1
|
Luo Y, Yu L, Zhang P, Lin W, Xu H, Dou Z, Zhao G, Peng W, Zeng F, Yu S. Larger hypothalamic subfield volumes in patients with chronic insomnia disorder and relationships to levels of corticotropin-releasing hormone. J Affect Disord 2024; 351:870-877. [PMID: 38341156 DOI: 10.1016/j.jad.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The hypothalamus is a well-established core structure in the sleep-wake cycle. While previous studies have not consistently found whole hypothalamus volume changes in chronic insomnia disorder (CID), differences may exist at the smaller substructural level of the hypothalamic nuclei. The study aimed to investigate the differences in total and subfield hypothalamic volumes, between CID patients and healthy controls (HCs) in vivo, through an advanced deep learning-based automated segmentation tool. A total of 150 patients with CID and 155 demographically matched HCs underwent T1-weighted structural magnetic resonance scanning. We utilized FreeSurfer v7.2 for automated segmentation of the hypothalamus and its five nuclei. Additionally, correlation and causal mediation analyses were performed to investigate the association between hypothalamic volume changes, insomnia symptom severity, and hypothalamus-pituitary-adrenal (HPA) axis-related blood biomarkers. CID patients exhibited larger volumes in the right anterior inferior, left anterior superior, and left posterior subunits of the hypothalamus compared to HCs. Moreover, we observed a positive association between blood corticotropin-releasing hormone (CRH) levels and insomnia severity, with anterior inferior hypothalamus (a-iHyp) hypertrophy mediating this relationship. In conclusion, we found significant volume increases in several hypothalamic subfield regions in CID patients, highlighting the central role of the HPA axis in the pathophysiology of insomnia.
Collapse
Affiliation(s)
- Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Zhang
- Nervous System Disease Treatment Center, Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Xu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Fang Zeng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Liu H, Zhou R, Yin L, Si N, Yang C, Huang C, Wang R, Chen X. β-asarone prolongs sleep via regulating the level of glutamate in the PVN. Biochem Biophys Res Commun 2023; 665:71-77. [PMID: 37149985 DOI: 10.1016/j.bbrc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
People of all ages could suffer from sleep disorders, which are increasingly recognized as common manifestations of neurologic disease. Acorus tatarinowii is a herb that has been used in traditional medicine to promote sleep. β-asarone, as the main component of volatile oil obtained from Acorus tatarinowii, may be the main contributor to the sleeping-promoting efficacy of Acorus tatarinowii. In the study, adult male C57BL/6 mice were administered β-asarone at 12.5 mg/kg, 25 mg/kg, and 50 mg/kg. Behavioral experiments showed that β-asarone at 25 mg/kg could significantly improve sleep duration. It was also observed that the proportion of NREM (Non-Rapid Eye Movement) sleep increased considerably after administration of β-asarone. In the PVN (paraventricular nucleus of hypothalamus) region of the hypothalamus, it was observed that the glutamate content decreased after β-asarone treatment. At the same time, the expression of VGLUT2 (vesicular glutamate transporters 2) decreased while the expression of GAD65 (glutamic acid decarboxylase 65) and GABARAP (GABA Type A Receptor-Associated Protein) increased in the hypothalamus, suggesting that β-asarone may suppress arousal by reducing glutamate and promoting transformation of glutamate to the inhibitory neurotransmitter GABA (γ-aminobutyric acid). This study is the first to focus on the association between β-asarone and sleep, shedding perspectives for pharmacological applications of β-asarone and providing a new direction for future research.
Collapse
Affiliation(s)
- Haoyu Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ruiqing Zhou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lanxiang Yin
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Nana Si
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chenglin Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chengqing Huang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rongrong Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangtao Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Yin J, Qin J, Lin Z, Li A, Liu D, Jiang Y, Zhao Q, Chen L, Liu C. Glutamatergic neurons in the paraventricular hypothalamic nucleus regulate isoflurane anesthesia in mice. FASEB J 2023; 37:e22762. [PMID: 36719765 DOI: 10.1096/fj.202200974rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
The glutamatergic-mediated excitatory system in the brain is vital for the regulation of sleep-wake and general anesthesia. Specifically, the paraventricular hypothalamic nucleus (PVH), which contains mainly glutamatergic neurons, has been shown to play a critical role in sleep-wake. Here, we sought to explore whether the PVH glutamatergic neurons have an important effect on the process of general anesthesia. We used c-fos staining and in vivo calcium signal recording to observe the activity changes of the PVH glutamatergic neurons during isoflurane anesthesia and found that both c-fos expression in the PVH and the calcium activity of PVH glutamatergic neurons decreased in isoflurane anesthesia and significantly increased during the recovery process. Chemogenetic activation of PVH glutamatergic neurons prolonged induction time and shortened emergence time from anesthesia by decreasing the depth of anesthesia. Using chemogenetic inhibition of PVH glutamatergic neurons under isoflurane anesthesia, we found that inhibition of PVH glutamatergic neurons facilitated the induction process and delayed the emergence accompanied by deepening the depth of anesthesia. Together, these results identify a crucial role for PVH glutamatergic neurons in modulating isoflurane anesthesia.
Collapse
Affiliation(s)
- Jianyin Yin
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Jie Qin
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China.,Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhaojing Lin
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Aiyuan Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Damin Liu
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Yurong Jiang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Qiuni Zhao
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Liang Chen
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Chengxi Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China.,Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
4
|
Islam MT, Rumpf F, Tsuno Y, Kodani S, Sakurai T, Matsui A, Maejima T, Mieda M. Vasopressin neurons in the paraventricular hypothalamus promote wakefulness via lateral hypothalamic orexin neurons. Curr Biol 2022; 32:3871-3885.e4. [PMID: 35907397 DOI: 10.1016/j.cub.2022.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023]
Abstract
The sleep-wakefulness cycle is regulated by complicated neural networks that include many different populations of neurons throughout the brain. Arginine vasopressin neurons in the paraventricular nucleus of the hypothalamus (PVHAVP) regulate various physiological events and behaviors, such as body-fluid homeostasis, blood pressure, stress response, social interaction, and feeding. Changes in arousal level often accompany these PVHAVP-mediated adaptive responses. However, the contribution of PVHAVP neurons to sleep-wakefulness regulation has remained unknown. Here, we report the involvement of PVHAVP neurons in arousal promotion. Optogenetic stimulation of PVHAVP neurons rapidly induced transitions to wakefulness from both NREM and REM sleep. This arousal effect was dependent on AVP expression in these neurons. Similarly, chemogenetic activation of PVHAVP neurons increased wakefulness and reduced NREM and REM sleep, whereas chemogenetic inhibition of these neurons significantly reduced wakefulness and increased NREM sleep. We observed dense projections of PVHAVP neurons in the lateral hypothalamus with potential connections to orexin/hypocretin (LHOrx) neurons. Optogenetic stimulation of PVHAVP neuronal fibers in the LH immediately induced wakefulness, whereas blocking orexin receptors attenuated the arousal effect of PVHAVP neuronal activation drastically. Monosynaptic rabies-virus tracing revealed that PVHAVP neurons receive inputs from multiple brain regions involved in sleep-wakefulness regulation, as well as those involved in stress response and energy metabolism. Moreover, PVHAVP neurons mediated the arousal induced by novelty stress and a melanocortin receptor agonist melanotan-II. Thus, our data suggested that PVHAVP neurons promote wakefulness via LHOrx neurons in the basal sleep-wakefulness and some stressful conditions.
Collapse
Affiliation(s)
- Md Tarikul Islam
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Florian Rumpf
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; Graduate School of Life Sciences, University of Würzburg, Beatrice-Edgell-Weg 21, 97074 Würzburg, Germany
| | - Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Shota Kodani
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Sakurai
- Faculty of Medicine/WPI-IIIS, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayako Matsui
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
5
|
Chen C, Lin Y, Cai F, Li J, Li H, Li X. Adenosine Downregulates the Activities of Glutamatergic Neurons in the Paraventricular Hypothalamic Nucleus Required for Sleep. Front Neurosci 2022; 16:907155. [PMID: 35769705 PMCID: PMC9236558 DOI: 10.3389/fnins.2022.907155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine is an endogenous substance that regulates sleep homeostasis. It plays an important role in sleep induction under physiological condition. So far, the neural mechanisms underlying sleep-promoting effects of adenosine are not completely clear. Recent studies have shown that glutamatergic neurons in the paraventricular hypothalamic nucleus (PVH) play an important role in wakefulness. Using whole-cell patch-clamp, we found that adenosine can inhibit glutamatergic neurons in PVH. This inhibition is mainly achieved by activating adenosine type 1 receptors, thereby reducing hyperpolarization-activated cyclic nucleotide-gated cation channels. By recording electroencephalogram (EEG) and electromyography (EMG), it was found that local administration of adenosine type 1 receptor blocker in PVH could significantly reduce the NREM sleep. On the contrary, if adenosine was given, it could increase the NREM sleep. These results suggest that adenosine can promote sleep by reducing the excitability of PVH neurons. This findings reveal a novel mechanism of adenosine regulating sleep homeostasis.
Collapse
Affiliation(s)
- Changlin Chen
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yichen Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Feng Cai
- Department of Urology and Neurocardiothoracic Surgery, 927 Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Pu’er, China
| | - Jinsui Li
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haixun Li
- Department of Cardiovascular Surgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Haixun Li,
| | - Xiantao Li
- Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Xiantao Li,
| |
Collapse
|
6
|
Liu Y, Rao B, Li S, Zheng N, Wang J, Bi L, Xu H. Distinct Hypothalamic Paraventricular Nucleus Inputs to the Cingulate Cortex and Paraventricular Thalamic Nucleus Modulate Anxiety and Arousal. Front Pharmacol 2022; 13:814623. [PMID: 35153786 PMCID: PMC8832877 DOI: 10.3389/fphar.2022.814623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Insomnia and anxiety are two common clinical diseases that threaten people’s physical and mental health. Insomnia and anxiety may share some similar underlying neural circuit mechanisms in the brain. In this study, we combine techniques including chemo-fMRI, optogenetics, and chemogenetics to reveal that the glutamatergic neurons of the paraventricular hypothalamic nucleus (PVN) regulate both anxiety and arousal through two different downstream neural circuits. Optogenetic activation of the PVN-cingulate cortex (Cg) neural circuit triggers anxiety-like behaviors in mice without affecting the wakefulness, while optogenetic activation of the PVN-paraventricular thalamic nucleus (PVT) neural circuit promotes wakefulness in mice without affecting anxiety-like behaviors. Our research reveals that PVN is a key brain area for controlling anxiety and arousal behaviors. We also provide a neurological explanation for anxiety disorder and insomnia which may offer guidance for treatments including drugs or transcranial magnetic stimulation for the patients.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ning Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Jie Wang, ; Linlin Bi, ; Haibo Xu,
| | - Linlin Bi
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jie Wang, ; Linlin Bi, ; Haibo Xu,
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jie Wang, ; Linlin Bi, ; Haibo Xu,
| |
Collapse
|
7
|
Wang RF, Guo H, Jiang SY, Liu ZL, Qu WM, Huang ZL, Wang L. Control of wakefulness by lateral hypothalamic glutamatergic neurons in male mice. J Neurosci Res 2021; 99:1689-1703. [PMID: 33713502 DOI: 10.1002/jnr.24828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 11/10/2022]
Abstract
The lateral hypothalamus (LH) plays a key role in the maintenance of cortical activation and wakefulness. In the LH, the two main neuronal cell populations consist of excitatory glutamatergic neurons and inhibitory GABAergic neurons. Recent studies have shown that inhibitory LH GABAergic neurons are wake-promoting. However, the mechanism by which excitatory LH glutamatergic neurons contribute to sleep-wake regulation remains unclear. Using fiber photometry in male mice, we demonstrated that LH glutamatergic neurons exhibited high activities during both wakefulness and rapid eye movement sleep. Chemogenetic activation of LH glutamatergic neurons induced an increase in wakefulness that lasted for 6 hr, whereas suppression of LH glutamatergic neuronal activity caused a reduction in wakefulness. Brief optogenetic activation of LH glutamatergic neurons induced an immediate transition from slow-wave sleep to wakefulness, and long-lasting optogenetic stimulation of these neurons maintained wakefulness. Moreover, we found that LH-locus coeruleus/parabrachial nucleus and LH-basal forebrain projections mediated the wake-promoting effects of LH glutamatergic neurons. Taken together, our data indicate that LH glutamatergic neurons are essential for the induction and maintenance of wakefulness. The results presented here may advance our understanding of the role of LH in the control of wakefulness.
Collapse
Affiliation(s)
- Ren-Fei Wang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Han Guo
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shi-Yu Jiang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zi-Long Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lu Wang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
8
|
Liu C, Liu J, Zhou L, He H, Zhang Y, Cai S, Yuan C, Luo T, Zheng J, Yu T, Zhang M. Lateral Habenula Glutamatergic Neurons Modulate Isoflurane Anesthesia in Mice. Front Mol Neurosci 2021; 14:628996. [PMID: 33746711 PMCID: PMC7969819 DOI: 10.3389/fnmol.2021.628996] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/09/2021] [Indexed: 01/27/2023] Open
Abstract
Since their introduction in the 1840s, one of the largest mysteries of modern anesthesia are how general anesthetics create the state of reversible loss of consciousness. Increasing researchers have shown that neural pathways that regulate endogenous sleep–wake systems are also involved in general anesthesia. Recently, the Lateral Habenula (LHb) was considered as a hot spot for both natural sleep–wake and propofol-induced sedation; however, the role of the LHb and related pathways in the isoflurane-induced unconsciousness has yet to be identified. Here, using real-time calcium fiber photometry recordings in vivo, we found that isoflurane reversibly increased the activity of LHb glutamatergic neurons. Then, we selectively ablated LHb glutamatergic neurons in Vglut2-cre mice, which caused a longer induction time and less recovery time along with a decrease in delta-band power in mice under isoflurane anesthesia. Furthermore, using a chemogenetic approach to specifically activate LHb glutamatergic neurons shortened the induction time and prolonged the recovery time in mice under isoflurane anesthesia with an increase in delta-band power. In contrast, chemogenetic inhibition of LHb glutamatergic neurons was very similar to the effects of selective lesions of LHb glutamatergic neurons. Finally, optogenetic activation of LHb glutamatergic neurons or the synaptic terminals of LHb glutamatergic neurons in the rostromedial tegmental nucleus (RMTg) produced a hypnosis-promoting effect in isoflurane anesthesia with an increase in slow wave activity. Our results suggest that LHb glutamatergic neurons and pathway are vital in modulating isoflurane anesthesia.
Collapse
Affiliation(s)
- Chengxi Liu
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Guizhou Key Laboratory of Anaesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Junxiao Liu
- Guizhou Key Laboratory of Anaesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liang Zhou
- Guizhou Key Laboratory of Anaesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haifeng He
- Guizhou Key Laboratory of Anaesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anaesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuang Cai
- Guizhou Key Laboratory of Anaesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Chengdong Yuan
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.,Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tianyuan Luo
- Guizhou Key Laboratory of Anaesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Yu
- Guizhou Key Laboratory of Anaesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Mazhong Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Giardino WJ, Pomrenze MB. Extended Amygdala Neuropeptide Circuitry of Emotional Arousal: Waking Up on the Wrong Side of the Bed Nuclei of Stria Terminalis. Front Behav Neurosci 2021; 15:613025. [PMID: 33633549 PMCID: PMC7900561 DOI: 10.3389/fnbeh.2021.613025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep is fundamental to life, and poor sleep quality is linked to the suboptimal function of the neural circuits that process and respond to emotional stimuli. Wakefulness ("arousal") is chiefly regulated by circadian and homeostatic forces, but affective mood states also strongly impact the balance between sleep and wake. Considering the bidirectional relationships between sleep/wake changes and emotional dynamics, we use the term "emotional arousal" as a representative characteristic of the profound overlap between brain pathways that: (1) modulate wakefulness; (2) interpret emotional information; and (3) calibrate motivated behaviors. Interestingly, many emotional arousal circuits communicate using specialized signaling molecules called neuropeptides to broadly modify neural network activities. One major neuropeptide-enriched brain region that is critical for emotional processing and has been recently implicated in sleep regulation is the bed nuclei of stria terminalis (BNST), a core component of the extended amygdala (an anatomical term that also includes the central and medial amygdalae, nucleus accumbens shell, and transition zones betwixt). The BNST encompasses an astonishing diversity of cell types that differ across many features including spatial organization, molecular signature, biological sex and hormonal milieu, synaptic input, axonal output, neurophysiological communication mode, and functional role. Given this tremendous complexity, comprehensive elucidation of the BNST neuropeptide circuit mechanisms underlying emotional arousal presents an ambitious set of challenges. In this review, we describe how rigorous investigation of these unresolved questions may reveal key insights to enhancing psychiatric treatments and global psychological wellbeing.
Collapse
|