1
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
2
|
Wilkinson CS, Blount HL, Davis S, Rojas G, Wu L, Murphy NP, Schwendt M, Knackstedt LA. Voluntary alcohol intake alters the motivation to seek intravenous oxycodone and neuronal activation during the reinstatement of oxycodone and sucrose seeking. Sci Rep 2023; 13:19174. [PMID: 37932476 PMCID: PMC10628226 DOI: 10.1038/s41598-023-46111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Opioid-alcohol polysubstance use is prevalent and worsens treatment outcomes. Here we assessed whether co-consumption of oxycodone and alcohol influence the intake of one another, demand for oxycodone, and the neurocircuitry underlying cue-primed reinstatement of oxycodone-seeking. Male and female rats underwent oxycodone intravenous self-administration (IVSA) with homecage access to alcohol (20% v/v) and/or water immediately after the IVSA session. Next, economic demand for intravenous oxycodone was assessed while access to alcohol and/or water continued. Control rats self-administered sucrose followed by access to alcohol and/or water. Rats underwent a cue-primed reinstatement test and brains were processed for c-fos mRNA expression. While both sexes decreased oxycodone intake if they had access to alcohol, and decreased alcohol intake if they had access to oxycodone, only female oxycodone + alcohol rats exhibited decreased demand elasticity and increased cue-primed reinstatement. Alcohol consumption increased the number of basolateral and central amygdala neurons activated during sucrose and oxycodone reinstatement and the number of ventral and dorsal striatum neurons engaged by sucrose reinstatement. Nucleus accumbens shell dopamine 1 receptor expressing neurons displayed activation patterns consistent with oxycodone reinstatement. Thus, alcohol alters the motivation to seek oxycodone in a sex-dependent manner and the neural circuitry engaged by cue-primed reinstatement of sucrose and oxycodone-seeking.
Collapse
Affiliation(s)
- Courtney S Wilkinson
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Harrison L Blount
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Shane Davis
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Giselle Rojas
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
| | - Lizhen Wu
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
| | - Niall P Murphy
- Orthodontics Department, University of Florida, Gainesville, FL, USA
| | - Marek Schwendt
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lori A Knackstedt
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Wilkinson CS, Blount HL, Davis S, Rojas G, Wu L, Murphy NP, Schwendt M, Knackstedt LA. Voluntary alcohol intake alters the motivation to seek intravenous oxycodone and neuronal activation during the reinstatement of oxycodone and sucrose seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549769. [PMID: 37546763 PMCID: PMC10401968 DOI: 10.1101/2023.07.20.549769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Opioid-alcohol polysubstance use is prevalent and worsens treatment outcomes. Here we assessed whether co-consumption of oxycodone and alcohol would influence intake of one another, demand for oxycodone, and the neurocircuitry underlying cue-primed reinstatement of oxycodone-seeking. Male and female rats underwent oxycodone intravenous self-administration (IVSA) with access to either alcohol (20% v/v) and water or only water immediately after the IVSA session. Next, economic demand for intravenous oxycodone was assessed while access to alcohol and/or water continued. Control rats self-administered sucrose followed by access to alcohol and/or water. Rats underwent extinction training and brains were processed for c-fos mRNA expression immediately following a cue-primed reinstatement test. While both sexes decreased oxycodone intake if they had access to alcohol, and decreased alcohol intake if they had access to oxycodone, female oxycodone+alcohol rats exhibited decreased demand elasticity for intravenous oxycodone and increased cue-primed reinstatement while male rats did not. Spontaneous withdrawal signs were correlated with oxycodone intake while alcohol intake was correlated with anxiety-like behavior. Alcohol consumption increased the number of basolateral and central amygdala neurons activated during sucrose and oxycodone reinstatement and the number of ventral and dorsal striatum neurons engaged by sucrose reinstatement. Nucleus accumbens shell dopamine 1 receptor containing neurons displayed activation patterns consistent with oxycodone reinstatement. Thus, alcohol alters the motivation to seek oxycodone in a sex-dependent manner and alters the neural circuitry engaged by cue-primed reinstatement of sucrose and oxycodone-seeking.
Collapse
Affiliation(s)
- Courtney S. Wilkinson
- Psychology Dept. University of Florida, Gainesville, FL
- Center for Addiction Research and Education, University of Florida, Gainesville, FL
| | - Harrison L. Blount
- Psychology Dept. University of Florida, Gainesville, FL
- Center for Addiction Research and Education, University of Florida, Gainesville, FL
| | - Shane Davis
- Psychology Dept. University of Florida, Gainesville, FL
- Center for Addiction Research and Education, University of Florida, Gainesville, FL
| | - Giselle Rojas
- Psychology Dept. University of Florida, Gainesville, FL
| | - Lizhen Wu
- Psychology Dept. University of Florida, Gainesville, FL
| | | | - Marek Schwendt
- Psychology Dept. University of Florida, Gainesville, FL
- Center for Addiction Research and Education, University of Florida, Gainesville, FL
| | - Lori A. Knackstedt
- Psychology Dept. University of Florida, Gainesville, FL
- Center for Addiction Research and Education, University of Florida, Gainesville, FL
| |
Collapse
|
4
|
Dong GH, Xu YH, Liu LY, Lu D, Chu CP, Cui SB, Qiu DL. Chronic ethanol exposure during adolescence impairs simple spike activity of cerebellar Purkinje cells in vivo in mice. Neurosci Lett 2021; 771:136396. [PMID: 34919990 DOI: 10.1016/j.neulet.2021.136396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Cerebellar Purkinje cells (PCs) play critical roles in motor coordination and motor learning through their simple spike (SS) activity. Previous studies have shown that chronic ethanol exposure (CEE) in adolescents impairs learning, attention, and behavior, at least in part by impairing the activity of cerebellar PCs. In this study, we investigated the effect of CEE on the SS activity in urethane-anesthetized adolescent mice by in vivo electrophysiological recordings and pharmacological methods. Our results showed that the cerebellar PCs in CEE adolescent mice expressed a significant decrease in the frequency and an increase in the coefficient of variation (CV) of SS than control group. Blockade of ɤ-aminobutyric acid A (GABAA) receptor did not change the frequency and CV of SS firing in control group but produced a significant increase in the frequency and a decrease in the CV of SS firing in CEE mice. The CEE-induced decrease in SS firing rate and increase in CV were abolished by application of an N-methyl-D-aspartate (NMDA) receptor blocker, D-APV, but not by anα-amino-3-hydroxy-5-methyl -4-isoxazolepropionic acid (AMPA) receptor antagonist, NBQX. Notably, the spontaneous spike rate of molecular layer interneurons (MLIs) in CEE mice was significantly higher than control group, which was also abolished by application of D-APV. These results indicate that adolescent CEE enhances the spontaneous spike firing rate of MLIs through activation of NMDA receptor, resulting in a depression in the SS activity of cerebellar PCs in vivo in mice.
Collapse
Affiliation(s)
- Guang-Hui Dong
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yin-Hua Xu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Liang-Yan Liu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Di Lu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Ophthalmology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China; Institute of Brain Science, Jilin Medical University, Jilin, China
| | - Song-Biao Cui
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China.
| | - De-Lai Qiu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China; Institute of Brain Science, Jilin Medical University, Jilin, China.
| |
Collapse
|
5
|
Volumetric trajectories of hippocampal subfields and amygdala nuclei influenced by adolescent alcohol use and lifetime trauma. Transl Psychiatry 2021; 11:154. [PMID: 33654086 PMCID: PMC7925562 DOI: 10.1038/s41398-021-01275-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Alcohol use and exposure to psychological trauma frequently co-occur in adolescence and share many risk factors. Both exposures have deleterious effects on the brain during this sensitive developmental period, particularly on the hippocampus and amygdala. However, very little is known about the individual and interactive effects of trauma and alcohol exposure and their specific effects on functionally distinct substructures within the adolescent hippocampus and amygdala. Adolescents from a large longitudinal sample (N = 803, 2684 scans, 51% female, and 75% White/Caucasian) ranging in age from 12 to 21 years were interviewed about exposure to traumatic events at their baseline evaluation. Assessments for alcohol use and structural magnetic resonance imaging scans were completed at baseline and repeated annually to examine neurodevelopmental trajectories. Hippocampal and amygdala subregions were segmented using Freesurfer v6.0 tools, followed by volumetric analysis with generalized additive mixed models. Longitudinal statistical models examined the effects of cumulative lifetime trauma measured at baseline and alcohol use measured annually on trajectories of hippocampal and amygdala subregions, while controlling for covariates known to impact brain development. Greater alcohol use, quantified using the Cahalan scale and measured annually, was associated with smaller whole hippocampus (β = -12.0, pFDR = 0.009) and left hippocampus tail volumes (β = -1.2, pFDR = 0.048), and larger right CA3 head (β = 0.4, pFDR = 0.027) and left subiculum (β = 0.7, pFDR = 0.046) volumes of the hippocampus. In the amygdala, greater alcohol use was associated with larger right basal nucleus volume (β = 1.3, pFDR = 0.040). The effect of traumatic life events measured at baseline was associated with larger right CA3 head volume (β = 1.3, pFDR = 0.041) in the hippocampus. We observed an interaction between baseline trauma and within-person age change where younger adolescents with greater trauma exposure at baseline had smaller left hippocampal subfield volumes in the subiculum (β = 0.3, pFDR = 0.029) and molecular layer HP head (β = 0.3, pFDR = 0.041). The interaction also revealed that older adolescents with greater trauma exposure at baseline had larger right amygdala nucleus volume in the paralaminar nucleus (β = 0.1, pFDR = 0.045), yet smaller whole amygdala volume overall (β = -3.7, pFDR = 0.003). Lastly, we observed an interaction between alcohol use and baseline trauma such that adolescents who reported greater alcohol use with greater baseline trauma showed smaller right hippocampal subfield volumes in the CA1 head (β = -1.1, pFDR = 0.011) and hippocampal head (β = -2.6, pFDR = 0.025), yet larger whole hippocampus volume overall (β = 10.0, pFDR = 0.032). Cumulative lifetime trauma measured at baseline and alcohol use measured annually interact to affect the volume and trajectory of hippocampal and amygdala substructures (measured via structural MRI annually), regions that are essential for emotion regulation and memory. Our findings demonstrate the value of examining these substructures and support the hypothesis that the amygdala and hippocampus are not homogeneous brain regions.
Collapse
|