1
|
Narmashiri A, Akbari F. The Effects of Transcranial Direct Current Stimulation (tDCS) on the Cognitive Functions: A Systematic Review and Meta-analysis. Neuropsychol Rev 2025; 35:126-152. [PMID: 38060075 DOI: 10.1007/s11065-023-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Previous studies have investigated the effect of transcranial direct current stimulation (tDCS) on cognitive functions. However, these studies reported inconsistent results due to differences in experiment design, measurements, and stimulation parameters. Nonetheless, there is a lack of meta-analyses and review studies on tDCS and its impact on cognitive functions, including working memory, inhibition, flexibility, and theory of mind. We performed a systematic review and meta-analysis of tDCS studies published from the earliest available data up to October 2021, including studies reporting the effects of tDCS on cognitive functions in human populations. Therefore, these systematic review and meta-analysis aim to comprehensively analyze the effects of anodal and cathodal tDCS on cognitive functions by investigating 69 articles with a total of 5545 participants. Our study reveals significant anodal tDCS effects on various cognitive functions. Specifically, we observed improvements in working memory reaction time (RT), inhibition RT, flexibility RT, theory of mind RT, working memory accuracy, theory of mind accuracy and flexibility accuracy. Furthermore, our findings demonstrate noteworthy cathodal tDCS effects, enhancing working memory accuracy, inhibition accuracy, flexibility RT, flexibility accuracy, theory of mind RT, and theory of mind accuracy. Notably, regarding the influence of stimulation parameters of tDCS on cognitive functions, the results indicated significant differences across various aspects, including the timing of stimulation (online vs. offline studies), population type (clinical vs. healthy studies), stimulation duration (< 15 min vs. > 15 min), electrical current intensities (1-1.5 m.A vs. > 1.5 m.A), stimulation sites (right frontal vs. left frontal studies), age groups (young vs. older studies), and different cognitive tasks in each cognitive functioning aspect. In conclusion, our results demonstrate that tDCS can effectively enhance cognitive task performance, offering valuable insights into the potential benefits of this method for cognitive improvement.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Electrical Engineering Department, Bio-Intelligence Research Unit, Sharif Brain Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
2
|
Duffy MJ, Feltman KA, Kelley AM, Mackie R. Limitations associated with transcranial direct current stimulation for enhancement: considerations of performance tradeoffs in active-duty Soldiers. Front Hum Neurosci 2024; 18:1444450. [PMID: 39132676 PMCID: PMC11310018 DOI: 10.3389/fnhum.2024.1444450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method, popular due to its low cost, ease-of-application, and portability. As such, it has gained traction in examining its potential for cognitive enhancement in a diverse range of populations, including active-duty military. However, current literature presents mixed results regarding its efficacy and limited evaluations of possible undesirable side-effects (such as degradation to cognitive processes). Methods To further examine its potential for enhancing cognition, a double-blind, randomized, sham-controlled, within-subjects design, was used to evaluate both online active-anodal and -cathodal on several cognitive tasks administered. Potential undesirable side effects related to mood, sleepiness, and cognitive performance, were also assessed. Active tDCS was applied for 30 min, using 2 mA, to the left dorsolateral prefrontal cortex with an extracephalic reference placed on the contralateral arm of 27 (14 males) active-duty Soldiers. Results We report mixed results. Specifically, we found improvements in sustained attention (active-anodal) for males in reaction time (p = 0.024, ηp 2 = 0.16) and for sensitivity index in females (p = 0.013, ηp 2 = 0.18). In addition, we found faster reaction time (p = 0.034, ηp 2 = 0.15) and increased accuracy (p = 0.029, ηp 2 = 0.16) associated with executive function (active-anodal and -cathodal), and worsened working memory performance (active-cathodal; p = 0.008, ηp 2 = 0.18). Additionally, we found increased risk-taking with active-anodal (p = 0.001, ηp 2 = 0.33). Discussion tDCS may hold promise as a method for cognitive enhancement, as evidenced by our findings related to sustained attention and executive function. However, we caution that further study is required to better understand additional parameters and limitations that may explain results, as our study only focused on anode vs. cathode stimulation. Risk-taking was examined secondary to our main interests which warrants further experimental investigation isolating potential tradeoffs that may be associated with tDCS simulation.
Collapse
Affiliation(s)
- Michelle J. Duffy
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, AL, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Kathryn A. Feltman
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, AL, United States
| | - Amanda M. Kelley
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, AL, United States
| | - Ryan Mackie
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, AL, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| |
Collapse
|
3
|
Dagnino PC, Braboszcz C, Kroupi E, Splittgerber M, Brauer H, Dempfle A, Breitling-Ziegler C, Prehn-Kristensen A, Krauel K, Siniatchkin M, Moliadze V, Soria-Frisch A. Stratification of responses to tDCS intervention in a healthy pediatric population based on resting-state EEG profiles. Sci Rep 2023; 13:8438. [PMID: 37231030 DOI: 10.1038/s41598-023-34724-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation technique with a wide variety of clinical and research applications. As increasingly acknowledged, its effectiveness is subject dependent, which may lead to time consuming and cost ineffective treatment development phases. We propose the combination of electroencephalography (EEG) and unsupervised learning for the stratification and prediction of individual responses to tDCS. A randomized, sham-controlled, double-blind crossover study design was conducted within a clinical trial for the development of pediatric treatments based on tDCS. The tDCS stimulation (sham and active) was applied either in the left dorsolateral prefrontal cortex or in the right inferior frontal gyrus. Following the stimulation session, participants performed 3 cognitive tasks to assess the response to the intervention: the Flanker Task, N-Back Task and Continuous Performance Test (CPT). We used data from 56 healthy children and adolescents to implement an unsupervised clustering approach that stratify participants based on their resting-state EEG spectral features before the tDCS intervention. We then applied a correlational analysis to characterize the clusters of EEG profiles in terms of participant's difference in the behavioral outcome (accuracy and response time) of the cognitive tasks when performed after a tDCS-sham or a tDCS-active session. Better behavioral performance following the active tDCS session compared to the sham tDCS session is considered a positive intervention response, whilst the reverse is considered a negative one. Optimal results in terms of validity measures was obtained for 4 clusters. These results show that specific EEG-based digital phenotypes can be associated to particular responses. While one cluster presents neurotypical EEG activity, the remaining clusters present non-typical EEG characteristics, which seem to be associated with a positive response. Findings suggest that unsupervised machine learning can be successfully used to stratify and eventually predict responses of individuals to a tDCS treatment.
Collapse
Affiliation(s)
| | - Claire Braboszcz
- Neuroscience BU, Starlab Barcelona SL, Av Tibidabo 47 bis, Barcelona, Spain
| | - Eleni Kroupi
- Neuroscience BU, Starlab Barcelona SL, Av Tibidabo 47 bis, Barcelona, Spain
| | - Maike Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Hannah Brauer
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, University Hospital Schleswig Holstein, Kiel University, Kiel, Germany
| | - Carolin Breitling-Ziegler
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Michael Siniatchkin
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, University of Bielefeld, Campus Bielefeld Bethel, Bielefeld, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Aureli Soria-Frisch
- Neuroscience BU, Starlab Barcelona SL, Av Tibidabo 47 bis, Barcelona, Spain.
| |
Collapse
|
4
|
Menze I, Mueller NG, Zaehle T, Schmicker M. Individual response to transcranial direct current stimulation as a function of working memory capacity and electrode montage. Front Hum Neurosci 2023; 17:1134632. [PMID: 36968784 PMCID: PMC10034341 DOI: 10.3389/fnhum.2023.1134632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionAttempts to improve cognitive abilities via transcranial direct current stimulation (tDCS) have led to ambiguous results, likely due to the method’s susceptibility to methodological and inter-individual factors. Conventional tDCS, i.e., using an active electrode over brain areas associated with the targeted cognitive function and a supposedly passive reference, neglects stimulation effects on entire neural networks.MethodsWe investigated the advantage of frontoparietal network stimulation (right prefrontal anode, left posterior parietal cathode) against conventional and sham tDCS in modulating working memory (WM) capacity dependent transfer effects of a single-session distractor inhibition (DIIN) training. Since previous results did not clarify whether electrode montage drives this individual transfer, we here compared conventional to frontoparietal and sham tDCS and reanalyzed data of 124 young, healthy participants in a more robust way using linear mixed effect modeling.ResultsThe interaction of electrode montage and WM capacity resulted in systematic differences in transfer effects. While higher performance gains were observed with increasing WM capacity in the frontoparietal stimulation group, low WM capacity individuals benefited more in the sham condition. The conventional stimulation group showed subtle performance gains independent of WM capacity.DiscussionOur results confirm our previous findings of WM capacity dependent transfer effects on WM by a single-session DIIN training combined with tDCS and additionally highlight the pivotal role of the specific electrode montage. WM capacity dependent differences in frontoparietal network recruitment, especially regarding the parietal involvement, are assumed to underlie this observation.
Collapse
Affiliation(s)
- Inga Menze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- *Correspondence: Inga Menze,
| | - Notger G. Mueller
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Marlen Schmicker
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
5
|
Neuromodulation with transcutaneous spinal stimulation reveals different groups of motor profiles during robot-guided stepping in humans with incomplete spinal cord injury. Exp Brain Res 2023; 241:365-382. [PMID: 36534141 PMCID: PMC10278039 DOI: 10.1007/s00221-022-06521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Neuromodulation via spinal stimulation has been investigated for improving motor function and reducing spasticity after spinal cord injury (SCI) in humans. Despite the reported heterogeneity of outcomes, few investigations have attempted to discern commonalities among individual responses to neuromodulation, especially the impact of stimulation frequencies. Here, we examined how exposure to continuous lumbosacral transcutaneous spinal stimulation (TSS) across a range of frequencies affects robotic torques and EMG patterns during stepping in a robotic gait orthosis on a motorized treadmill. We studied nine chronic motor-incomplete SCI individuals (8/1 AIS-C/D, 8 men) during robot-guided stepping with body-weight support without and with TSS applied at random frequencies between 1 and up to 100 Hz at a constant, individually selected stimulation intensity below the common motor threshold for posterior root reflexes. The hip and knee robotic torques needed to maintain the predefined stepping trajectory and EMG in eight bilateral leg muscles were recorded. We calculated the standardized mean difference between the stimulation conditions grouped into frequency bins and the no stimulation condition to determine changes in the normalized torques and the average EMG envelopes. We found heterogeneous changes in robotic torques across individuals. Agglomerative clustering of robotic torques identified four groups wherein the patterns of changes differed in magnitude and direction depending mainly on the stimulation frequency and stance/swing phase. On one end of the spectrum, the changes in robotic torques were greater with increasing stimulation frequencies (four participants), which coincided with a decrease in EMG, mainly due to the reduction of clonogenic motor output in the lower leg muscles. On the other end, we found an inverted u-shape change in torque over the mid-frequency range along with an increase in EMG, reflecting the augmentation of gait-related physiological (two participants) or pathophysiological (one participant) output. We conclude that TSS during robot-guided stepping reveals different frequency-dependent motor profiles among individuals with chronic motor incomplete SCI. This suggests the need for a better understanding and characterization of motor control profiles in SCI when applying TSS as a therapeutic intervention for improving gait.
Collapse
|
6
|
Pupíková M, Šimko P, Lamoš M, Gajdoš M, Rektorová I. Inter-individual differences in baseline dynamic functional connectivity are linked to cognitive aftereffects of tDCS. Sci Rep 2022; 12:20754. [PMID: 36456622 PMCID: PMC9715685 DOI: 10.1038/s41598-022-25016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has the potential to modulate cognitive training in healthy aging; however, results from various studies have been inconsistent. We hypothesized that inter-individual differences in baseline brain state may contribute to the varied results. We aimed to explore whether baseline resting-state dynamic functional connectivity (rs-dFC) and/or conventional resting-state static functional connectivity (rs-sFC) may be related to the magnitude of cognitive aftereffects of tDCS. To achieve this aim, we used data from our double-blind randomized sham-controlled cross-over tDCS trial in 25 healthy seniors in which bifrontal tDCS combined with cognitive training had induced significant behavioral aftereffects. We performed a backward regression analysis including rs-sFC/rs-dFC measures to explain the variability in the magnitude of tDCS-induced improvements in visual object-matching task (VOMT) accuracy. Rs-dFC analysis revealed four rs-dFC states. The occurrence rate of a rs-dFC state 4, characterized by a high correlation between the left fronto-parietal control network and the language network, was significantly associated with tDCS-induced VOMT accuracy changes. The rs-sFC measure was not significantly associated with the cognitive outcome. We show that flexibility of the brain state representing readiness for top-down control of object identification implicated in the studied task is linked to the tDCS-enhanced task accuracy.
Collapse
Affiliation(s)
- Monika Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Šimko
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology - CEITEC, Masaryk university, Brno, Czech Republic
| | - Martin Gajdoš
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic.
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, ICRC, St Anne's University Hospital and Faculty of Medicine, Brno, Czech Republic.
| |
Collapse
|
7
|
Smits FM, Geuze E, de Kort GJ, Kouwer K, Geerlings L, van Honk J, Schutter DJ. Effects of Multisession Transcranial Direct Current Stimulation on Stress Regulation and Emotional Working Memory: A Randomized Controlled Trial in Healthy Military Personnel. Neuromodulation 2022:S1094-7159(22)00721-8. [DOI: 10.1016/j.neurom.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 10/16/2022]
|
8
|
Vergallito A, Feroldi S, Pisoni A, Romero Lauro LJ. Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sci 2022; 12:522. [PMID: 35624908 PMCID: PMC9139102 DOI: 10.3390/brainsci12050522] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Due to its safety, portability, and cheapness, transcranial direct current stimulation (tDCS) use largely increased in research and clinical settings. Despite tDCS's wide application, previous works pointed out inconsistent and low replicable results, sometimes leading to extreme conclusions about tDCS's ineffectiveness in modulating behavioral performance across cognitive domains. Traditionally, this variability has been linked to significant differences in the stimulation protocols across studies, including stimulation parameters, target regions, and electrodes montage. Here, we reviewed and discussed evidence of heterogeneity emerging at the intra-study level, namely inter-individual differences that may influence the response to tDCS within each study. This source of variability has been largely neglected by literature, being results mainly analyzed at the group level. Previous research, however, highlighted that only a half-or less-of studies' participants could be classified as responders, being affected by tDCS in the expected direction. Stable and variable inter-individual differences, such as morphological and genetic features vs. hormonal/exogenous substance consumption, partially account for this heterogeneity. Moreover, variability comes from experiments' contextual elements, such as participants' engagement/baseline capacity and individual task difficulty. We concluded that increasing knowledge on inter-dividual differences rather than undermining tDCS effectiveness could enhance protocols' efficiency and reproducibility.
Collapse
Affiliation(s)
- Alessandra Vergallito
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Sarah Feroldi
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy;
| | - Alberto Pisoni
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Leonor J. Romero Lauro
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| |
Collapse
|
9
|
Harris DM. Exploring the effectiveness of transcranial direct current stimulation in enhancing cognitive outcomes: the problem of heterogeneity. J Physiol 2022; 600:1581-1583. [PMID: 35137957 DOI: 10.1113/jp282744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Dale M Harris
- First Year College, Victoria University, Victoria, Australia.,Institute for Health and Sport (IHeS), Victoria University, Victoria, Australia
| |
Collapse
|
10
|
Prefrontal high definition cathodal tDCS modulates executive functions only when coupled with moderate aerobic exercise in healthy persons. Sci Rep 2021; 11:8457. [PMID: 33875729 PMCID: PMC8055664 DOI: 10.1038/s41598-021-87914-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising tool to enhance cognitive performance. However, its effectiveness has not yet been unequivocally shown. Thus, here we tested whether coupling tDCS with a bout of aerobic exercise (AE) is more effective in modulating cognitive functions than tDCS or AE alone. One hundred twenty-two healthy participants were assigned to five randomized controlled crossover experiments. Two multimodal target experiments (EXP-4: anodal vs. sham tDCS during AE; EXP-5: cathodal vs. sham tDCS during AE) investigated whether anodal (a-tDCS) or cathodal tDCS (c-tDCS) applied during AE over the left dorsolateral prefrontal cortex (left DLPFC) affects executive functioning (inhibition ability). In three unimodal control experiments, the participants were either stimulated (EXP-1: anodal vs. sham tDCS, EXP-2: cathodal vs. sham tDCS) or did AE (EXP-3: AE vs. active control). Participants performed an Eriksen flanker task during ergometer cycling at moderate intensity (in EXP. 3-5). Only c-tDCS during AE had a significant adverse effect on the inhibition task, with decreased accuracy. This outcome provides preliminary evidence that c-tDCS during AE over the left DLPFC might effectively modulate inhibition performance compared to c-tDCS alone. However, more systematic research is needed in the future.
Collapse
|