1
|
Wang J, He X, Bao M. Attention enhances short-term monocular deprivation effect. Psych J 2025; 14:84-93. [PMID: 39396922 PMCID: PMC11787881 DOI: 10.1002/pchj.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
Patching one eye of an adult human for a few hours has been found to promote the dominance of the patched eye, which is called short-term monocular deprivation effect. Interestingly, recent work has reported that prolonged eye-specific attention can also cause a shift of ocular dominance toward the unattended eye though visual inputs during adaptation are balanced across the eyes. Considering that patching blocks all input information from one eye, attention is presumably deployed to the opposite eye. Therefore, the short-term monocular deprivation effect might be, in part, mediated by eye-specific attentional modulation. Yet this question remains largely unanswered. To address this issue, here we asked participants to perform an attentive tracking task with one eye patched. During the tracking, participants were presented with both target gratings (attended stimuli) and distractor gratings (unattended stimuli) that were distinct from each other in fundamental visual features. Before and after one hour of tracking, they completed a binocular rivalry task to measure perceptual ocular dominance. A larger shift of ocular dominance toward the deprived eye was observed when the binocular rivalry testing gratings shared features with the target gratings during the tracking compared to when they shared features with the distractor gratings. This result, for the first time, suggests that attention can boost the strength of the short-term monocular deprivation effect. Therefore, the present study sheds new light on the role of attention in ocular dominance plasticity.
Collapse
Affiliation(s)
- Jue Wang
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xin He
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Acquafredda M, Binda P. Pupillometry indexes ocular dominance plasticity. Vision Res 2024; 222:108449. [PMID: 38909478 DOI: 10.1016/j.visres.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Short-term monocular deprivation in normally sighted adult humans produces a transient shift of ocular dominance, boosting the deprived eye. This effect has been documented with both perceptual tests and through physiological recordings, but no previous study simultaneously measured physiological responses and the perceptual effects of deprivation. Here we propose an integrated experimental paradigm that combines binocular rivalry with pupillometry, to introduce an objective physiological index of ocular dominance plasticity, acquired concurrently with perceptual testing. Ten participants reported the perceptual dynamics of binocular rivalry, while we measured pupil diameter. Stimuli were a white and a black disk, each presented monocularly. Rivalry dynamics and pupil-size traces were compared before and after 2 h of monocular deprivation, achieved by applying a translucent patch over the dominant eye. Consistent with prior research, we observed that monocular deprivation boosts the deprived-eye signal and consequently increases ocular dominance. In line with previous studies, we also observed subtle but systematic modulations of pupil size that tracked alternations between exclusive dominance phases of the black or white disk. Following monocular deprivation, the amplitude of these pupil-size modulations increased, which is consistent with the post-deprivation boost of the deprived eye and the increase of ocular dominance. This provides evidence that deprivation impacts the effective strength of monocular visual stimuli, coherently affecting perceptual reports and the automatic and unconscious regulation of pupil diameter. Our results show that a combined paradigm of binocular rivalry and pupillometry gives new insights into the physiological mechanisms underlying deprivation effects.
Collapse
Affiliation(s)
- Miriam Acquafredda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
3
|
Laukkonen RE, Lewis-Healey E, Ghigliotti L, Daneshtalab N, Lageman J, Slagter HA. Tracking rivalry with neural rhythms: multivariate SSVEPs reveal perception during binocular rivalry. Neurosci Conscious 2024; 2024:niae028. [PMID: 38912291 PMCID: PMC11192868 DOI: 10.1093/nc/niae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
The contents of awareness can substantially change without any modification to the external world. Such effects are exemplified in binocular rivalry, where a different stimulus is presented to each eye causing instability in perception. This phenomenon has made binocular rivalry a quintessential method for studying consciousness and the necessary neural correlates for awareness. However, to conduct research on binocular rivalry usually requires self-reports of changes in percept, which can produce confounds and exclude states and contexts where self-reports are undesirable or unreliable. Here, we use a novel multivariate spatial filter dubbed 'Rhythmic Entrainment Source Separation' to extract steady state visual evoked potentials from electroencephalography data. We show that this method can be used to quantify the perceptual switch-rate of participants during binocular rivalry and therefore may be valuable in experimental contexts where self-reports are methodologically problematic or impossible, particularly as an adjunct. Our analyses also reveal that 'no-report' conditions may affect the deployment of attention and thereby neural correlates, another important consideration for consciousness research.
Collapse
Affiliation(s)
- Ruben E Laukkonen
- Health, Southern Cross University, Gold Coast Airport, Terminal Dr, Bilinga, Gold Coast, QLD 4225, Australia
- Cognitive Psychology, Vrije Universiteit, De Boelelaan 1117, Amsterdam, North Holland 1081 HV, Netherlands
| | - Evan Lewis-Healey
- Cognitive Psychology, Vrije Universiteit, De Boelelaan 1117, Amsterdam, North Holland 1081 HV, Netherlands
- Psychology, University of Cambridge, Downing Pl, Cambridge CB2 3EB, United Kingdom
| | - Luca Ghigliotti
- Cognitive Psychology, Vrije Universiteit, De Boelelaan 1117, Amsterdam, North Holland 1081 HV, Netherlands
| | - Nasim Daneshtalab
- Cognitive Psychology, Vrije Universiteit, De Boelelaan 1117, Amsterdam, North Holland 1081 HV, Netherlands
| | - Jet Lageman
- Cognitive Psychology, Vrije Universiteit, De Boelelaan 1117, Amsterdam, North Holland 1081 HV, Netherlands
| | - Heleen A Slagter
- Cognitive Psychology, Vrije Universiteit, De Boelelaan 1117, Amsterdam, North Holland 1081 HV, Netherlands
| |
Collapse
|
4
|
Song F, Lyu L, Bao M. Adaptation of Ocular Opponency Neurons Mediates Attention-Induced Ocular Dominance Plasticity. Neurosci Bull 2024; 40:339-349. [PMID: 37635196 PMCID: PMC10912405 DOI: 10.1007/s12264-023-01103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/01/2023] [Indexed: 08/29/2023] Open
Abstract
Previous research has shown that ocular dominance can be biased by prolonged attention to one eye. The ocular-opponency-neuron model of binocular rivalry has been proposed as a candidate account for this phenomenon. Yet direct neural evidence is still lacking. By manipulating the contrast of dichoptic testing gratings, here we measured the steady-state visually evoked potentials (SSVEPs) at the intermodulation frequencies to selectively track the activities of ocular-opponency-neurons before and after the "dichoptic-backward-movie" adaptation. One hour of adaptation caused a shift of perceptual and neural ocular dominance towards the unattended eye. More importantly, we found a decrease in the intermodulation SSVEP response after adaptation, which was significantly greater when high-contrast gratings were presented to the attended eye than when they were presented to the unattended eye. These results strongly support the view that the adaptation of ocular-opponency-neurons contributes to the ocular dominance plasticity induced by prolonged eye-based attention.
Collapse
Affiliation(s)
- Fangxing Song
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Lyu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Wang J, Song F, He X, Bao M. Negligible contribution of adaptation of ocular opponency neurons to the effect of short-term monocular deprivation. Front Psychol 2024; 14:1282113. [PMID: 38274682 PMCID: PMC10809396 DOI: 10.3389/fpsyg.2023.1282113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Modeling work on binocular rivalry has described how ocular opponency neurons represent interocular conflict. These neurons have recently been considered to mediate an ocular dominance shift to the eye that has viewed a backward movie for long during which time the other eye is presented with a regular movie. Unlike typical short-term monocular deprivation, the visual inputs are comparable across eyes in that "dichoptic-backward-movie" paradigm. Therefore, it remains unclear whether the ocular opponency neurons are also responsible for the short-term monocular deprivation effect which is prevalently explained by the homeostatic compensation theory. We designed two experiments from distinct perspectives to investigate this question. Methods In Experiment 1, we mitigated the imbalance in the activity of opponency neurons between the two eyes during monocular deprivation by presenting video stimuli alternately. In Experiment 2, we directly evaluated the response of opponency neurons before and after monocular deprivation using SSVEP techniques. Results Consistent with each other, both experiments failed to provide reliable evidence supporting the involvement of ocular opponency neurons in the short-term monocular deprivation effect. Discussion Our results suggest that ocular opponency neurons may not play an essential role in the short-term monocular deprivation effect, potentially due to interference from the homeostatic plasticity mechanism.
Collapse
Affiliation(s)
- Jue Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fangxing Song
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin He
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Beijing, China
| |
Collapse
|
6
|
Gong L, Reynaud A, Hess RF, Zhou J. The Suppressive Basis of Ocular Dominance Changes Induced by Short-Term Monocular Deprivation in Normal and Amblyopic Adults. Invest Ophthalmol Vis Sci 2023; 64:2. [PMID: 37788002 PMCID: PMC10552874 DOI: 10.1167/iovs.64.13.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
Purpose We aimed to study the effect of short-term monocular deprivation on the suppressive interocular interactions in normals and amblyopes by using a dichoptic masking paradigm. Methods Nine adults with anisometropic or mixed amblyopia and 10 control adults participated in our study. The contrast sensitivity in discriminating a target Gabor dichoptically masked was measured before and after 2 hours of monocular deprivation. The mask consisted of bandpass-filtered noise. Both the target and the mask were horizontally oriented at the spatial frequency of 1.31 cpd. Deprivation was achieved using an opaque patch on the amblyopic eye of amblyopes and the dominant eye of controls. Results Results were similar in both controls and amblyopes. After 2 hours of monocular deprivation, the previously patched eye showed a significant increase in contrast sensitivity under dichoptic masking, which also suggested reduced suppressive effect from the nonpatched eye. Meanwhile, the contrast sensitivity of the nonpatched eye remained almost unchanged under dichoptic masking. Conclusions We demonstrate that the ocular dominance changes induced by short-term monocular deprivation-namely, the strengthening of the deprived eye's contribution-are associated with the unilateral and asymmetric changes in suppressive interaction. The suppression from the nondeprived eye is reduced after short-term monocular deprivation. This provides a better understanding of how inverse patching (patching of the amblyopic eye) could, by reducing the suppressive drive from the normally sighted (nondeprived) eye, form the basis of a new treatment for the binocular deficit in amblyopia.
Collapse
Affiliation(s)
- Ling Gong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Alexandre Reynaud
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Robert F. Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Jiawei Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Du X, Liu L, Dong X, Bao M. Effects of altered-reality training on interocular disinhibition in amblyopia. Ann N Y Acad Sci 2023; 1522:126-138. [PMID: 36811156 DOI: 10.1111/nyas.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Training of viewing an altered-reality environment dichoptically has been found to reactivate human adult ocular dominance plasticity, allowing improvement of vision for amblyopia. One suspected mechanism for this training effect is ocular dominance rebalancing through interocular disinhibition. Here, we investigated whether the training modulated the neural responses reflecting interocular inhibition. Thirteen patients with amblyopia and 11 healthy controls participated in this study. Before and after six daily altered-reality training sessions, participants watched flickering video stimuli with their steady-state visually evoked potential (SSVEP) signals recorded simultaneously. We assessed the amplitude of SSVEP response at intermodulation frequencies, which was a potential neural indicator of interocular suppression. The results showed that training weakened the intermodulation response only in the amblyopic group, which was in agreement with the hypothesis that the training reduced interocular suppression specific to amblyopia. Moreover, even one month after the training ended, we could still observe this neural training effect. These findings provide preliminary neural evidence in support of the disinhibition account for treating amblyopia. We also explain these results with the ocular opponency model, which, to our knowledge, is the first time for this binocular rivalry model to be used in explaining long-term ocular dominance plasticity.
Collapse
Affiliation(s)
- Xinxin Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Captital Medical University, Beijing, China
| | - Xue Dong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Beijing, China
| |
Collapse
|
8
|
Kurzawski JW, Lunghi C, Biagi L, Tosetti M, Morrone MC, Binda P. Short-term plasticity in the human visual thalamus. eLife 2022; 11:74565. [PMID: 35384840 PMCID: PMC9020816 DOI: 10.7554/elife.74565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
While there is evidence that the visual cortex retains a potential for plasticity in adulthood, less is known about the subcortical stages of visual processing. Here we asked whether short-term ocular dominance plasticity affects the human visual thalamus. We addressed this question in normally sighted adult humans, using ultra-high field (7T) magnetic resonance imaging combined with the paradigm of short-term monocular deprivation. With this approach, we previously demonstrated transient shifts of perceptual eye dominance and ocular dominance in visual cortex (Binda et al., 2018). Here we report evidence for short-term plasticity in the ventral division of the pulvinar (vPulv), where the deprived eye representation was enhanced over the non-deprived eye. This ventral-pulvinar plasticity was similar as previously seen in visual cortex and it was correlated with the ocular dominance shift measured behaviorally. In contrast, there was no effect of monocular deprivation in two adjacent thalamic regions: dorsal pulvinar (dPulv), and Lateral Geniculate Nucleus (LGN). We conclude that the visual thalamus retains potential for short-term plasticity in adulthood; the plasticity effect differs across thalamic subregions, possibly reflecting differences in their cortico-fugal connectivity.
Collapse
Affiliation(s)
| | - Claudia Lunghi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Maria Concetta Morrone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Song F, Lyu L, Zhao J, Bao M. The role of eye-specific attention in ocular dominance plasticity. Cereb Cortex 2022; 33:983-996. [PMID: 35332915 PMCID: PMC9930618 DOI: 10.1093/cercor/bhac116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/14/2022] Open
Abstract
It is well known how selective attention biases information processing in real time, but few work investigates the aftereffects of prolonged attention, let alone the underlying neural mechanisms. To examine perceptual aftereffect after prolonged attention to a monocular pathway, movie images played normally were presented to normal adult's one eye (attended eye), while movie images of the same episode but played backwards were presented to the opposite eye (unattended eye). One hour of watching this dichoptic movie caused a shift of perceptual ocular dominance towards the unattended eye. Interestingly, the aftereffect positively correlated with the advantage of neural activity for the attended-eye over unattended-eye signals at the frontal electrodes measured with steady-state visual evoked potentials. Moreover, the aftereffect disappeared when interocular competition was minimized during adaptation. These results suggest that top-down eye-specific attention can induce ocular dominance plasticity through binocular rivalry mechanisms. The present study opens the route to explain at least part of short-term ocular dominance plasticity with the ocular-opponency-neuron model, which may be an interesting complement to the homeostatic compensation theory.
Collapse
Affiliation(s)
- Fangxing Song
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Lili Lyu
- Corresponding authors: Lili Lyu, 320 Yue Yang Road, Shanghai 200031, China. ; Min Bao, 16 Lincui Road, Chaoyang District, Beijing 100101, China.
| | - Jiaxu Zhao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Min Bao
- Corresponding authors: Lili Lyu, 320 Yue Yang Road, Shanghai 200031, China. ; Min Bao, 16 Lincui Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
10
|
Dong X, Du X, Bao M. Repeated Contrast Adaptation Does Not Cause Habituation of the Adapter. Front Hum Neurosci 2021; 14:589634. [PMID: 33424564 PMCID: PMC7785701 DOI: 10.3389/fnhum.2020.589634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/27/2020] [Indexed: 01/23/2023] Open
Abstract
Adaptation can optimize information processing by allowing the visual system to always adjust to the environment. However, only a few studies have investigated how the visual system makes adjustments to repeatedly occurring changes in the input, still less about the related neural mechanism. Our previous study found that contrast adaptation attenuated after multiple daily sessions of repeated adaptation, which was explained by the habituation of either the adapter's effective strength or the adaptation mechanisms. To examine the former hypothesis, in the present study we used the frequency tagging technique to measure the adapter-elicited steady-state visual evoked potential (SSVEP) amplitudes. Participants repeatedly adapted to the same contrast adapter in a top-up manner for six continuous days, which was called training of adaptation. The behavioral adaptation effect and SSVEP response to the trained adapter and an untrained control adapter were measured before and after training. The psychophysical results showed that the effect of adaptation in the trained condition significantly reduced after training, replicating our previous finding. Contradicting the prediction of the hypothesis that repeated adaptation attenuated the effective strength of the adapter, the SSVEP amplitude was unchanged after training, which was further confirmed by an equivalence test. Taken together, the results challenge the account of habituation of adapter in repeated adaptation, while leaving the account of habituation of adaptation mechanism to be tested.
Collapse
Affiliation(s)
- Xue Dong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxin Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|