1
|
Baidya AT, Dante D, Das B, Wang L, Darreh-Shori T, Kumar R. Discovery and characterization of novel pyridone and furan substituted ligands of choline acetyltransferase. Eur J Pharmacol 2025; 998:177638. [PMID: 40252901 DOI: 10.1016/j.ejphar.2025.177638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The key to the management of two devastating diseases, namely Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) lies in an early diagnosis, which is difficult due to its multifactorial nature. However, a common hallmark of AD and ALS is degeneration of cholinergic system. Choline acetyltransferase (ChAT) has been proposed as a potential target for development of cholinergic-specific biomarker. However, lack of selective, potent, brain permeable molecular probes of ChAT hinder development of ChAT biomarkers. In this study, we have successfully utilised structure-based virtual screening approach and identified two ChAT inhibitors from a database of 1.4 million compounds. The compounds were then subjected to rigorous in vitro characterization. Compound V6 showed Ki value of 11 μM and IC50 value of 21.73 μM, while V15 showed Ki and IC50 values of 4.5 and 9.42 μM, respectively for ChAT enzyme. V6 and V15 showed good solubility of 0.21 mg/mL and 0.17 mg/mL respectively and cytotoxicity analysis indicated no toxicity. We also performed a 200 ns molecular dynamics simulation, which revealed the intricate interaction dynamics for V6 and V15 with ChAT binding pocket. Moreover, the Tanimoto similarity analysis indicated the novelty and structural diversity of the hits. In conclusion, these validated hits provide a platform to develop potent, selective, blood-brain barrier permeable small molecules as chemical probes of ChAT or as Positron Emission Tomography tracer for early diagnosis and/or in vivo monitoring of the effect of new therapeutic candidates in spectrum of neurodegenerative disorders, in which cholinergic deficit is one of the hallmarks.
Collapse
Affiliation(s)
- Anurag Tk Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India
| | - Davide Dante
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India
| | - Lisha Wang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India.
| |
Collapse
|
2
|
Liu D, Zhao Y, Liu R, Qiao B, Lu X, Bei Y, Niu Y, Yang X. Traditional Chinese medicine as a viable option for managing vascular cognitive impairment: A ray of hope. Medicine (Baltimore) 2025; 104:e41694. [PMID: 40101029 PMCID: PMC11922442 DOI: 10.1097/md.0000000000041694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Vascular cognitive impairment (VCI) is a prevalent cognitive disorder resulting from cerebrovascular disease and encompasses a spectrum of cognitive deficits, ranging from mild impairment to vascular dementia (VD). VCI is responsible for a minimum of 20% to 40% of all cases of dementia, with its prevalence ranking second only to Alzheimer's disease on a global scale. The pathogenesis of VCI is complex and includes a lack of cholinergic nerve cells, inflammation, oxidative stress, alterations in the blood-brain barrier, and cell apoptosis. Current guideline-recommended drugs have unsatisfactory therapeutic effects. However, traditional Chinese medicine (TCM) has long been associated with treating dementia, and numerous studies regarding treating dementia with TCM have been conducted. The etiology and pathogenesis of VaD are linked to deficiencies in the spleen and kidney, as well as phlegm turbidity. Treatment involves benefiting the spleen and kidney, improving blood circulation, removing blood stasis, and dispelling phlegm. Moreover, TCM presents benefits such as few adverse effects, low cost, long-term use suitability, and preventive effects. This review outlines the pathogenesis of VCI in both modern medicine and TCM, examines traditional prescriptions and single-agent ingredients with their pharmacological effects, emphasizes TCM's unique features, and explores its multi-targeted approach to treating VCI.
Collapse
Affiliation(s)
- Di Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- Department of Pain, Heze Municipal Hospital, Heze, China
| | - YueYu Zhao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - RunFeng Liu
- Department of Traditional Chinese Medicine, Weifang People’s Hospital, Weifang, China
| | - BaoGuang Qiao
- Department of Pain, Heze Municipal Hospital, Heze, China
| | - XinRu Lu
- College of Medical, Shandong Yingcai University, Jinan, China
| | - YuanYuan Bei
- Shandong Jiaotong College Hospital, Jinan, China
| | - Yin Niu
- Department of Endocrinology, People’s Hospital of Dingtao District, Heze, China
| | - XiaoNi Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
3
|
Lewitt MS, Boyd GW. Role of the Insulin-like Growth Factor System in Neurodegenerative Disease. Int J Mol Sci 2024; 25:4512. [PMID: 38674097 PMCID: PMC11049992 DOI: 10.3390/ijms25084512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The insulin-like growth factor (IGF) system has paracrine and endocrine roles in the central nervous system. There is evidence that IGF signalling pathways have roles in the pathophysiology of neurodegenerative disease. This review focusses on Alzheimer's disease and Parkinson's disease, the two most common neurodegenerative disorders that are increasing in prevalence globally in relation to the aging population and the increasing prevalence of obesity and type 2 diabetes. Rodent models used in the study of the molecular pathways involved in neurodegeneration are described. However, currently, no animal model fully replicates these diseases. Mice with triple mutations in APP, PSEN and MAPT show promise as models for the testing of novel Alzheimer's therapies. While a causal relationship is not proven, the fact that age, obesity and T2D are risk factors in both strengthens the case for the involvement of the IGF system in these disorders. The IGF system is an attractive target for new approaches to management; however, there are gaps in our understanding that first need to be addressed. These include a focus beyond IGF-I on other members of the IGF system, including IGF-II, IGF-binding proteins and the type 2 IGF receptor.
Collapse
Affiliation(s)
- Moira S. Lewitt
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Gary W. Boyd
- School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK;
| |
Collapse
|
4
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
5
|
Wang Y, Zhang H, Wang J, Yu M, Zhang Q, Yan S, You D, Shi L, Zhang L, Wang L, Wu H, Cao X. Aconiti lateralis Radix Praeparata inhibits Alzheimer's disease by regulating the complex regulation network with the core of GRIN1 and MAPK1. PHARMACEUTICAL BIOLOGY 2021; 59:311-320. [PMID: 33784489 PMCID: PMC8018400 DOI: 10.1080/13880209.2021.1900879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/26/2021] [Accepted: 03/04/2021] [Indexed: 06/01/2023]
Abstract
CONTEXT Current medicine for Alzheimer's disease (AD) cannot effectively reverse or block nerve injury. Traditional Chinese Medicine practice and research imply Aconiti lateralis Radix Praeparata (Fuzi) may meet this goal. OBJECTIVE Analysing the anti-AD effect of Fuzi and its potential molecular mechanism. MATERIALS AND METHODS AD model cells were treated with Fuzi in 0-300 mg/mL for 24 h in 37 °C. The cell viability (CV) and length of cell projections (LCP) for each group were observed, analysed, and standardised using control as a baseline (CVs and LCPs). The Fuzi and AD relevant genes were identified basing on databases, and the molecular mechanism of Fuzi anti-AD was predicted by network analysis. RESULTS Experiment results showed that Fuzi in 0.4 mg/mL boosted LCP (LCPs = 1.2533, p ≤ 0.05), and in 1.6-100 mg/mL increased CV (CVs from 1.1673 to 1.3321, p ≤ 0.05). Bioinformatics analysis found 17 Fuzi target genes (relevant scores ≥ 20), showing strong AD relevant signals (RMS_p ≤ 0.05, related scores ≥ 5), enriched in the pathways regulating axon growth, synaptic plasticity, cell survival, proliferation, apoptosis, and death (p ≤ 0.05). Especially, GRIN1 and MAPK1 interacted with APP protein and located in the key point of the "Alzheimer's disease" pathway. DISCUSSION AND CONCLUSIONS These results suggest that Fuzi may have therapeutic and prevention potential in AD, and GRIN1 and MAPK1 may be the core of the pathways of the Fuzi anti-AD process. Fuzi should be studied more extensively, especially for the prevention of AD.
Collapse
Affiliation(s)
- Yutao Wang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
- Basic Medical College, Kunming Medical University, Kunming, China
| | - Huixiang Zhang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Jing Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Ming Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Bioengineering Centre, Kunming Medical University, Kunming, P.R. China
| | - Qianqian Zhang
- Basic Medical College, Kunming Medical University, Kunming, China
| | - Shan Yan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Bioengineering Centre, Kunming Medical University, Kunming, P.R. China
| | - Dingyun You
- School of Public Health, Kunming Medical University, Kunming, China
| | - Lanlan Shi
- Basic Medical College, Kunming Medical University, Kunming, China
| | - Lihuan Zhang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Limei Wang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Hongxiang Wu
- Faculty of Rehabilitation Medicine, Kunming Medical University, Kunming, China
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Bai X, Zhang M. Traditional Chinese Medicine Intervenes in Vascular Dementia: Traditional Medicine Brings New Expectations. Front Pharmacol 2021; 12:689625. [PMID: 34194332 PMCID: PMC8236843 DOI: 10.3389/fphar.2021.689625] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular dementia (VD) is one of the most common forms of dementia, referring to a group of symptoms that mainly manifest as advanced neurocognitive dysfunction induced by cerebrovascular disease (CVD). A significant number of studies have shown that traditional Chinese medicine (TCM) has a clinical impact on VD and thus has promising prospects. There have been many discussions regarding the pharmacological mechanisms involved in treatment of the kidney, elimination of turbidity, and promotion of blood circulation. TCM has a prominent effect on improving patients' cognitive function and quality of life. In this review, we summarize the pathogenesis of VD in modern medicine and TCM, traditional prescriptions, single-agent effective ingredients and their pharmacological mechanisms for treating VD, highlight TCM's characteristics, and discuss TCM's multi-targeted mechanism for the treatment of VD.
Collapse
Affiliation(s)
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Luo Y, Sun Y, Tian X, Zheng X, Wang X, Li W, Wu X, Shu B, Hou W. Deep Brain Stimulation for Alzheimer's Disease: Stimulation Parameters and Potential Mechanisms of Action. Front Aging Neurosci 2021; 13:619543. [PMID: 33776742 PMCID: PMC7990787 DOI: 10.3389/fnagi.2021.619543] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) is a neurosurgical technique that regulates neuron activity by using internal pulse generators to electrodes in specific target areas of the brain. As a blind treatment, DBS is widely used in the field of mental and neurological diseases, although its mechanism of action is still unclear. In the past 10 years, DBS has shown a certain positive effect in animal models and patients with Alzheimer's disease (AD), but there are also different results that may be related to the stimulation parameters of DBS. Based on this, determining the optimal stimulation parameters for DBS in AD and understanding its mechanism of action are essential to promote the clinical application of DBS in AD. This review aims to explore the therapeutic effect of DBS in AD, and to analyze its stimulation parameters and potential mechanism of action. The keywords "Deep brain stimulation" and "Alzheimer's Disease" were used for systematic searches in the literature databases of Web of Science and PubMed (from 1900 to September 29, 2020). All human clinical studies and animal studies were reported in English, including individual case studies and long-term follow-up studies, were included. These studies described the therapeutic effects of DBS in AD. The results included 16 human clinical studies and 14 animal studies, of which 28 studies clearly demonstrated the positive effect of DBS in AD. We analyzed the current stimulation parameters of DBS in AD from stimulation target, stimulation frequency, stimulation start time, stimulation duration, unilateral/bilateral treatment and current intensity, etc., and we also discussed its potential mechanism of action from multiple aspects, including regulating related neural networks, promoting nerve oscillation, reducing β-amyloid and tau levels, reducing neuroinflammation, regulating the cholinergic system, inducing the synthesis of nerve growth factor.
Collapse
Affiliation(s)
- Yinpei Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Yuwei Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Weina Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Bin Shu
- Department of Rehabilitation Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Amanzadeh Jajin E, Esmaeili A, Rahgozar S, Noorbakhshnia M. Quercetin-Conjugated Superparamagnetic Iron Oxide Nanoparticles Protect AlCl 3-Induced Neurotoxicity in a Rat Model of Alzheimer's Disease via Antioxidant Genes, APP Gene, and miRNA-101. Front Neurosci 2021; 14:598617. [PMID: 33716639 PMCID: PMC7947204 DOI: 10.3389/fnins.2020.598617] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with cognitive impairment. Oxidative stress in neurons is considered as a reason for development of AD. Antioxidant agents such as quercetin slow down AD progression, but the usage of this flavonoid has limitations because of its low bioavailability. We hypothesized that quercetin-conjugated superparamagnetic iron oxide nanoparticles (QT-SPIONs) have a better neuroprotective effect on AD than free quercetin and regulates the antioxidant, apoptotic, and APP gene, and miRNA-101. In this study, male Wistar rats were subjected to AlCl3, AlCl3 + QT, AlCl3 + SPION, and AlCl3 + QT-SPION for 42 consecutive days. Behavioral tests and qPCR were used to evaluate the efficiency of treatments. Results of behavioral tests revealed that the intensity of cognitive impairment was decelerated at both the middle and end of the treatment period. The effect of QT-SPIONs on learning and memory deficits were closely similar to the control group. The increase in expression levels of APP gene and the decrease in mir101 led to the development of AD symptoms in rats treated with AlCl3 while these results were reversed in the AlCl3 + QT-SPIONs group. This group showed similar results with the control group. QT-SPION also decreased the expression levels of antioxidant enzymes along with increases in expression levels of anti-apoptotic genes. Accordingly, the antioxidant effect of QT-SPION inhibited progression of cognitive impairment via sustaining the balance of antioxidant enzymes in the hippocampus of AD model rats.
Collapse
Affiliation(s)
- Elnaz Amanzadeh Jajin
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Noorbakhshnia
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
Hamieh AM, Camperos E, Hernier AM, Castagné V. C57BL/6 mice as a preclinical model to study age-related cognitive deficits: Executive functions impairment and inter-individual differences. Brain Res 2020; 1751:147173. [PMID: 33148432 DOI: 10.1016/j.brainres.2020.147173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The aim of this study was to characterize age-related deficits of mice using different behavioral endpoints, with a focus on executive function and performance heterogeneity. METHODS 2 month-old and 18 month-old C57BL/6J mice were tested in the novelty-based spatial preference Y-maze test and in sequential tasks in the Morris water maze test (reference memory, reversal learning and working memory), before being evaluated for motor skills in the activity meter and accelerating rotarod tests. RESULTS Aged mice displayed an almost normal acquisition in the water maze test, however, difficulties were observed in ability to perform reversal learning and working memory tasks. A marked heterogeneity characterized the performances of aged mice in both Morris water maze and Y-maze tests. Good and poor performers were observed in aged mice although the number of these mice varied depending on the cognitive parameter considered. CONCLUSION Aged mice display deficits in executive function and working memory, with varying severity between individual subjects, something that is also observed in other older animals and humans. Taking into account the heterogeneity in aged subjects within the experimental design of studies evaluating pharmacological treatments represents a promising way to improve the translational value of preclinical studies. In future studies, preselection of poor performers administered with cognitive enhancers and use of good performers as controls is suggested so that all cohorts of aged mice show similar physical and motor characteristics.
Collapse
Affiliation(s)
- Al Mahdy Hamieh
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France.
| | | | | | | |
Collapse
|