1
|
Yue L, Lu Z, Guo T, Liu J, Yuan C, Yang B. Association of SLIT3 and ZNF280B Gene Polymorphisms with Wool Fiber Diameter. Animals (Basel) 2023; 13:3552. [PMID: 38003169 PMCID: PMC10668676 DOI: 10.3390/ani13223552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The SLIT3 gene encodes a secreted protein, and the ZNF280B gene is a member of the transcription factor family. Both genes have multiple biological functions. This study was conducted to investigate the association between SLIT3 and ZNF280B gene polymorphisms and wool fiber diameter and to determine potential molecular marker sites for breeding sheep with fine wool. We used Kompetitive Allele-Specific PCR to type the single nucleotide polymorphism (SNP) loci in the SLIT3 and ZNF280B genes within 1081 Alpine Merino sheep and associated these SNPs with wool fiber diameter. The results revealed one SNP in SLIT3 and ZNF280B, which were each related to sheep fiber diameter. The wool fiber diameters of sheep with the CC genotype in SLIT3 g.478807C>G and AA genotype in ZNF280B g.677G>A were the smallest and differed significantly from the diameters of other genotypes (p < 0.05). These results suggest potential molecular marker sites for fine-wool sheep breeding.
Collapse
Affiliation(s)
- Lin Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
2
|
Zebrafish Slit2 and Slit3 Act Together to Regulate Retinal Axon Crossing at the Midline. J Dev Biol 2022; 10:jdb10040041. [PMID: 36278546 PMCID: PMC9590056 DOI: 10.3390/jdb10040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Slit-Robo signaling regulates midline crossing of commissural axons in different systems. In zebrafish, all retinofugal axons cross at the optic chiasm to innervate the contralateral tectum. Here, the mutant for the Robo2 receptor presents severe axon guidance defects, which were not completely reproduced in a Slit2 ligand null mutant. Since slit3 is also expressed around this area at the stage of axon crossing, we decided to analyze the possibility that it collaborates with Slit2 in this process. We found that the disruption of slit3 expression by sgRNA-Cas9 injection caused similar, albeit slightly milder, defects than those of the slit2 mutant, while the same treatment in the slit2−/−mz background caused much more severe defects, comparable to those observed in robo2 mutants. Tracking analysis of in vivo time-lapse experiments indicated differential but complementary functions of these secreted factors in the correction of axon turn errors around the optic chiasm. Interestingly, RT-qPCR analysis showed a mild increase in slit2 expression in slit3-deficient embryos, but not the opposite. Our observations support the previously proposed “repulsive channel” model for Slit-Robo action at the optic chiasm, with both Slits acting in different manners, most probably relating to their different spatial expression patterns.
Collapse
|
3
|
nr0b1 (DAX1) loss of function in zebrafish causes hypothalamic defects via abnormal progenitor proliferation and differentiation. J Genet Genomics 2021; 49:217-229. [PMID: 34606992 DOI: 10.1016/j.jgg.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022]
Abstract
The nuclear receptor DAX-1 (encoded by the NR0B1 gene) is presented in the hypothalamic tissues in humans and other vertebrates. Human patients with NR0B1 mutations often have hypothalamic-pituitary defects, but the involvement of NR0B1 in hypothalamic development and function is not well understood. Here, we report the disruption of the nr0b1 gene in zebrafish causes abnormal expression of gonadotropins, a reduction in fertilization rate, and an increase in post-fasting food intake, which is indicative of abnormal hypothalamic functions. We find that loss of nr0b1 increases the number of prodynorphin (pdyn)-expressing neurons but decreases the number of pro-opiomelanocortin (pomcb)-expressing neurons in the zebrafish hypothalamic arcuate region (ARC). Further examination reveals that the proliferation of progenitor cells is reduced in the hypothalamus of nr0b1 mutant embryos accompanying with the decreased expression of genes in the Notch signaling pathway. Additionally, the inhibition of Notch signaling in wild-type embryos increases the number of pdyn neurons, mimicking the nr0b1 mutant phenotype. In contrast, ectopic activation of Notch signaling in nr0b1 mutant embryos decreases the number of pdyn neurons. Taken together, our results suggest that nr0b1 regulates neural progenitor proliferation and maintenance to ensure normal hypothalamic neuron development.
Collapse
|
4
|
Fenlon LR, Suarez R, Lynton Z, Richards LJ. The evolution, formation and connectivity of the anterior commissure. Semin Cell Dev Biol 2021; 118:50-59. [PMID: 33958283 DOI: 10.1016/j.semcdb.2021.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
The anterior commissure is the most ancient of the forebrain interhemispheric connections among all vertebrates. Indeed, it is the predominant pallial commissure in all non-eutherian vertebrates, universally subserving basic functions related to olfaction and survival. A key feature of the anterior commissure is its ability to convey connections from diverse brain areas, such as most of the neocortex in non-eutherian mammals, thereby mediating the bilateral integration of diverse functions. Shared developmental mechanisms between the anterior commissure and more evolutionarily recent commissures, such as the corpus callosum in eutherians, have led to the hypothesis that the former may have been a precursor for additional expansion of commissural circuits. However, differences between the formation of the anterior commissure and other telencephalic commissures suggest that independent developmental mechanisms underlie the emergence of these connections in extant species. Here, we review the developmental mechanisms and connectivity of the anterior commissure across evolutionarily distant species, and highlight its potential functional importance in humans, both in the course of normal neurodevelopment, and as a site of plastic axonal rerouting in the absence or damage of other connections.
Collapse
Affiliation(s)
- Laura R Fenlon
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia.
| | - Rodrigo Suarez
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia
| | - Zorana Lynton
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia; The Faculty of Medicine, Brisbane, Australia
| | - Linda J Richards
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia; The School of Biomedical Sciences, Brisbane, Australia.
| |
Collapse
|