Jones SM, Pyott SJ. Pathophysiological processes underlying hidden hearing loss revealed in Kcnt1/2 double knockout mice. Aging Cell 2024; 23:e14243. [PMID: 39049179 PMCID: PMC11488318 DOI: 10.1111/acel.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024] Open
Abstract
Presbycusis is a prevalent condition in older adults characterized by the progressive loss of hearing due to age-related changes in the cochlea, the auditory portion of the inner ear. Many adults also struggle with understanding speech in noise despite having normal auditory thresholds, a condition termed "hidden" hearing loss because it evades standard audiological assessments. Examination of animal models and postmortem human tissue suggests that hidden hearing loss is also associated with age-related changes in the cochlea and may, therefore, precede overt age-related hearing loss. Nevertheless, the pathological mechanisms underlying hidden hearing loss are not understood, which hinders the development of diagnostic biomarkers and effective treatments for age-related hearing loss. To fill these gaps in knowledge, we leveraged a combination of tools, including transcriptomic profiling and morphological and functional assessments, to identify these processes and examine the transition from hidden to overt hearing loss. As a novel approach, we took advantage of a recently characterized model of hidden hearing loss: Kcnt1/2 double knockout mice. Using this model, we find that even before observable morphological pathology, hidden hearing loss is associated with significant alteration in several processes, notably proteostasis, in the cochlear sensorineural structures, and increased susceptibility to overt hearing loss in response to noise exposure and aging. Our findings provide the first insight into the pathophysiology associated with the earliest and, therefore, most treatable stages of hearing loss and provide critical insight directing future investigation of pharmaceutical strategies to slow and possibly prevent overt age-related hearing loss.
Collapse
Affiliation(s)
- Nick M A Schubert
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Daniël O J Reijntjes
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcel van Tuinen
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, Barkley Memorial Center, University of Nebraska Lincoln, Lincoln, Nebraska, USA
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, Barkley Memorial Center, University of Nebraska Lincoln, Lincoln, Nebraska, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, Barkley Memorial Center, University of Nebraska Lincoln, Lincoln, Nebraska, USA
| | - Sonja J Pyott
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Schmidt FH, Dörmann A, Ehrt K, Grossmann W, Mlynski R, Zhang L. The curvature quantification of wave I in auditory brainstem responses detects cochlear synaptopathy in human beings. Eur Arch Otorhinolaryngol 2024; 281:4735-4746. [PMID: 38703194 DOI: 10.1007/s00405-024-08699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Patients with age-related hearing loss complain often about reduced speech perception in adverse listening environment. Studies on animals have suggested that cochlear synaptopathy may be one of the primary mechanisms responsible for this phenomenon. A decreased wave I amplitude in supra-threshold auditory brainstem response (ABR) can diagnose this pathology non-invasively. However, the interpretation of the wave I amplitude in humans remains controversial. Recent studies in mice have established a robust and reliable mathematic algorithm, i.e., curve curvature quantification, for detecting cochlear synaptopathy. This study aimed to determine whether the curve curvature has sufficient test-retest reliability to detect cochlear synaptopathy in aging humans. METHODS Healthy participants were recruited into this prospective study. All subjects underwent an audiogram examination with standard and extended high frequencies ranging from 0.125 to 16 kHz and an ABR with a stimulus of 80 dB nHL click. The peak amplitude, peak latency, curvature at the peak, and the area under the curve of wave I were calculated and analyzed. RESULTS A total of 80 individuals with normal hearing, aged 18 to 61 years, participated in this study, with a mean age of 26.4 years. Pearson correlation analysis showed a significant negative correlation between curvature and age, as well as between curvature and extended high frequency (EHF) threshold (10-16 kHz). Additionally, the same correlation was observed between age and area as well as age and EHF threshold. The model comparison demonstrated that the curvature at the peak of wave I is the best metric to correlate with EHF threshold. CONCLUSION The curvature at the peak of wave I is the most sensitive metric for detecting cochlear synaptopathy in humans and may be applied in routine diagnostics to detect early degenerations of the auditory nerve.
Collapse
Affiliation(s)
- Florian Herrmann Schmidt
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Alexander Dörmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Karsten Ehrt
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Wilma Grossmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Lichun Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany.
| |
Collapse
|
15
|
Mittal R, Keith G, Lacey M, Lemos JRN, Mittal J, Assayed A, Hirani K. Diabetes mellitus, hearing loss, and therapeutic interventions: A systematic review of insights from preclinical animal models. PLoS One 2024; 19:e0305617. [PMID: 38985787 PMCID: PMC11236185 DOI: 10.1371/journal.pone.0305617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/02/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVES The aim of this systematic review article is to evaluate the relationship between diabetes mellitus (DM) and sensorineural hearing loss (SNHL) utilizing preclinical animal models. The review focused on studies assessing SNHL in diabetic animal models, elucidating the mechanisms of DM-associated SNHL, and exploring the response of diabetic animal models to noise overexposure. We also discussed studies investigating the efficacy of potential therapeutic strategies for amelioration of DM-associated SNHL in the animal models. METHODS A protocol of this systematic review was designed a priori and was registered in the PROSPERO database (registration number: CRD42023439961). We conducted a comprehensive search on PubMed, Science Direct, Web of Science, Scopus, and EMBASE databases. A minimum of three reviewers independently screened, selected, and extracted data. The risk of bias assessment of eligible studies was conducted using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool. RESULTS Following the screening of 238 studies, twelve original articles were included in this systematic review. The studies revealed that hyperglycemia significantly affects auditory function, with various pathological mechanisms contributing to DM-induced hearing impairment, including cochlear synaptopathy, microangiopathy, neuropathy, oxidative stress, mitochondrial abnormalities, and apoptosis-mediated cell death. Emerging interventions, such as Asiaticoside, Trigonelline, Chlorogenic acid, and Huotanquyu granules, demonstrated efficacy in providing otoprotection for preserving cochlear hair cells and hearing function. CONCLUSIONS Our systematic review delves into the intricate relationship between DM and hearing impairment in animal models. Future research should focus on targeted therapies to enhance cochlear mitochondrial function, alleviate oxidative stress, and regulate apoptosis. The association between SNHL and social isolation as well as cognitive decline underscores the necessity for innovative therapeutic modalities addressing yet undiscovered mechanisms. Translating findings from animal models to human studies will validate these findings, offering a synergistic approach to effectively manage DM-associated co-morbidities such as hearing impairment.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Grant Keith
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mitchel Lacey
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Amro Assayed
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
16
|
Maraslioglu-Sperber A, Blanc F, Heller S, Benkafadar N. Hyperosmotic sisomicin infusion: a mouse model for hearing loss. Sci Rep 2024; 14:15903. [PMID: 38987330 PMCID: PMC11237112 DOI: 10.1038/s41598-024-66635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Losing either type of cochlear sensory hair cells leads to hearing impairment. Inner hair cells act as primary mechanoelectrical transducers, while outer hair cells enhance sound-induced vibrations within the organ of Corti. Established inner ear damage models, such as systemic administration of ototoxic aminoglycosides, yield inconsistent and variable hair cell death in mice. Overcoming this limitation, we developed a method involving surgical delivery of a hyperosmotic sisomicin solution into the posterior semicircular canal of adult mice. This procedure induced rapid and synchronous apoptotic demise of outer hair cells within 14 h, leading to irreversible hearing loss. The combination of sisomicin and hyperosmotic stress caused consistent and synergistic ototoxic damage. Inner hair cells remained until three days post-treatment, after which deterioration in structure and number was observed, culminating in a complete hair cell loss by day seven. This robust animal model provides a valuable tool for otoregenerative research, facilitating single-cell and omics-based studies toward exploring preclinical therapeutic strategies.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fabian Blanc
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head & Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nesrine Benkafadar
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Lutze RD, Ingersoll MA, Thotam A, Joseph A, Fernandes J, Teitz T. ERK1/2 Inhibition via the Oral Administration of Tizaterkib Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response. Int J Mol Sci 2024; 25:6305. [PMID: 38928015 PMCID: PMC11204379 DOI: 10.3390/ijms25126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Noise-induced hearing loss (NIHL) is a major cause of hearing impairment and is linked to dementia and mental health conditions, yet no FDA-approved drugs exist to prevent it. Downregulating the mitogen-activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL, but the molecular targets and the mechanism of protection are not fully understood. Here, we tested specifically the role of the kinases ERK1/2 in noise otoprotection using a newly developed, highly specific ERK1/2 inhibitor, tizaterkib, in preclinical animal models. Tizaterkib is currently being tested in phase 1 clinical trials for cancer treatment and has high oral bioavailability and low predicted systemic toxicity in mice and humans. In this study, we performed dose-response measurements of tizaterkib's efficacy against permanent NIHL in adult FVB/NJ mice, and its minimum effective dose (0.5 mg/kg/bw), therapeutic index (>50), and window of opportunity (<48 h) were determined. The drug, administered orally twice daily for 3 days, 24 h after 2 h of 100 dB or 106 dB SPL noise exposure, at a dose equivalent to what is prescribed currently for humans in clinical trials, conferred an average protection of 20-25 dB SPL in both female and male mice. The drug shielded mice from the noise-induced synaptic damage which occurs following loud noise exposure. Equally interesting, tizaterkib was shown to decrease the number of CD45- and CD68-positive immune cells in the mouse cochlea following noise exposure. This study suggests that repurposing tizaterkib and the ERK1/2 kinases' inhibition could be a promising strategy for the treatment of NIHL.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Alena Thotam
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Anjali Joseph
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Joshua Fernandes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
- The Scintillon Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
18
|
Ismail Mohamad N, Santra P, Park Y, Matthews IR, Taketa E, Chan DK. Synaptic ribbon dynamics after noise exposure in the hearing cochlea. Commun Biol 2024; 7:421. [PMID: 38582813 PMCID: PMC10998851 DOI: 10.1038/s42003-024-06067-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
Moderate noise exposure induces cochlear synaptopathy, the loss of afferent ribbon synapses between cochlear hair cells and spiral ganglion neurons, which is associated with functional hearing decline. Prior studies have demonstrated noise-induced changes in the distribution and number of synaptic components, but the dynamic changes that occur after noise exposure have not been directly visualized. Here, we describe a live imaging model using RIBEYE-tagRFP to enable direct observation of pre-synaptic ribbons in mature hearing mouse cochleae after synaptopathic noise exposure. Ribbon number does not change, but noise induces an increase in ribbon volume as well as movement suggesting unanchoring from synaptic tethers. A subgroup of basal ribbons displays concerted motion towards the cochlear nucleus with subsequent migration back to the cell membrane after noise cessation. Understanding the immediate dynamics of synaptic damage after noise exposure may facilitate identification of specific target pathways to treat cochlear synaptopathy.
Collapse
Affiliation(s)
- Noura Ismail Mohamad
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Peu Santra
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Yesai Park
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ian R Matthews
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Emily Taketa
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Maraslioglu-Sperber A, Blanc F, Heller S, Benkafadar N. Hyperosmotic Sisomicin Infusion: A Mouse Model for Hearing Loss. RESEARCH SQUARE 2024:rs.3.rs-4096027. [PMID: 38645253 PMCID: PMC11030510 DOI: 10.21203/rs.3.rs-4096027/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Hearing impairment arises from the loss of either type of cochlear sensory hair cells. Inner hair cells act as primary sound transducers, while outer hair cells enhance sound-induced vibrations within the organ of Corti. Established models, such as systemic administration of ototoxic aminoglycosides, yield inconsistent and variable hair cell death in mice. Overcoming this limitation, we developed a method involving surgical delivery of a hyperosmotic sisomicin solution into the posterior semicircular canal of adult mice. This procedure induced rapid and synchronous apoptotic demise of outer hair cells within 14 hours, leading to irreversible hearing loss. The combination of sisomicin and hyperosmotic stress caused consistent and synergistic ototoxic damage. Inner hair cells remained intact until three days post-treatment, after which deterioration in structure and number was observed, culminating in cell loss by day seven. This robust animal model provides a valuable tool for otoregenerative research, facilitating single-cell and omics-based studies toward exploring preclinical therapeutic strategies.
Collapse
|
20
|
Strelkova OS, Osgood RT, Tian CJ, Zhang X, Hale E, De-la-Torre P, Hathaway DM, Indzhykulian AA. PKHD1L1 is required for stereocilia bundle maintenance, durable hearing function and resilience to noise exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582786. [PMID: 38496629 PMCID: PMC10942330 DOI: 10.1101/2024.02.29.582786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sensory hair cells of the cochlea are essential for hearing, relying on the mechanosensitive stereocilia bundle at their apical pole for their function. Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1) is a stereocilia protein required for normal hearing in mice, and for the formation of the transient stereocilia surface coat, expressed during early postnatal development. While the function of the stereocilia coat remains unclear, growing evidence supports PKHD1L1 as a human deafness gene. In this study we carry out in depth characterization of PKHD1L1 expression in mice during development and adulthood, analyze hair-cell bundle morphology and hearing function in aging PKHD1L1-defficient mouse lines, and assess their susceptibility to noise damage. Our findings reveal that PKHD1L1-deficient mice display no disruption to bundle cohesion or tectorial membrane attachment-crown formation during development. However, starting from 6 weeks of age, PKHD1L1-defficient mice display missing stereocilia and disruptions to bundle coherence. Both conditional and constitutive PKHD1L1 knock-out mice develop high-frequency hearing loss progressing to lower frequencies with age. Furthermore, PKHD1L1-deficient mice are susceptible to permanent hearing loss following moderate acoustic overexposure, which induces only temporary hearing threshold shifts in wild-type mice. These results suggest a role for PKHD1L1 in establishing robust sensory hair bundles during development, necessary for maintaining bundle cohesion and function in response to acoustic trauma and aging.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Evan Hale
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Pedro De-la-Torre
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel M. Hathaway
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Artur A. Indzhykulian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Duan B, Peng KA, Wang L. Injury and protection of spiral ganglion neurons. Chin Med J (Engl) 2024; 137:651-656. [PMID: 37407223 PMCID: PMC10950135 DOI: 10.1097/cm9.0000000000002765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Indexed: 07/07/2023] Open
Abstract
ABSTRACT Cochlear spiral ganglion neurons (SGNs) are bipolar ganglion cells and are the first neurons in the auditory transduction pathway. They transmit complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus for sound processing. Injury to SGNs causes largely irreversible hearing impairment because these neurons are highly differentiated cells and cannot regenerate, making treatment of sensorineural hearing loss (SNHL) arising from SGN injury difficult. When exposed to ototoxic drugs or damaging levels of noise or when there is loss of neurotrophic factors (NTFs), aging, and presence of other factors, SGNs can be irreversibly damaged, resulting in SNHL. It has been found that NTFs and stem cells can induce regeneration among dead spiral ganglion cells. In this paper, we summarized the present knowledge regarding injury, protection, and regeneration of SGNs.
Collapse
Affiliation(s)
- Beilei Duan
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kevin A. Peng
- Department of Neurotology, House Clinic, Los Angeles, CA 90017, USA
| | - Line Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
22
|
Feng B, Dong T, Song X, Zheng X, Jin C, Cheng Z, Liu Y, Zhang W, Wang X, Tao Y, Wu H. Personalized Porous Gelatin Methacryloyl Sustained-Release Nicotinamide Protects Against Noise-Induced Hearing Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305682. [PMID: 38225752 DOI: 10.1002/advs.202305682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Indexed: 01/17/2024]
Abstract
There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.
Collapse
Affiliation(s)
- Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Tingting Dong
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Xinyu Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yiqing Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xueling Wang
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| |
Collapse
|
23
|
Liu J, Stohl J, Overath T. Hidden hearing loss: Fifteen years at a glance. Hear Res 2024; 443:108967. [PMID: 38335624 DOI: 10.1016/j.heares.2024.108967] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Hearing loss affects approximately 18% of the population worldwide. Hearing difficulties in noisy environments without accompanying audiometric threshold shifts likely affect an even larger percentage of the global population. One of the potential causes of hidden hearing loss is cochlear synaptopathy, the loss of synapses between inner hair cells (IHC) and auditory nerve fibers (ANF). These synapses are the most vulnerable structures in the cochlea to noise exposure or aging. The loss of synapses causes auditory deafferentation, i.e., the loss of auditory afferent information, whose downstream effect is the loss of information that is sent to higher-order auditory processing stages. Understanding the physiological and perceptual effects of this early auditory deafferentation might inform interventions to prevent later, more severe hearing loss. In the past decade, a large body of work has been devoted to better understand hidden hearing loss, including the causes of hidden hearing loss, their corresponding impact on the auditory pathway, and the use of auditory physiological measures for clinical diagnosis of auditory deafferentation. This review synthesizes the findings from studies in humans and animals to answer some of the key questions in the field, and it points to gaps in knowledge that warrant more investigation. Specifically, recent studies suggest that some electrophysiological measures have the potential to function as indicators of hidden hearing loss in humans, but more research is needed for these measures to be included as part of a clinical test battery.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Psychology and Neuroscience, Duke University, Durham, USA.
| | - Joshua Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, USA
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, Durham, USA
| |
Collapse
|
24
|
Yu Q, Liu S, Guo R, Chen K, Li Y, Jiang D, Gong S, Yin L, Liu K. Complete Restoration of Hearing Loss and Cochlear Synaptopathy via Minimally Invasive, Single-Dose, and Controllable Middle Ear Delivery of Brain-Derived Neurotrophic Factor-Poly(dl-lactic acid- co-glycolic acid)-Loaded Hydrogel. ACS NANO 2024; 18:6298-6313. [PMID: 38345574 DOI: 10.1021/acsnano.3c11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.
Collapse
Affiliation(s)
- Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengnan Liu
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Yang Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dan Jiang
- Hearing Implant Centre, Guy's and St. Thomas NHS Foundation Trust, London SE1 7EH, United Kingdom
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| | - Lan Yin
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| |
Collapse
|
25
|
Charlton PE, Burke K, Kobrina A, Lauer AM, Dent ML. The perception of ultrasonic vocalizations by laboratory mice following intense noise exposures. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:867-878. [PMID: 38310604 PMCID: PMC10838193 DOI: 10.1121/10.0024614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/06/2024]
Abstract
Noise-induced hearing loss interacts with age, sex, and listening conditions to affect individuals' perception of ecologically relevant stimuli like speech. The present experiments assessed the impact of age and sex on vocalization detection by noise-exposed mice trained to detect a downsweep or complex ultrasonic vocalization in quiet or in the presence of a noise background. Daily thresholds before and following intense noise exposure were collected longitudinally and compared across several factors. All mice, regardless of age, sex, listening condition, or stimulus type showed their poorest behavioral sensitivity immediately after the noise exposure. There were varying degrees of recovery over time and across factors. Old-aged mice had greater threshold shifts and less recovery compared to middle-aged mice. Mice had larger threshold shifts and less recovery for downsweeps than for complex vocalizations. Female mice were more sensitive, had smaller post-noise shifts, and had better recovery than males. Thresholds in noise were higher and less variable than thresholds in quiet, but there were comparable shifts and recovery. In mice, as in humans, the perception of ecologically relevant stimuli suffers after an intense noise exposure, and results differ from simple tone detection findings.
Collapse
Affiliation(s)
- Payton E Charlton
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Kali Burke
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Anastasiya Kobrina
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Micheal L Dent
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
26
|
Clifford RE, Maihofer AX, Chatzinakos C, Coleman JRI, Daskalakis NP, Gasperi M, Hogan K, Mikita EA, Stein MB, Tcheandjieu C, Telese F, Zuo Y, Ryan AF, Nievergelt CM. Genetic architecture distinguishes tinnitus from hearing loss. Nat Commun 2024; 15:614. [PMID: 38242899 PMCID: PMC10799010 DOI: 10.1038/s41467-024-44842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
Tinnitus is a heritable, highly prevalent auditory disorder treated by multiple medical specialties. Previous GWAS indicated high genetic correlations between tinnitus and hearing loss, with little indication of differentiating signals. We present a GWAS meta-analysis, triple previous sample sizes, and expand to non-European ancestries. GWAS in 596,905 Million Veteran Program subjects identified 39 tinnitus loci, and identified genes related to neuronal synapses and cochlear structural support. Applying state-of-the-art analytic tools, we confirm a large number of shared variants, but also a distinct genetic architecture of tinnitus, with higher polygenicity and large proportion of variants not shared with hearing difficulty. Tissue-expression analysis for tinnitus infers broad enrichment across most brain tissues, in contrast to hearing difficulty. Finally, tinnitus is not only correlated with hearing loss, but also with a spectrum of psychiatric disorders, providing potential new avenues for treatment. This study establishes tinnitus as a distinct disorder separate from hearing difficulties.
Collapse
Affiliation(s)
- Royce E Clifford
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
- University of California San Diego, Division of Otolaryngology - Head and Neck Surgery, La Jolla, CA, USA.
| | - Adam X Maihofer
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Chris Chatzinakos
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Jonathan R I Coleman
- King's College London, NIHR Maudsley BRC, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Nikolaos P Daskalakis
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Marianna Gasperi
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Kelleigh Hogan
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Elizabeth A Mikita
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- University of California San Diego, School of Public Health, La Jolla, CA, USA
| | | | - Francesca Telese
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Yanning Zuo
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Allen F Ryan
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- University of California San Diego, Division of Otolaryngology - Head and Neck Surgery, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA.
| |
Collapse
|
27
|
Yang ZJ, Zhao CL, Liang WQ, Chen ZR, Du ZD, Gong SS. ROS-induced oxidative stress and mitochondrial dysfunction: a possible mechanism responsible for noise-induced ribbon synaptic damage. Am J Transl Res 2024; 16:272-284. [PMID: 38322575 PMCID: PMC10839402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Evidence suggests that damage to the ribbon synapses (RS) may be the main cause of auditory dysfunction in noise-induced hearing loss (NIHL). Oxidative stress is implicated in the pathophysiology of synaptic damage. However, the relationship between oxidative stress and RS damage in NIHL remains unclear. To investigate the hypothesis that noise-induced oxidative stress is a key factor in synaptic damage within the inner ear, we conducted a study using mice subjected to single or repeated noise exposure (NE). We assessed auditory function using auditory brainstem response (ABR) test and examined cochlear morphology by immunofluorescence staining. The results showed that mice that experienced a single NE exhibited a threshold shift and recovered within two weeks. The ABR wave I latencies were prolonged, and the amplitudes decreased, suggesting RS dysfunction. These changes were also demonstrated by the loss of RS as evidenced by immunofluorescence staining. However, we observed threshold shifts that did not return to baseline levels following secondary NE. Additionally, ABR wave I latencies and amplitudes exhibited notable changes. Immunofluorescence staining indicated not only severe damage to RS but also loss of outer hair cells. We also noted decreased T-AOC, ATP, and mitochondrial membrane potential levels, alongside increased hydrogen peroxide concentrations post-NE. Furthermore, the expression levels of 4-HNE and 8-OHdG in the cochlea were notably elevated. Collectively, our findings suggest that the production of reactive oxygen species leads to oxidative damage in the cochlea. This mitochondrial dysfunction consequently contributes to the loss of RS, precipitating an early onset of NIHL.
Collapse
Affiliation(s)
- Zi-Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical UniversityBeijing 100050, China
| | - Chun-Li Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical UniversityBeijing 100050, China
| | - Wen-Qi Liang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical UniversityBeijing 100050, China
| | - Zhong-Rui Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical UniversityBeijing 100050, China
| | - Zheng-De Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical UniversityBeijing 100050, China
| | - Shu-Sheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical UniversityBeijing 100050, China
| |
Collapse
|
28
|
Bramhall NF, McMillan GP. Perceptual Consequences of Cochlear Deafferentation in Humans. Trends Hear 2024; 28:23312165241239541. [PMID: 38738337 DOI: 10.1177/23312165241239541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Garnett P McMillan
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
29
|
Liu J, Stohl J, Lopez-Poveda EA, Overath T. Quantifying the Impact of Auditory Deafferentation on Speech Perception. Trends Hear 2024; 28:23312165241227818. [PMID: 38291713 PMCID: PMC10832414 DOI: 10.1177/23312165241227818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
The past decade has seen a wealth of research dedicated to determining which and how morphological changes in the auditory periphery contribute to people experiencing hearing difficulties in noise despite having clinically normal audiometric thresholds in quiet. Evidence from animal studies suggests that cochlear synaptopathy in the inner ear might lead to auditory nerve deafferentation, resulting in impoverished signal transmission to the brain. Here, we quantify the likely perceptual consequences of auditory deafferentation in humans via a physiologically inspired encoding-decoding model. The encoding stage simulates the processing of an acoustic input stimulus (e.g., speech) at the auditory periphery, while the decoding stage is trained to optimally regenerate the input stimulus from the simulated auditory nerve firing data. This allowed us to quantify the effect of different degrees of auditory deafferentation by measuring the extent to which the decoded signal supported the identification of speech in quiet and in noise. In a series of experiments, speech perception thresholds in quiet and in noise increased (worsened) significantly as a function of the degree of auditory deafferentation for modeled deafferentation greater than 90%. Importantly, this effect was significantly stronger in a noisy than in a quiet background. The encoding-decoding model thus captured the hallmark symptom of degraded speech perception in noise together with normal speech perception in quiet. As such, the model might function as a quantitative guide to evaluating the degree of auditory deafferentation in human listeners.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Joshua Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, NC, USA
| | - Enrique A. Lopez-Poveda
- Instituto de Neurociencias de Castilla y Leon, University of Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
30
|
Bramhall NF, Theodoroff SM, McMillan GP, Kampel SD, Buran BN. Associations Between Physiological Correlates of Cochlear Synaptopathy and Tinnitus in a Veteran Population. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:4635-4652. [PMID: 37889209 PMCID: PMC11719394 DOI: 10.1044/2023_jslhr-23-00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE Animal models and human temporal bones indicate that noise exposure is a risk factor for cochlear synaptopathy, a possible etiology of tinnitus. Veterans are exposed to high levels of noise during military service. Therefore, synaptopathy may explain the high rates of noise-induced tinnitus among Veterans. Although synaptopathy cannot be directly evaluated in living humans, animal models indicate that several physiological measures are sensitive to synapse loss, including the auditory brainstem response (ABR), the middle ear muscle reflex (MEMR), and the envelope following response (EFR). The purpose of this study was to determine whether tinnitus is associated with reductions in physiological correlates of synaptopathy that parallel animal studies. METHOD Participants with normal audiograms were grouped according to Veteran status and tinnitus report (Veterans with tinnitus, Veterans without tinnitus, and non-Veteran controls). The effects of being a Veteran with tinnitus on ABR, MEMR, and EFR measurements were independently modeled using Bayesian regression analysis. RESULTS Modeled point estimates of MEMR and EFR magnitude showed reductions for Veterans with tinnitus compared with non-Veterans, with the most evident reduction observed for the EFR. Two different approaches were used to provide context for the Veteran tinnitus effect on the EFR by comparing to age-related reductions in EFR magnitude and synapse numbers observed in previous studies. These analyses suggested that EFR magnitude/synapse counts were reduced in Veterans with tinnitus by roughly the same amount as over 20 years of aging. CONCLUSION These findings suggest that cochlear synaptopathy may contribute to tinnitus perception in noise-exposed Veterans. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24347761.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Sarah M Theodoroff
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Garnett P McMillan
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Brad N Buran
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| |
Collapse
|
31
|
Lutze RD, Ingersoll MA, Thotam A, Joseph A, Fernandes J, Teitz T. ERK1/2 Inhibition Alleviates Noise-Induced Hearing Loss While Tempering Down the Immune Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563007. [PMID: 37905140 PMCID: PMC10614960 DOI: 10.1101/2023.10.18.563007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Noise-induced hearing loss (NIHL) is a major cause of hearing impairment, yet no FDA-approved drugs exist to prevent it. Targeting the mitogen activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL. Tizaterkib is an orally bioavailable, highly specific ERK1/2 inhibitor, currently in Phase-1 anticancer clinical trials. Here, we tested tizaterkib's efficacy against permanent NIHL in mice at doses equivalent to what humans are currently prescribed in clinical trials. The drug given orally 24 hours after noise exposure, protected an average of 20-25 dB SPL in three frequencies, in female and male mice, had a therapeutic window >50, and did not confer additional protection to KSR1 genetic knockout mice, showing the drug works through the MAPK pathway. Tizaterkib shielded from noise-induced cochlear synaptopathy, and a 3-day, twice daily, treatment with the drug was the optimal determined regimen. Importantly, tizaterkib was shown to decrease the number of CD45 and CD68 positive immune cells in the cochlea following noise exposure, which could be part of the protective mechanism of MAPK inhibition.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Alena Thotam
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Anjali Joseph
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Joshua Fernandes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
32
|
Guo J, Mei H, Zhang Y, Che C, Guo L, Zhang Y, Li H, Sun S. Glutamate-aspartate transporter dysfunction enhances aminoglycoside-induced cochlear hair cell death via NMDA receptor activation. Neurochem Int 2023; 169:105587. [PMID: 37495172 DOI: 10.1016/j.neuint.2023.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/02/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Glutamate is a crucial neurotransmitter for hearing transduction in the cochlea, but excess glutamate is detrimental to the survival of cochlear sensory cells. Glutamate-aspartate transporter (GLAST) is the major transporter for glutamate removal; however, its role in aminoglycoside-induced hair cell loss is not well studied. In the present study, we first investigated the localization and expression of GLAST over the course of development of the mouse cochlea, and we found that inhibition of GLAST increased hair cell death. However, when the glutamate receptor NMDAR was inhibited by D-AP5, hair cell death was no longer increased by the GLAST inhibitor. Our results indicate that GLAST inhibition aggravates damage to cochlear hair cells, which may occur via NMDAR, and this suggests new clinical strategies for ameliorating the ototoxicity associated with the dysfunction of glutamate metabolism.
Collapse
Affiliation(s)
- Jin Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Honglin Mei
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yanping Zhang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Chenhao Che
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
33
|
Bhatt IS, Washnik NJ, Kingsbury S, Deshpande AK, Kingsbury H, Bhagavan SG, Michel K, Dias R, Torkamani A. Identifying Health-Related Conditions Associated with Tinnitus in Young Adults. Audiol Res 2023; 13:546-562. [PMID: 37489384 PMCID: PMC10366783 DOI: 10.3390/audiolres13040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVE The present study investigated the epidemic of tinnitus in college-aged young adults. Our first objective was to identify health conditions associated with tinnitus in young adults. The second objective was to evaluate the predictive utility of some known risk factors. STUDY DESIGN A cross-sectional design was used to investigate the prevalence and risk factors for tinnitus. SETTING A questionnaire was distributed, reaching out to a large college-aged population. A total of 2258 young adults aged 18-30 years were recruited from April 2021 to February 2022. INTERVENTIONS A questionnaire was administered to investigate the epidemiology of tinnitus in a population of college-aged young adults. RESULTS About 17.7% of young adults reported bothersome tinnitus perception lasting for ≥5 min in the last 12 months. The prevalence of chronic tinnitus (bothersome tinnitus for ≥1 year) and acute tinnitus (bothersome tinnitus for <1 year) was 10.6% and 7.1%, respectively. About 19% of the study sample reported at least one health condition. Individuals reporting head injury, hypertension, heart disease, scarlet fever, and malaria showed significantly higher odds of reporting chronic tinnitus. Meningitis and self-reported hearing loss showed significant associations with bothersome tinnitus. The prevalence of chronic tinnitus was significantly higher in males reporting high noise exposure, a positive history of reoccurring ear infections, European ethnic background, and a positive health history. Risk modeling showed that noise exposure was the most important risk factor for chronic tinnitus, followed by sex, reoccurring ear infections, and a history of any health condition. A positive history of COVID-19 and self-reported severity showed no association with tinnitus. Individuals reporting reoccurring ear infections showed a significantly higher prevalence of COVID-19. CONCLUSIONS While young adults with health conditions are at a higher risk of reporting tinnitus, the predictive utility of a positive health history remains relatively low, possibly due to weak associations between health conditions and tinnitus. Noise, male sex, reoccurring ear infections, European ethnicity, and a positive health history revealed higher odds of reporting chronic tinnitus than their counterparts. These risk factors collectively explained about 16% variability in chronic tinnitus, which highlights the need for identifying other risk factors for chronic tinnitus in young adults.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Nilesh J Washnik
- Department of Hearing Speech and Language Sciences, Ohio University, Athens, OH 45701, USA
| | - Sarah Kingsbury
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Aniruddha K Deshpande
- Department of Speech-Language-Hearing Sciences, Hofstra University, Hempstead, NY 11549, USA
| | - Hailey Kingsbury
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Srividya Grama Bhagavan
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Klayre Michel
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Science Institute, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Dépreux F, Czech L, Young H, Richter CP, Zhou Y, Whitlon DS. Statins protect mice from high-decibel noise-induced hearing loss. Biomed Pharmacother 2023; 163:114674. [PMID: 37435721 DOI: 10.1016/j.biopha.2023.114674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 07/13/2023] Open
Abstract
No medical interventions for noise induced hearing loss (NIHL) are approved by the Food and Drug Administration (USA). Here, we evaluate statins in CBA/CaJ mice as potential drugs for hearing loss. Direct delivery of fluvastatin to the cochlea and oral delivery of lovastatin were evaluated. Baseline hearing was assessed using Auditory Brain Stem Responses (ABRs). For fluvastatin, a cochleostomy was surgically created in the basal turn of the cochlea by a novel, laser-based procedure, through which a catheter attached to a mini-osmotic pump was inserted. The pump was filled with a solution of 50 µM fluvastatin+carrier or with the carrier alone for continuous delivery to the cochlea. Mice were exposed to one octave band noise (8-16 kHz x 2 h x 110 dB SPL). In our past work with guinea pigs, fluvastatin protected in the contralateral cochlea. In this study in CBA/CaJ mice, hearing was also assessed in the contralateral cochlea 1-4 weeks after noise exposure. At two weeks post exposure, ABR thresholds at 4, 8, 12, 16, and 32 kHz were elevated, as expected, in the noise+carrier alone treated mice by approximately 9-, 17-, 41-, 29-, and 34-dB, respectively. Threshold elevations were smaller in mice treated with noise+fluvastatin to about 2-, 6-, 20-,12- and 12-dB respectively. Survival of inner hair cell synapses were not protected by fluvastatin over these frequencies. Lovastatin delivered by gavage showed lower threshold shifts than with carrier alone. These data show that direct and oral statin delivery protects mice against NIHL.
Collapse
Affiliation(s)
- Frédéric Dépreux
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lyubov Czech
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hunter Young
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Knowles Hearing Center, Northwestern University, Chicago, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, Chicago, IL 60208, USA
| | - Yingjie Zhou
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Donna S Whitlon
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Knowles Hearing Center, Northwestern University, Chicago, IL 60208, USA; Northwestern University Interdepartmental Neurosciences Program, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Bhatt IS, Lichtenhan J, Tyler R, Goodman S. Influence of tinnitus, lifetime noise exposure, and firearm use on hearing thresholds, distortion product otoacoustic emissions, and their relative metric. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:418-432. [PMID: 37477366 PMCID: PMC10362977 DOI: 10.1121/10.0019880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/22/2023] [Accepted: 06/10/2023] [Indexed: 07/22/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) and hearing thresholds (HTs) are widely used to evaluate auditory physiology. DPOAEs are sensitive to cochlear amplification processes, while HTs are additionally dependent upon inner hair cells, synaptic junctions, and the auditory nervous system. These distinctions between DPOAEs and HTs might help differentially diagnose auditory dysfunctions. This study aims to differentially diagnose auditory dysfunctions underlying tinnitus, firearm use, and high lifetime noise exposure (LNE) using HTs, DPOAEs, and a derived metric comparing HTs and DPOAEs, in a sample containing overlapping subgroups of 133 normal-hearing young adults (56 with chronic tinnitus). A structured interview was used to evaluate LNE and firearm use. Linear regression was used to model the relationship between HTs and DPOAEs, and their regression residuals were used to quantify their relative agreement. Participants with chronic tinnitus showed significantly elevated HTs, yet DPOAEs remained comparable to those without tinnitus. In contrast, firearm users revealed elevated HTs and significantly lower DPOAEs than predicted from HTs. High LNE was associated with elevated HTs and a proportional decline in DPOAEs, as predicted from HTs. We present a theoretical model to interpret the findings, which suggest neural (or synaptic) dysfunction underlying tinnitus and disproportional mechanical dysfunction underlying firearm use.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jeffery Lichtenhan
- Department of Otolaryngology-Head and Neck Surgery, University of South Florida, Tampa, Florida 33612, USA
| | - Richard Tyler
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, Iowa 52242, USA
| | - Shawn Goodman
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
36
|
Tarnovsky YC, Taiber S, Nissan Y, Boonman A, Assaf Y, Wilkinson GS, Avraham KB, Yovel Y. Bats experience age-related hearing loss (presbycusis). Life Sci Alliance 2023; 6:e202201847. [PMID: 36997281 PMCID: PMC10067528 DOI: 10.26508/lsa.202201847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Hearing loss is a hallmark of aging, typically initially affecting the higher frequencies. In echolocating bats, the ability to discern high frequencies is essential. However, nothing is known about age-related hearing loss in bats, and they are often assumed to be immune to it. We tested the hearing of 47 wild Egyptian fruit bats by recording their auditory brainstem response and cochlear microphonics, and we also assessed the cochlear histology in four of these bats. We used the bats' DNA methylation profile to evaluate their age and found that bats exhibit age-related hearing loss, with more prominent deterioration at the higher frequencies. The rate of the deterioration was ∼1 dB per year, comparable to the hearing loss observed in humans. Assessing the noise in the fruit bat roost revealed that these bats are exposed to continuous immense noise-mostly of social vocalizations-supporting the assumption that bats might be partially resistant to loud noise. Thus, in contrast to previous assumptions, our results suggest that bats constitute a model animal for the study of age-related hearing loss.
Collapse
Affiliation(s)
- Yifat Chaya Tarnovsky
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yomiran Nissan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Arjan Boonman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Karen B Avraham
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Wong HTC, Lukasz D, Drerup CM, Kindt KS. In vivo investigation of mitochondria in lateral line afferent neurons and hair cells. Hear Res 2023; 431:108740. [PMID: 36948126 PMCID: PMC10079644 DOI: 10.1016/j.heares.2023.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daria Lukasz
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Manickam V, Gawande DY, Stothert AR, Clayman AC, Batalkina L, Warchol ME, Ohlemiller KK, Kaur T. Macrophages Promote Repair of Inner Hair Cell Ribbon Synapses following Noise-Induced Cochlear Synaptopathy. J Neurosci 2023; 43:2075-2089. [PMID: 36810227 PMCID: PMC10039750 DOI: 10.1523/jneurosci.1273-22.2023] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Resident cochlear macrophages rapidly migrate into the inner hair cell synaptic region and directly contact the damaged synaptic connections after noise-induced synaptopathy. Eventually, such damaged synapses are spontaneously repaired, but the precise role of macrophages in synaptic degeneration and repair remains unknown. To address this, cochlear macrophages were eliminated using colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Sustained treatment with PLX5622 in CX3CR1 GFP/+ mice of both sexes led to robust elimination of resident macrophages (∼94%) without significant adverse effects on peripheral leukocytes, cochlear function, and structure. At 1 day (d) post noise exposure of 93 or 90 dB SPL for 2 hours, the degree of hearing loss and synapse loss were comparable in the presence and absence of macrophages. At 30 d after exposure, damaged synapses appeared repaired in the presence of macrophages. However, in the absence of macrophages, such synaptic repair was significantly reduced. Remarkably, on cessation of PLX5622 treatment, macrophages repopulated the cochlea, leading to enhanced synaptic repair. Elevated auditory brainstem response thresholds and reduced auditory brainstem response Peak 1 amplitudes showed limited recovery in the absence of macrophages but recovered similarly with resident and repopulated macrophages. Cochlear neuron loss was augmented in the absence of macrophages but showed preservation with resident and repopulated macrophages after noise exposure. While the central auditory effects of PLX5622 treatment and microglia depletion remain to be investigated, these data demonstrate that macrophages do not affect synaptic degeneration but are necessary and sufficient to restore cochlear synapses and function after noise-induced synaptopathy.SIGNIFICANCE STATEMENT The synaptic connections between cochlear inner hair cells and spiral ganglion neurons can be lost because of noise over exposure or biological aging. This loss may represent the most common causes of sensorineural hearing loss also known as hidden hearing loss. Synaptic loss results in degradation of auditory information, leading to difficulty in listening in noisy environments and other auditory perceptual disorders. We demonstrate that resident macrophages of the cochlea are necessary and sufficient to restore synapses and function following synaptopathic noise exposure. Our work reveals a novel role for innate-immune cells, such as macrophages in synaptic repair, that could be harnessed to regenerate lost ribbon synapses in noise- or age-linked cochlear synaptopathy, hidden hearing loss, and associated perceptual anomalies.
Collapse
Affiliation(s)
- Vijayprakash Manickam
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Dinesh Y Gawande
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Andrew R Stothert
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Anna C Clayman
- Department of Otolaryngology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Lyudmila Batalkina
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Mark E Warchol
- Department of Otolaryngology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Kevin K Ohlemiller
- Department of Otolaryngology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Tejbeer Kaur
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
39
|
Auditory Electrophysiological and Perceptual Measures in Student Musicians with High Sound Exposure. Diagnostics (Basel) 2023; 13:diagnostics13050934. [PMID: 36900080 PMCID: PMC10000734 DOI: 10.3390/diagnostics13050934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to determine (a) the influence of noise exposure background (NEB) on the peripheral and central auditory system functioning and (b) the influence of NEB on speech recognition in noise abilities in student musicians. Twenty non-musician students with self-reported low NEB and 18 student musicians with self-reported high NEB completed a battery of tests that consisted of physiological measures, including auditory brainstem responses (ABRs) at three different stimulus rates (11.3 Hz, 51.3 Hz, and 81.3 Hz), and P300, and behavioral measures including conventional and extended high-frequency audiometry, consonant-vowel nucleus-consonant (CNC) word test and AzBio sentence test for assessing speech perception in noise abilities at -9, -6, -3, 0, and +3 dB signal to noise ratios (SNRs). The NEB was negatively associated with performance on the CNC test at all five SNRs. A negative association was found between NEB and performance on the AzBio test at 0 dB SNR. No effect of NEB was found on the amplitude and latency of P300 and the ABR wave I amplitude. More investigations of larger datasets with different NEB and longitudinal measurements are needed to investigate the influence of NEB on word recognition in noise and to understand the specific cognitive processes contributing to the impact of NEB on word recognition in noise.
Collapse
|
40
|
Barnes CC, Yee KT, Vetter DE. Conditional Ablation of Glucocorticoid and Mineralocorticoid Receptors from Cochlear Supporting Cells Reveals Their Differential Roles for Hearing Sensitivity and Dynamics of Recovery from Noise-Induced Hearing Loss. Int J Mol Sci 2023; 24:3320. [PMID: 36834731 PMCID: PMC9961551 DOI: 10.3390/ijms24043320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Endogenous glucocorticoids (GC) are known to modulate basic elements of cochlear physiology. These include both noise-induced injury and circadian rhythms. While GC signaling in the cochlea can directly influence auditory transduction via actions on hair cells and spiral ganglion neurons, evidence also indicates that GC signaling exerts effects via tissue homeostatic processes that can include effects on cochlear immunomodulation. GCs act at both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Most cell types in the cochlea express both receptors sensitive to GCs. The GR is associated with acquired sensorineural hearing loss (SNHL) through its effects on both gene expression and immunomodulatory programs. The MR has been associated with age-related hearing loss through dysfunction of ionic homeostatic balance. Cochlear supporting cells maintain local homeostatic requirements, are sensitive to perturbation, and participate in inflammatory signaling. Here, we have used conditional gene manipulation techniques to target Nr3c1 (GR) or Nr3c2 (MR) for tamoxifen-induced gene ablation in Sox9-expressing cochlear supporting cells of adult mice to investigate whether either of the receptors sensitive to GCs plays a role in protecting against (or exacerbating) noise-induced cochlear damage. We have selected mild intensity noise exposure to examine the role of these receptors related to more commonly experienced noise levels. Our results reveal distinct roles of these GC receptors for both basal auditory thresholds prior to noise exposure and during recovery from mild noise exposure. Prior to noise exposure, auditory brainstem responses (ABRs) were measured in mice carrying the floxed allele of interest and the Cre recombinase transgene, but not receiving tamoxifen injections (defined as control (no tamoxifen treatment), versus conditional knockout (cKO) mice, defined as mice having received tamoxifen injections. Results revealed hypersensitive thresholds to mid- to low-frequencies after tamoxifen-induced GR ablation from Sox9-expressing cochlear supporting cells compared to control (no tamoxifen) mice. GR ablation from Sox9-expressing cochlear supporting cells resulted in a permanent threshold shift in mid-basal cochlear frequency regions after mild noise exposure that produced only a temporary threshold shift in both control (no tamoxifen) f/fGR:Sox9iCre+ and heterozygous f/+GR:Sox9iCre+ tamoxifen-treated mice. A similar comparison of basal ABRs measured in control (no tamoxifen) and tamoxifen-treated, floxed MR mice prior to noise exposure indicated no difference in baseline thresholds. After mild noise exposure, MR ablation was initially associated with a complete threshold recovery at 22.6 kHz by 3 days post-noise. Threshold continued to shift to higher sensitivity over time such that by 30 days post-noise exposure the 22.6 kHz ABR threshold was 10 dB more sensitive than baseline. Further, MR ablation produced a temporary reduction in peak 1 neural amplitude one day post-noise. While supporting cell GR ablation trended towards reducing numbers of ribbon synapses, MR ablation reduced ribbon synapse counts but did not exacerbate noise-induced damage including synapse loss at the experimental endpoint. GR ablation from the targeted supporting cells increased the basal resting number of Iba1-positive (innate) immune cells (no noise exposure) and decreased the number of Iba1-positive cells seven days following noise exposure. MR ablation did not alter innate immune cell numbers at seven days post-noise exposure. Taken together, these findings support differential roles of cochlear supporting cell MR and GR expression at basal, resting conditions and especially during recovery from noise exposure.
Collapse
Affiliation(s)
- Charles C. Barnes
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kathleen T. Yee
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Douglas E. Vetter
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
41
|
Van Der Biest H, Keshishzadeh S, Keppler H, Dhooge I, Verhulst S. Envelope following responses for hearing diagnosis: Robustness and methodological considerations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:191. [PMID: 36732231 DOI: 10.1121/10.0016807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Recent studies have found that envelope following responses (EFRs) are a marker of age-related and noise- or ototoxic-induced cochlear synaptopathy (CS) in research animals. Whereas the cochlear injury can be well controlled in animal research studies, humans may have an unknown mixture of sensorineural hearing loss [SNHL; e.g., inner- or outer-hair-cell (OHC) damage or CS] that cannot be teased apart in a standard hearing evaluation. Hence, a direct translation of EFR markers of CS to a differential CS diagnosis in humans might be compromised by the influence of SNHL subtypes and differences in recording modalities between research animals and humans. To quantify the robustness of EFR markers for use in human studies, this study investigates the impact of methodological considerations related to electrode montage, stimulus characteristics, and presentation, as well as analysis method on human-recorded EFR markers. The main focus is on rectangularly modulated pure-tone stimuli to evoke the EFR based on a recent auditory modelling study that showed that the EFR was least affected by OHC damage and most sensitive to CS in this stimulus configuration. The outcomes of this study can help guide future clinical implementations of electroencephalography-based SNHL diagnostic tests.
Collapse
Affiliation(s)
- Heleen Van Der Biest
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| | - Sarineh Keshishzadeh
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| | - Hannah Keppler
- Department of Rehabilitation Sciences-Audiology, Ghent University, Ghent, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Sarah Verhulst
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| |
Collapse
|
42
|
Reavis KM, Bisgaard N, Canlon B, Dubno JR, Frisina RD, Hertzano R, Humes LE, Mick P, Phillips NA, Pichora-Fuller MK, Shuster B, Singh G. Sex-Linked Biology and Gender-Related Research Is Essential to Advancing Hearing Health. Ear Hear 2023; 44:10-27. [PMID: 36384870 PMCID: PMC10234332 DOI: 10.1097/aud.0000000000001291] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
There is robust evidence that sex (biological) and gender (behavioral/social) differences influence hearing loss risk and outcomes. These differences are noted for animals and humans-in the occurrence of hearing loss, hearing loss progression, and response to interventions. Nevertheless, many studies have not reported or disaggregated data by sex or gender. This article describes the influence of sex-linked biology (specifically sex-linked hormones) and gender on hearing and hearing interventions, including the role of sex-linked biology and gender in modifying the association between risk factors and hearing loss, and the effects of hearing loss on quality of life and functioning. Most prevalence studies indicate that hearing loss begins earlier and is more common and severe among men than women. Intrinsic sex-linked biological differences in the auditory system may account, in part, for the predominance of hearing loss in males. Sex- and gender-related differences in the effects of noise exposure or cardiovascular disease on the auditory system may help explain some of these differences in the prevalence of hearing loss. Further still, differences in hearing aid use and uptake, and the effects of hearing loss on health may also vary by sex and gender. Recognizing that sex-linked biology and gender are key determinants of hearing health, the present review concludes by emphasizing the importance of a well-developed research platform that proactively measures and assesses sex- and gender-related differences in hearing, including in understudied populations. Such research focus is necessary to advance the field of hearing science and benefit all members of society.
Collapse
Affiliation(s)
- Kelly M. Reavis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Judy R. Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert D. Frisina
- Department of Medical Engineering and Communication Sciences & Disorders, University of South Florida, Tampa, Florida, USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Larry E. Humes
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, Indiana, USA
| | - Paul Mick
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Benjamin Shuster
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
43
|
Li Y, Li S, Wu L, Wu T, Li M, Du D, Chen Y, Wang C, Li X, Zhang S, Zhao Z, Zheng L, Chen M, Li M, Li T, Shi X, Qiao Y. Sestrin 2 Deficiency Exacerbates Noise-Induced Cochlear Injury Through Inhibiting ULK1/Parkin-Mediated Mitophagy. Antioxid Redox Signal 2023; 38:115-136. [PMID: 35708118 PMCID: PMC9885551 DOI: 10.1089/ars.2021.0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/03/2023]
Abstract
Aims: Noise damage to auditory hair cells is associated with oxidative stress and mitochondrial dysfunction. This study aimed to investigate the possible effect of sestrin 2 (SESN2), an endogenous antioxidant protein, on noise-induced hearing loss (NIHL) and the underlying mechanisms. Results: We identified SESN2 as a protective factor against oxidative stress in NIHL through activation of Parkin-mediated mitophagy. Consistently, SESN2 expression was increased and mitophagy was induced during the early stage after a temporary threshold shift due to noise exposure or hydrogen peroxide(H2O2) stimulation; conversely, SESN2 deficiency blocked mitophagy and exacerbated acoustic trauma. Mechanistically, SESN2 interacted with Unc-51-like protein kinase 1(ULK1), promoting ULK1 protein-level stabilization by interfering with its proteasomal degradation. This stabilization is essential for mitophagy initiation, since restoring ULK1 expression in SESN2-silenced cells rescued mitophagy defects. Innovation and Conclusion: Our results provide novel insights regarding SESN2 as a therapeutic target against noise-induced cochlear injury, possibly through improved mitophagy. Antioxid. Redox Signal. 38, 115-136.
Collapse
Affiliation(s)
- Yalan Li
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Shengsheng Li
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Liyuan Wu
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Tingting Wu
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Mengxiao Li
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Deliang Du
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Yalin Chen
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Caiji Wang
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Xuanyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Shili Zhang
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Zeqi Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Liting Zheng
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Mengbing Chen
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Menghua Li
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Ting Li
- School of Life Sciences, Xuzhou Medical University, Xuzhou, P.R. China
| | - Xi Shi
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
| | - Yuehua Qiao
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
- The Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, P.R. China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| |
Collapse
|
44
|
Mauriac SA, Peineau T, Zuberi A, Lutz C, Géléoc GSG. Loss of Pex1 in Inner Ear Hair Cells Contributes to Cochlear Synaptopathy and Hearing Loss. Cells 2022; 11:cells11243982. [PMID: 36552747 PMCID: PMC9777190 DOI: 10.3390/cells11243982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Peroxisome Biogenesis Disorders (PBD) and Zellweger syndrome spectrum disorders (ZSD) are rare genetic multisystem disorders that include hearing impairment and are associated with defects in peroxisome assembly, function, or both. Mutations in 13 peroxin (PEX) genes have been found to cause PBD-ZSD with ~70% of patients harboring mutations in PEX1. Limited research has focused on the impact of peroxisomal disorders on auditory function. As sensory hair cells are particularly vulnerable to metabolic changes, we hypothesize that mutations in PEX1 lead to oxidative stress affecting hair cells of the inner ear, subsequently resulting in hair cell degeneration and hearing loss. Global deletion of the Pex1 gene is neonatal lethal in mice, impairing any postnatal studies. To overcome this limitation, we created conditional knockout mice (cKO) using Gfi1Creor VGlut3Cre expressing mice crossed to floxed Pex1 mice to allow for selective deletion of Pex1 in the hair cells of the inner ear. We find that Pex1 excision in inner hair cells (IHCs) leads to progressive hearing loss associated with significant decrease in auditory brainstem responses (ABR), specifically ABR wave I amplitude, indicative of synaptic defects. Analysis of IHC synapses in cKO mice reveals a decrease in ribbon synapse volume and functional alterations in exocytosis. Concomitantly, we observe a decrease in peroxisomal number, indicative of oxidative stress imbalance. Taken together, these results suggest a critical function of Pex1 in development and maturation of IHC-spiral ganglion synapses and auditory function.
Collapse
Affiliation(s)
- Stephanie A. Mauriac
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
- Kirby Neurobiology Center, Harvard Medical School, Boston, MA 02115, USA
| | - Thibault Peineau
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
- Kirby Neurobiology Center, Harvard Medical School, Boston, MA 02115, USA
| | - Aamir Zuberi
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Technology Evaluation and Development Research Laboratory, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Cathleen Lutz
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Gwénaëlle S. G. Géléoc
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
- Kirby Neurobiology Center, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-919-4061
| |
Collapse
|
45
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
46
|
Anastasios G, Magioula G, Konstantinos K, Ioannis A. Noise and Health: Review. Indian J Otolaryngol Head Neck Surg 2022; 74:5482-5491. [PMID: 36742745 PMCID: PMC9895353 DOI: 10.1007/s12070-021-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
Noise in human societies is unavoidable, but it tends to become a modern epidemic that induces various detrimental effects to several organs and functions in humans. Increased cardiovascular danger, anxiety and sleep disturbance are just few of these effects. It is noteworthy that children, even neonates and their developing organism are especially vulnerable to noise-related health problems. Noise is measured with special noise-meters. These devices express results in decibels by transforming random noise to a continuous sound. This sound is characterized by equivalent acoustic energy to the random noise for a defined time interval. Human auditory apparatus is principally endangered by acute noises but also by chronic noise exposure, in the context of both occupational and recreational activities. Various mechanisms are implicated in the pathogenesis of noise-induced hearing loss that can cause either temporary or permanent damage. Among them, emphasis is given to the impairment by free radicals and inflammatory mediators, to the activation of apoptotic molecular pathways, but also to glutamate excitotoxicity. A hidden hearing loss, synaptopathy, is attributed to the latter. The irreversible nature of hearing loss, as well as the idiosyncratic sensitivity of individuals, imposes the necessity of early diagnosis of auditory impairment by noise. Super high frequency audiograms, otoacoustic emissions and electrophysiological examinations can address diagnosis. Thankfully, there is extensive research on acoustic trauma therapeutic approaches. However, until we succeed in regenerating the sensory organ of hearing, chronic noise-induced hearing loss cannot be treated. Thus, it is fundamental that society protects people from noise, by laws and regulations.
Collapse
Affiliation(s)
- Goulioumis Anastasios
- Department of Otorhinolaryngology, Pediatric Hospital “Karamandanio”, Patras, Greece
| | | | - Kourelis Konstantinos
- Department of Otorhinolaryngology, Pediatric Hospital “Karamandanio”, Patras, Greece
| | - Athanasopoulos Ioannis
- Department of Otorhinolaryngology, Pediatric Center of “Iatriko Athinon” Hospital, Athens, Greece
| |
Collapse
|
47
|
Paik CB, Pei M, Oghalai JS. Review of blast noise and the auditory system. Hear Res 2022; 425:108459. [PMID: 35181171 PMCID: PMC9357863 DOI: 10.1016/j.heares.2022.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
The auditory system is particularly vulnerable to blast injury due to the ear's role as a highly sensitive pressure transducer. Over the past several decades, studies have used a variety of animal models and experimental procedures to recreate blast-induced acoustic trauma. Given the developing nature of this field and our incomplete understanding of molecular mechanisms underlying blast-related auditory disturbances, an updated discussion about these studies is warranted. Here, we comprehensively review well-established blast-related auditory pathology including tympanic membrane perforation and hair cell loss. In addition, we discuss important mechanistic studies that aim to bridge gaps in our current understanding of the molecular and microstructural events underlying blast-induced cochlear, auditory nerve, brainstem, and central auditory system damage. Key findings from the recent literature include the association between endolymphatic hydrops and cochlear synaptic loss, blast-induced neuroinflammatory markers in the peripheral and central auditory system, and therapeutic approaches targeting biochemical markers of blast injury. We conclude that blast is an extreme form of noise exposure. Blast waves produce cochlear damage that appears similar to, but more extreme than, the standard noise exposure protocols used in auditory research. However, experimental variations in studies of blast-induced acoustic trauma make it challenging to compare and interpret data across studies.
Collapse
Affiliation(s)
- Connie B Paik
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Michelle Pei
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA.
| |
Collapse
|
48
|
Grinn SK, Le Prell CG. Evaluation of hidden hearing loss in normal-hearing firearm users. Front Neurosci 2022; 16:1005148. [PMID: 36389238 PMCID: PMC9644938 DOI: 10.3389/fnins.2022.1005148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 04/05/2024] Open
Abstract
Some noise exposures resulting in temporary threshold shift (TTS) result in cochlear synaptopathy. The purpose of this retrospective study was to evaluate a human population that might be at risk for noise-induced cochlear synaptopathy (i.e., "hidden hearing loss"). Participants were firearm users who were (1) at-risk for prior audiometric noise-induced threshold shifts, given their history of firearm use, (2) likely to have experienced complete threshold recovery if any prior TTS had occurred, based on this study's normal-hearing inclusion criteria, and (3) not at-risk for significant age-related synaptopathic loss, based on this study's young-adult inclusion criteria. 70 participants (age 18-25 yr) were enrolled, including 33 firearm users experimental (EXP), and 37 non-firearm users control (CNTRL). All participants were required to exhibit audiometric thresholds ≤20 dB HL bilaterally, from 0.25 to 8 kHz. The study was designed to test the hypothesis that EXP participants would exhibit a reduced cochlear nerve response compared to CNTRL participants, despite normal-hearing sensitivity in both groups. No statistically significant group differences in auditory performance were detected between the CNTRL and EXP participants on standard audiom to etry, extended high-frequency audiometry, Words-in-Noise performance, distortion product otoacoustic emission, middle ear muscle reflex, or auditory brainstem response. Importantly, 91% of EXP participants reported that they wore hearing protection either "all the time" or "almost all the time" while using firearms. The data suggest that consistent use of hearing protection during firearm use can effectively protect cochlear and neural measures of auditory function, including suprathreshold responses. The current results do not exclude the possibility that neural pathology may be evident in firearm users with less consistent hearing protection use. However, firearm users with less consistent hearing protection use are also more likely to exhibit threshold elevation, among other cochlear deficits, thereby confounding the isolation of any potentially selective neural deficits. Taken together, it seems most likely that firearm users who consistently and correctly use hearing protection will exhibit preserved measures of cochlear and neural function, while firearm users who inconsistently and incorrectly use hearing protection are most likely to exhibit cochlear injury, rather than evidence of selective neural injury in the absence of cochlear injury.
Collapse
Affiliation(s)
- Sarah K. Grinn
- Department of Communication Sciences and Disorders, Central Michigan University, Mount Pleasant, MI, United States
| | - Colleen G. Le Prell
- Department of Speech, Language, and Hearing, University of Texas at Dallas, Dallas, TX, United States
| |
Collapse
|
49
|
Kochaj RM, Martelletti E, Ingham NJ, Buniello A, Sousa BC, Wakelam MJO, Lopez-Clavijo AF, Steel KP. The Effect of a Pex3 Mutation on Hearing and Lipid Content of the Inner Ear. Cells 2022; 11:cells11203206. [PMID: 36291074 PMCID: PMC9600510 DOI: 10.3390/cells11203206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxisome biogenesis disorders (due to PEX gene mutations) are associated with symptoms that range in severity and can lead to early childhood death, but a common feature is hearing impairment. In this study, mice carrying Pex3 mutations were found to show normal auditory development followed by an early-onset progressive increase in auditory response thresholds. The only structural defect detected in the cochlea at four weeks old was the disruption of synapses below inner hair cells. A conditional approach was used to establish that Pex3 expression is required locally within the cochlea for normal hearing, rather than hearing loss being due to systemic effects. A lipidomics analysis of the inner ear revealed a local reduction in plasmalogens in the Pex3 mouse mutants, comparable to the systemic plasmalogen reduction reported in human peroxisome biogenesis disorders. Thus, mice with Pex3 mutations may be a useful tool to understand the physiological basis of peroxisome biogenesis disorders.
Collapse
Affiliation(s)
- Rafael M. Kochaj
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Elisa Martelletti
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Neil J. Ingham
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Annalisa Buniello
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Bebiana C. Sousa
- Lipidomics Facility, The BBSRC Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Correspondence:
| |
Collapse
|
50
|
Berninger E, Drott M, Romanitan M, Tranebjærg L, Hellström S. Congenital Nonprofound Bilateral Sensorineural Hearing Loss in Children: Comprehensive Characterization of Auditory Function and Hearing Aid Benefit. Audiol Res 2022; 12:539-563. [PMID: 36285911 PMCID: PMC9598400 DOI: 10.3390/audiolres12050054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/25/2022] Open
Abstract
A prospective cross-sectional design was used to characterize congenital bilateral sensorineural hearing loss (SNHL). The underlying material of >30,000 consecutively screened newborns comprised 11 subjects with nonprofound, alleged nonsyndromic, SNHL. Comprehensive audiological testing was performed at ≈11 years of age. Results showed symmetrical sigmoid-like median pure-tone thresholds (PTTs) reaching 50−60 dB HL. The congenital SNHL revealed recruitment, increased upward spread of masking, distortion product otoacoustic emission (DPOAE) dependent on PTT (≤60 dB HL), reduced auditory brainstem response (ABR) amplitude, and normal magnetic resonance imaging. Unaided recognition of speech in spatially separate competing speech (SCS) deteriorated with increasing uncomfortable loudness level (UCL), plausibly linked to reduced afferent signals. Most subjects demonstrated hearing aid (HA) benefit in a demanding laboratory listening situation. Questionnaires revealed HA benefit in real-world listening situations. This functional characterization should be important for the outline of clinical guidelines. The distinct relationship between DPOAE and PTT, up to the theoretical limit of cochlear amplification, and the low ABR amplitude remain to be elucidated. The significant relation between UCL and SCS has implications for HA-fitting. The fitting of HAs based on causes, mechanisms, and functional characterization of the SNHL may be an individualized intervention approach and deserves future research.
Collapse
Affiliation(s)
- Erik Berninger
- Department of Clinical Science, Intervention and Technology, Division of Ear, Nose and Throat Diseases, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Audiology and Neurotology, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Correspondence: or
| | - Maria Drott
- Department of Clinical Science, Intervention and Technology, Division of Ear, Nose and Throat Diseases, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Audiology and Neurotology, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Mircea Romanitan
- Department of Clinical Science, Intervention and Technology, Division of Ear, Nose and Throat Diseases, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Audiology and Neurotology, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, The University Hospital Rigshospital/The Kennedy Centre, DK-2600 Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Sten Hellström
- Department of Clinical Science, Intervention and Technology, Division of Ear, Nose and Throat Diseases, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Audiology and Neurotology, Karolinska University Hospital, 141 86 Stockholm, Sweden
| |
Collapse
|