1
|
Klaperski-van der Wal S, Skinner J, Opacka-Juffry J, Pfeffer K. Dance and stress regulation: A multidisciplinary narrative review. PSYCHOLOGY OF SPORT AND EXERCISE 2025; 78:102823. [PMID: 39922294 DOI: 10.1016/j.psychsport.2025.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Physical exercise is known to aid stress regulation, however the effects of specific exercise types are under-researched. Dance uniquely combines several characteristics that are known to have stress regulatory effects, such as music listening. Nonetheless, dance has received only little attention in studies examining the stress regulatory effects of exercise. OBJECTIVE We used a multidisciplinary narrative review as a novel approach to explore the complex relationship between dance and stress by integrating psychological, neurobiological, physiological, and socio-cultural findings. In particular, we looked at the effects of music and rhythm; partnering and social contact; and movement and physical activity. FINDINGS There is strong empirical evidence for the beneficial stress regulatory effects of music, social contact, and movement, illustrating that dance can promote coping and foster resilience. Neurobiological research shows that these findings can be explained by the effects that music, social contact, and movement have on, amongst others, dopamine, oxytocin, and β-endorphin modulation and their interplay with the stress system. Socio-cultural considerations of the significance of dance help to understand why dance might have these unique effects. They highlight that dance can be seen as a universal form of human expression, offering a communal space for bonding, healing, and collective coping strategies. DISCUSSION This review is the first to integrate perspectives from different disciplines on the stress regulatory effects of dance. It shows that dance has a large potential to aid coping and resilience at multiple levels of the human experience. At the same time, we identified that the existing evidence is often still limited by a narrow focus on exercise characteristics such as intensity levels. This hinders a more holistic understanding of underlying stress regulatory mechanisms and provides important directions for future research.
Collapse
Affiliation(s)
- Sandra Klaperski-van der Wal
- Behavioural Science Institute, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, the Netherlands; School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, SW15 4JD, London, United Kingdom.
| | - Jonathan Skinner
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, SW15 4JD, London, United Kingdom; Surrey Business School, University of Surrey, GU2 7XH, United Kingdom.
| | - Jolanta Opacka-Juffry
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, SW15 4JD, London, United Kingdom
| | - Kristina Pfeffer
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark; DRIVEN- Danish Centre for Motivation and Behaviour Science, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
2
|
Schwarz A, Feldman M, Le V, Dawson J, Liu CY, Francisco GE, Wolf SL, Dixit A, Alexander J, Ali R, Brown BL, Feng W, DeMark L, Hochberg LR, Kautz SA, Majid A, O'Dell MW, Redgrave J, Turner DL, Kimberley TJ, Cramer SC. Association that Neuroimaging and Clinical Measures Have with Change in Arm Impairment in a Phase 3 Stroke Recovery Trial. Ann Neurol 2025; 97:709-719. [PMID: 39676623 DOI: 10.1002/ana.27156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) paired with rehabilitation therapy improved motor status compared to rehabilitation alone in the phase III VNS-REHAB stroke trial, but treatment response was variable and not associated with any clinical measures acquired at baseline, such as age or side of paresis. We hypothesized that neuroimaging measures would be associated with treatment-related gains, examining performance of regional injury measures versus global brain health measures in parallel with clinical measures. METHODS Baseline magnetic resonance imaging (MRI) scans in the VNS-REHAB trial were used to derive regional injury measures (extent of injury to corticospinal tract, the primary regional measure; plus extent of injury to precentral gyrus and postcentral gyrus; lesion volume; and lesion topography) and global brain health measures (degree of white matter hyperintensities, the primary global brain measure; plus volumes of cerebrospinal fluid, cortical gray matter, white matter, each thalamus, and total brain). Eight clinical measures assessed at baseline were also evaluated (treatment group, age, race, gender, paretic side, pre-stroke dominant hand, time since stroke, and baseline Fugl-Meyer upper extremity score). Bivariate analyses compared each measure with the primary trial end point (change in Fugl-Meyer upper extremity score from baseline to end of 6 weeks of treatment) across all subjects, with secondary analyses examining trial groups separately. RESULTS MRIs were available from 80 patients (age = 59.8 ± 9.5 years, 29 women). Across all patients, less white matter hyperintensities (r = -0.25, p = 0.028) at baseline was associated with larger Fugl-Meyer score change. In the VNS group, less white matter hyperintensities (r = -0.37, p = 0.018) and larger ipsilesional thalamus volume (r = 0.33, p = 0.046) were each associated with larger Fugl-Meyer score change. Analysis of covariance (ANCOVA) analyses tested the interaction that each baseline measure had with treatment group and found that the model examining white matter hyperintensities had a significant interaction term, indicating 2.3 less change in Fugl-Meyer Upper Extremity (FM-UE) points in the VNS group relative to the control group for each point increase in modified Fazekas scale. INTERPRETATION Neuroimaging measures are associated with extent of gains on the primary endpoint of a phase III stroke recovery trial. Among the neuroimaging measures examined, a measure of global brain health (extent of white matter hyperintensities) was better at explaining the change in arm impairment as compared with measures of regional injury; this was true when examining all study subjects as well as only those in the VNS group and is consistent with the global mechanism of action that VNS has throughout the cerebrum. Future studies can evaluate additional measures that further predict response to VNS therapy. The current findings suggest that individual patient neuroimaging results may be useful for a personalized medicine approach to stroke recovery therapeutics. ANN NEUROL 2025;97:709-719.
Collapse
Affiliation(s)
- Anne Schwarz
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Neurology, California Rehabilitation Institute, Los Angeles, CA
| | - Marc Feldman
- Department of Neurology, California Rehabilitation Institute, Los Angeles, CA
| | - Vu Le
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charles Y Liu
- USC Neurorestoration Center and Department of Neurological Surgery, USC Keck School of Medicine, Los Angeles, CA
- Department of Neurological Surgery, Rancho Los Amigos National Rehabilitation Center, Downey, CA
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center McGovern Medical School, Houston, TX
- Department of Physical Medicine and Rehabilitation, The Institute for Rehabilitation and Research (TIRR) Memorial Hermann Hospital, Houston, TX
| | - Steven L Wolf
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA
| | - Anand Dixit
- Stroke Service, The Newcastle Upon Tyne Hospitals National Health Service Foundation Trust, Newcastle, United Kingdom
| | - Jen Alexander
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rushna Ali
- Department of Neurosurgery, Mayo Clinic, Rochester, MN
| | | | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC
| | - Louis DeMark
- Department of Physical Therapy, Brooks Rehabilitation, Jacksonville, FL
| | - Leigh R Hochberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Medical Center, Providence, RI
| | - Steven A Kautz
- Department of Rehabilitation, Ralph H Johnson VA Medical Center, Charleston, SC
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC
| | - Arshad Majid
- Sheffield Institute for Neurological Sciences (SITraN), University of Sheffield, Sheffield, United Kingdom
- Department of Neurological Sciences, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Michael W O'Dell
- Department of Rehabilitation Medicine, Weill Cornell Medicine, New York City, NY
| | - Jessica Redgrave
- Sheffield Institute for Neurological Sciences (SITraN), University of Sheffield, Sheffield, United Kingdom
- Department of Neurological Sciences, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Duncan L Turner
- School of Health, Sport and Bioscience, University of East London, London, United Kingdom
| | - Teresa J Kimberley
- Department of Physical Therapy, MGH Institute of Health Professions, Boston, MA
| | - Steven C Cramer
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Neurology, California Rehabilitation Institute, Los Angeles, CA
| |
Collapse
|
3
|
Krishnamurthy R, Schultz DH, Wang Y, Natarajan SK, Barlow SM, Dietsch AM. Multimodal Adaptations to Expiratory Musculature-Targeted Resistance Training: A Preliminary Study in Healthy Young Adults. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2025; 68:987-1005. [PMID: 39908358 DOI: 10.1044/2024_jslhr-24-00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
PURPOSE Exercise-induced adaptations, including neuroplasticity, are well studied for physical exercise that targets skeletal muscles. However, little is known about the neuroplastic potential of targeted speech and swallowing exercises. The current study aimed to gather preliminary data on molecular and functional changes associated with the neuroplastic effects of 4-week expiratory musculature-targeted resistance training in healthy young adults. METHOD Five healthy young adult men aged between 19 and 35 years, M (SD) = 28.8 (2.68) years, underwent 4 weeks of expiratory muscle strength training (EMST). We measured changes in maximum expiratory pressure (MEP), serum brain-derived neurotrophic factor (BDNF), and insulin-like growth factor 1 (IGF-1) levels at baseline and posttraining conditions. Furthermore, functional and structural magnetic resonance images were obtained to investigate the neuroplastic effects of EMST. We analyzed the effects of training using a linear mixed model for each outcome, with fixed effects for baseline and posttraining. RESULTS MEP and serum BDNF levels significantly increased posttraining. However, this effect was not observed for IGF-1. A significant increase in functional activation in eight regions was also observed posttraining. However, we did not observe significant changes in the white matter microstructure. CONCLUSIONS Preliminary data from our study suggest targeted resistance training of expiratory muscles results in molecular and neuroplastic adaptations similar to exercise that targets skeletal muscles. Additionally, these results suggest that EMST could be a potential intervention to modulate (or prime) neurotrophic signaling pathways linked to functional strength gains and neuroplasticity.
Collapse
Affiliation(s)
- Rahul Krishnamurthy
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
| | - Douglas H Schultz
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln
- Department of Psychology, University of Nebraska-Lincoln
| | - Yingying Wang
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln
| | | | - Steven M Barlow
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln
- Department of Biological Systems Engineering, University of Nebraska-Lincoln
| | - Angela M Dietsch
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln
| |
Collapse
|
4
|
Marcourt C, Pin-Barre C, Langeard A, Rivera C, Temprado JJ, Laurin J. Cognitive and sensorimotor benefits of moderate- and high-intensity exercise are associated with specific expression of neurotrophic markers in older rats. Sci Rep 2025; 15:6292. [PMID: 39984706 PMCID: PMC11845600 DOI: 10.1038/s41598-025-90719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Endurance training is strongly recommended for older adults to maintain cognitive and motor function. The respective effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on improving behavioural function and cerebral plasticity remain unknown. The purpose of this study was to determine the relative effects of 4 weeks of MICT and HIIT training on endurance, sensorimotor, and cognitive performance, as well as on the expression of neurotrophic markers in the hippocampus and cerebral cortex in aged rats. Twenty-two old male Wistar rats were assigned to one of the following groups: MICT (n = 7), HIIT (n = 6), and Control (n = 9). Incremental treadmill exercise tests, the forelimb grip strength test, the adhesive removal test, and the novel object recognition test were performed. Cerebral cortex and hippocampus were then removed for ELISA and Western blot measurements. The results showed similar benefits of MICT and HIIT on sensorimotor and cognitive functions, and a greater benefit of HIIT on endurance performance. HIIT and MICT differentially promoted cortical and hippocampal neurotrophic markers, demonstrating their complementarity. However, MICT was found to be more effective in promoting a broader range of markers, suggesting its potential as an initial training strategy for older adults.
Collapse
Affiliation(s)
- Cécile Marcourt
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
- Aix Marseille University, CNRS, ISM, Marseille, France
| | - Caroline Pin-Barre
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
| | - Antoine Langeard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, Caen, France
| | - Claudio Rivera
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
- Neuroscience Center, HiLife, University of Helsinki, Helsinki, Finland
| | | | - Jérôme Laurin
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France.
| |
Collapse
|
5
|
Yuan J, Niu H, Lei C, Xu R, Liu Y, Yuan K, Zou L, He S, Zhao Y. Neuroplasticity and functional reorganization of language in patients with arteriovenous malformations: insights from neuroimaging and clinical interventions. Front Hum Neurosci 2025; 19:1503864. [PMID: 39958956 PMCID: PMC11825511 DOI: 10.3389/fnhum.2025.1503864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Patients with arteriovenous malformations (AVMs) located in the functional area of speech often exhibit language dysfunction, and neuroplasticity allows the brain of some patients to regain speech through functional reorganization. Exploring the mechanism of AVMs-induced reorganization of language function is important for understanding neuroplasticity and improving clinical intervention strategies. This review systematically searched and analyzed the research literature in related fields in recent years, covering data from neuroimaging, functional magnetic resonance imaging (fMRI), and clinical case studies. By integrating these evidences, the phenomenon of functional reorganization within non-verbal functional areas and its influencing factors in patients with AVMs were assessed. It concluded that functional reorganization of language due to AVMs is a manifestation of a high degree of neurological plasticity and that understanding this process has important implications for neurosurgical planning and postoperative rehabilitation of patients. Future research should continue to explore the mechanisms of functional reorganization in the brain and work to develop new diagnostic tools and therapeutic approaches to improve the rate of recovery of language function in patients with AVMs.
Collapse
Affiliation(s)
- Jialong Yuan
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongchuan Niu
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Chengxu Lei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruichen Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yutong Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Linru Zou
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shihao He
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| |
Collapse
|
6
|
Peltonen J, Benson S, Kraushaar J, Wunder S, Mang C. Stroke survivors with limited walking ability have unique barriers and facilitators to physical activity. Disabil Rehabil 2025:1-9. [PMID: 39819220 DOI: 10.1080/09638288.2025.2453639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE Stroke is a leading cause of morbidity and mortality in Canada. Approximately 73% of stroke survivors experience limited walking ability, requiring a gait aid or assistance. Physical activity is important for secondary stroke prevention, in addition to its benefits for physical and mental health. Little is known about the barriers and facilitators to physical activity in stroke survivors with limited walking ability. METHODS This qualitative study used inductive thematic analysis of structured interviews to explore the barriers and facilitators to physical activity in stroke survivors with limited walking ability. RESULTS Perceived barriers to physical activity included scarcity of services, societal views, changes in ability, and inclement weather. Perceived facilitators included the desired benefits of physical activity, multidisciplinary rehabilitation services, durable medical equipment, encouragement, positive mindset, and self-efficacy. CONCLUSIONS Improving access to rehabilitation services in the chronic phase of stroke and increasing the availability of structured exercise programmes are important strategies to address barriers to physical activity in this population. Supporting self-efficacy, addressing disability stigma, and policy changes are also needed to facilitate participation.
Collapse
Affiliation(s)
- Joel Peltonen
- Department of Physical Medicine and Rehabilitation, University of Saskatchewan, Saskatchewan, Canada
| | - Sarah Benson
- Department of Kinesiology and Health Studies, University of Regina, Saskatchewan, Canada
| | - Jacqueline Kraushaar
- Department of Physical Medicine and Rehabilitation, University of Saskatchewan, Saskatchewan, Canada
| | - Shane Wunder
- Department of Physical Medicine and Rehabilitation, University of Saskatchewan, Saskatchewan, Canada
| | - Cameron Mang
- Department of Kinesiology and Health Studies, University of Regina, Saskatchewan, Canada
| |
Collapse
|
7
|
Krishnamurthy R, Krishnamoorthy C, Dietsch AM, Natarajan SK. Molecular biomarkers of dysphagia targeted exercise induced neuroplasticity: A review of mechanistic processes and preliminary data on detraining effects. Brain Res 2025; 1846:149287. [PMID: 39437875 DOI: 10.1016/j.brainres.2024.149287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
While molecular adaptations accompanying neuroplasticity during physical exercises are well-established, little is known about adaptations during dysphagia-targeted exercises. This research article has two primary purposes. First, we aim to review the existing literature on the intersection between resistance (strength) training, molecular markers of neuroplasticity, and dysphagia rehabilitation. Specifically, we discuss the molecular mechanisms of two potential molecular markers: brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) in exercise-induced neuroplasticity. Second, we present preliminary data on the effects of two weeks of detraining on circulating serum BDNF, IGF-1 levels, and expiratory muscle strength. This subset is a part of our more extensive studies related to dysphagia-targeted resistance exercise and neuroplasticity. Five young adult males underwent four weeks of expiratory muscle strength training, followed by two weeks of detraining. We measured expiratory strength, circulating levels of BDNF, and IGF-1 at post-training and detraining conditions. Our results show that expiratory muscle strength, serum BDNF, and IGF-1 levels decreased after detraining; however, this effect was statistically significant only for serum BDNF levels. Oropharyngeal and upper airway musculature involved in swallowing undergoes similar adaptation patterns to skeletal muscles during physical exercise. To fully comprehend the mechanisms underlying the potential neuroplastic benefits of targeted exercise on swallowing functions, mechanistic studies (models) investigating neuroplasticity induced by exercises addressing dysphagia are critical. Such models would ensure that interventions effectively and efficiently achieve neuroplastic benefits and improve patient outcomes, ultimately advancing our understanding of dysphagia-targeted exercise-induced neuroplasticity.
Collapse
Affiliation(s)
- Rahul Krishnamurthy
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, United States; Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, United States.
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, United States
| | - Angela M Dietsch
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, United States; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, United States
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, United States
| |
Collapse
|
8
|
Chaves AR, Cuda J, Shim S, Drodge J, Nasr Y, Brender R, Antochi R, McMurray L, Pilutti LA, Tremblay S. Optimizing antidepressant benefits: Effect of theta burst stimulation treatment in physically active people with treatment-resistant depression. J Affect Disord 2024; 367:876-885. [PMID: 39260582 DOI: 10.1016/j.jad.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Theta burst stimulation (TBS) is a promising therapy for treatment-resistant major depressive disorder (MDD), but a significant proportion of individuals do not respond adequately, necessitating alternative approaches. This study explores whether individuals meeting minimum recommended physical activity levels demonstrate better responses to TBS compared to physically inactive individuals. Using data from a randomized controlled trial (n = 43), participants were categorized as physically active or inactive based on baseline International Physical Activity Questionnaire (IPAQ) scores. Depression scores (Hamilton Rating Scale for Depression, 17-item; HRSD-17) were assessed at baseline, 4, and 6 weeks of TBS treatment. A significant Time X Group effect adjusted for age and baseline depression was observed. Physically active individuals consistently exhibited lower depression scores across time points. At 4 and 6 weeks, there was a significant increase in between-group differences, indicating that the physically active group derived greater benefits from treatment. At 6 weeks, a significantly higher proportion of responders (≥50 % HRSD-17 reduction) were observed in the physically active compared to inactive group. Physical activity significantly contributed to regression and logistic models predicting treatment response. These findings support the potential role of baseline physical activity in enhancing TBS therapy for MDD.
Collapse
Affiliation(s)
- Arthur R Chaves
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, 200 Lees Ave Building FHS, Ottawa, ON K1S 5S9, Canada; The Royal's Institute of Mental Health Research, 1145 Carling Ave, Ottawa, ON K1Z 7K4, Canada
| | - Jennifer Cuda
- The Royal's Institute of Mental Health Research, 1145 Carling Ave, Ottawa, ON K1Z 7K4, Canada
| | - Stacey Shim
- The Royal's Institute of Mental Health Research, 1145 Carling Ave, Ottawa, ON K1Z 7K4, Canada
| | - Jessica Drodge
- The Royal's Institute of Mental Health Research, 1145 Carling Ave, Ottawa, ON K1Z 7K4, Canada
| | - Youssef Nasr
- The Royal's Institute of Mental Health Research, 1145 Carling Ave, Ottawa, ON K1Z 7K4, Canada
| | - Ram Brender
- Department of Psychiatry, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada; Royal Ottawa Mental Health Centre, 1145 Carling Ave, Ottawa, ON K1Z 7K4, Canada
| | - Ruxandra Antochi
- Department of Psychiatry, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada; Royal Ottawa Mental Health Centre, 1145 Carling Ave, Ottawa, ON K1Z 7K4, Canada
| | - Lisa McMurray
- Department of Psychiatry, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada; Royal Ottawa Mental Health Centre, 1145 Carling Ave, Ottawa, ON K1Z 7K4, Canada
| | - Lara A Pilutti
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, 200 Lees Ave Building FHS, Ottawa, ON K1S 5S9, Canada; The University of Ottawa Brain and Mind Research Institute, Roger Guindon Hall, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada
| | - Sara Tremblay
- The Royal's Institute of Mental Health Research, 1145 Carling Ave, Ottawa, ON K1Z 7K4, Canada; The University of Ottawa Brain and Mind Research Institute, Roger Guindon Hall, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada; Département de psychoéducation et de psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC J8X 3X7, Canada; Department of Neuroscience, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
9
|
Kuo HI, Sun JL, Nitsche M, Chang JC. An investigation of the acute effects of aerobic exercise on executive function and cortical excitability in adolescents with attention deficit hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry 2024; 33:4169-4183. [PMID: 38727819 DOI: 10.1007/s00787-024-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 09/28/2024]
Abstract
Previous studies have shown that aerobic exercise has beneficial effects on executive function in adolescents with attention-deficit hyperactivity disorder (ADHD). The underlying mechanisms could be partially due to aerobic exercise-induced cortical excitability modulation. The aim of this study was to explore the effects of acute aerobic exercise on executive functions and cortical excitability and the association between these phenomena in adolescents with ADHD. The study was conducted using a complete crossover design. Executive functions (inhibitory control, working memory, and planning) and cortical excitability were assessed in twenty-four drug-naïve adolescents with ADHD before and after acute aerobic exercise or a control intervention. Inhibitory control, working memory, and planning improved after acute aerobic exercise in adolescents with ADHD. Moreover, cortical excitability monitored by transcranial magnetic stimulation (TMS) decreased after intervention in this population. Additionally, improvements in inhibitory control and working memory performance were associated with enhanced cortical inhibition. The findings provide indirect preliminary evidence for the assumption that changes in cortical excitability induced by aerobic exercise partially contribute to improvements in executive function in adolescents with ADHD.
Collapse
Affiliation(s)
- Hsiao-I Kuo
- School and graduate institute of physical therapy, College of Medicine, National Taiwan University, No.17, Xu-Zhou Road, Taipei, 10055, Taiwan.
| | - Jia-Ling Sun
- School and graduate institute of physical therapy, College of Medicine, National Taiwan University, No.17, Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Michael Nitsche
- Department Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Jung-Chi Chang
- Department of Psychiatry, National Taiwan University Hospital, No. 7, Zhongshan S Road, Taipei, 10055, Taiwan
| |
Collapse
|
10
|
Costa YM, Hayakawa H, Castrillon EE, Ferreira DMAO, Iida T, Kothari M, Svensson P. Impact of a mandibular advancement device on corticomotor plasticity in patients with obstructive sleep apnea. J Oral Rehabil 2024; 51:2600-2610. [PMID: 39305048 DOI: 10.1111/joor.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Neuroplasticity induced by mandibular advancement appliance (MAD) in patients with obstructive sleep apnoea (OSA) is poorly documented. OBJECTIVE This randomised placebo-controlled crossover mechanistic study assessed the effects of short-term use of a MAD on corticomotor excitability of the masseter and tongue in patients with OSA. METHODS Adults (n = 28) with mild or moderate OSA were randomly allocated to sleep with a MAD for 2-weeks with 40% of the maximal protrusion (MAD active position) and without any jaw protrusion (MAD placebo position). The outcomes were assessed at baseline, and after 2 and 6 weeks, with a 2-week washout period. The primary outcome was the amplitude of motor evoked potential (MEP) assessed on the right masseter, right side of tongue and right first dorsal interosseous with transcranial magnetic stimulation. Corticomotor map volume of the same muscles was also assessed. Repeated-measures ANOVAs followed by Tukey test were applied to the data (p < .050). RESULTS There was a significant increase in the MEP amplitude of the masseter and tongue following the MAD active position compared with the baseline and MAD placebo (Tukey: p < .001). There were no significant MEP amplitude differences between the baseline and placebo positions (p > .050). Moreover, there was a significant increase in corticomotor map volume for the masseter and tongue muscles following the MAD active position compared with baseline and MAD placebo (Tukey: p < .003). CONCLUSION Excitability of the masseter and tongue motor pathways is, at least transiently, increased in patients with OSA following a short-term use of MAD. This novel finding of MAD-induced neuroplasticity in corticomotor pathways may contribute to a further understanding of the mechanisms of oral appliances for treating OSA.
Collapse
Affiliation(s)
- Yuri M Costa
- Department of Biosciences, Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, Brazil
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
- Scandinavian Center for Orofacial Neurosciences, Aarhus, Denmark
| | - Hidetoshi Hayakawa
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
- Scandinavian Center for Orofacial Neurosciences, Aarhus, Denmark
- Department of Prosthodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, Brazil
| | - Eduardo E Castrillon
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
- Scandinavian Center for Orofacial Neurosciences, Aarhus, Denmark
| | - Dyna Mara A O Ferreira
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
- Scandinavian Center for Orofacial Neurosciences, Aarhus, Denmark
- Department of Prosthodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, Brazil
| | - Takashi Iida
- Department of Oral Function and Fixed Prosthodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Mohit Kothari
- Hammel Neurorehabilitation Centre and University Research Clinic, Department of Clinical Medicine, Aarhus University, Hammel, Denmark
| | - Peter Svensson
- Faculty of Odontology, Malmö University, Malmö, Sweden
- Faculty of Dentistry, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
11
|
de Oliveira-Souza ALS, Kempe M, Grimmelsmann S, Tavares LF, De Castro-Carletti EM, Andrade AV, Dennett L, Von Piekartz H, Fuentes Contreras J, Armijo-Olivo S. The effectiveness of aerobic exercise on pain and disability in individuals with neck pain: A systematic review and meta-analysis. Exp Physiol 2024. [PMID: 39560389 DOI: 10.1113/ep091884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/19/2024] [Indexed: 11/20/2024]
Abstract
The present review aimed to investigate the effectiveness of aerobic exercise (AE) compared to other interventions in decreasing pain intensity and reducing disability in individuals with neck pain. A systematic review (SR) of randomized controlled trials was conducted. This SR was registered in PROSPERO (CRD42021231231). Searches were conducted in five electronic databases (MEDLINE, Embase, CINAHL, Cochrane and SCOPUS). Studies were selected if they included adults over 18 years old with neck pain. The primary outcomes were pain intensity and physical function. A meta-analysis was conducted when applicable. Cochrane RoB Tool-2 was used to determine the risk of bias of included studies, and the certainty of the evidence was determined using the GRADE approach. Out of 4669 initial records screened, six studies published in 12 articles were included. AE was not statistically different compared to no-treatment or other interventions (e.g., localized exercise or acupuncture) on pain intensity measured with a visual analogue scale (VAS) (mean difference (MD) [95%CI]: 5.16 mm [-6.38, 16.70]). Contrarily, strengthening exercise was better than AE for pain intensity (MD [95%CI]: -11.34 mm [-21.6, -1.09]) after treatment. However, when AE was combined with other therapy (strengthening exercises or acupuncture), the combined therapy was better than isolated treatments (MD [95%CI]: 7.71 mm [1.07, 14.35]). A high heterogeneity was observed between protocols, comparisons, and results (magnitudes and directions). In conclusion, AE had positive results only when combined with other therapies to reduce pain intensity and disability in patients with neck pain. However, the evidence is limited, low-quality, and heterogeneous.
Collapse
Affiliation(s)
| | - Marie Kempe
- Faculty of Economics and Social Sciences, University of Applied Sciences Osnabrück, Osnabrück, Germany
| | - Sofia Grimmelsmann
- Faculty of Economics and Social Sciences, University of Applied Sciences Osnabrück, Osnabrück, Germany
| | - Luiz Felipe Tavares
- Faculty of Economics and Social Sciences, University of Applied Sciences Osnabrück, Osnabrück, Germany
- Postgraduate program in Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | | | - Angela Viegas Andrade
- Master's in Science of Rehabilitation, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Liz Dennett
- Geoffrey and Robyn Sperber Health Sciences Library, Edmonton, Alberta, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Harry Von Piekartz
- Faculty of Economics and Social Sciences, University of Applied Sciences Osnabrück, Osnabrück, Germany
| | - Jorge Fuentes Contreras
- Faculty of Health Sciences, Department of Physical Therapy, Clinical Research Lab, Catholic University of Maule, Talca, Chile
| | - Susan Armijo-Olivo
- Faculty of Economics and Social Sciences, University of Applied Sciences Osnabrück, Osnabrück, Germany
- Faculties of Rehabilitation Medicine and Medicine and Dentistry, Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Amalia R, Aditya RS, Susanti A, Pohan RA. Improving stroke rehabilitation: The role of physical activity and mental health support. J Psychosom Res 2024; 186:111907. [PMID: 39217798 DOI: 10.1016/j.jpsychores.2024.111907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Riza Amalia
- Department of Guidance & Counseling, University of Muhammadiyah Sampit, Jl. KH. Dewantara No. 3, Sampit, Kotawaringin Timur, Central Kalimantan, Indonesia; Department of Guidance & Counseling, State University of Malang, Jl. Semarang No. 5, Malang, East Java, Indonesia.
| | - Ronal Surya Aditya
- Faculty of Sport Science, State University of Malang, Jl. Semarang No. 5, Malang, East Java, Indonesia.
| | - Alwita Susanti
- Department of Associate Degree in Midwifery, University of Muhammadiyah Sampit, Jl. KH. Dewantara No. 3, Sampit, Kotawaringin Timur, Central Kalimantan, Indonesia; Faculty of Medicine and Health Sciences, Lambung Mangkurat University, Jl. A.Yani, Banjarbaru, South Kalimantan, Indonesia.
| | - Rizky Andana Pohan
- Islamic Guidance & Counseling Department, IAIN Langsa, Jalan Meurandeh, Aceh, Indonesia; Department of Guidance & Counseling, State University of Malang, Jl. Semarang No. 5, Malang, East Java, Indonesia.
| |
Collapse
|
13
|
Oveisgharan S, Wang T, Hausdorff JM, Bennett DA, Buchman AS. Motor and Nonmotor Measures and Declining Daily Physical Activity in Older Adults. JAMA Netw Open 2024; 7:e2432033. [PMID: 39235807 PMCID: PMC11378007 DOI: 10.1001/jamanetworkopen.2024.32033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Importance Difficulties in identifying modifiable risk factors associated with daily physical activity may impede public health efforts to mitigate the adverse health outcomes of a sedentary lifestyle in an aging population. Objective To test the hypothesis that adding baseline sensor-derived mobility metrics to diverse baseline motor and nonmotor variables accounts for the unexplained variance of declining daily physical activity among older adults. Design, Setting, and Participants This cohort study analyzed data from participants of the Rush Memory and Aging Project (MAP), an ongoing longitudinal clinical pathological study that began to enroll older adults (age range, 59.4-104.9 years) in 1997. Wrist- and waist-worn sensors were added to MAP in 2005 and 2012, respectively, to record participants' physical activity and mobility performances. Included participants were examined at baseline and annually followed up for a mean (SD) duration of 4.2 (1.6) years. Exposure Twelve blocks of variables, including 3 blocks of mobility metrics derived from recordings of a belt-worn sensor to quantify a 32-foot walk, a Timed Up and Go (TUG) test, and a standing balance task, and 9 other blocks with 41 additional variables. Main Outcomes and Measures A linear mixed-effects model was used to estimate the person-specific rate of change (slope) of total daily physical activity obtained from a wrist-worn sensor. Twelve linear regression models were used to estimate the adjusted R2 to quantify the associations of the variables with the slope. Results A total of 650 older adults (500 females [76.9%]; mean [SD] age at baseline, 81.4 [7.5] years; 31 Black individuals [4.8%], 17 Latino individuals [2.6%], and 602 White individuals [92.6%]) were included. During follow-up, all but 1 participant showed declining daily physical activity, which was equivalent to approximately 16.8% decrease in activity level per year. In separate models, waist sensor-derived mobility metrics (32-foot walk: adjusted R2, 23.4% [95% CI, 17.3%-30.6%]; TUG test: adjusted R2, 22.8% [95% CI, 17.7%-30.1%]) and conventional motor variables (adjusted R2, 24.1% [95% CI, 17.7%-31.4%]) had the largest percentages of variance of declining daily physical activity compared with nonmotor variables. When the significant variables from all 12 blocks were included together in a single model, only turning speed (estimate [SE], 0.018 [0.006]; P = .005) and hand dexterity (estimate [SE], 0.091 [0.034]; P = .008) showed associations with declining daily physical activity. Conclusions and Relevance Findings of this study suggest that sensor-derived mobility metrics and conventional motor variables compared with nonmotor measures explained most of the variance of declining daily physical activity. Further studies are needed to ascertain whether improving specific motor abilities, such as turning speed and hand dexterity, is effective in slowing the decline of daily physical activity in older adults.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Tianhao Wang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Jeffrey M. Hausdorff
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
- Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Physical Therapy, Faculty of Medical and Health Sciences, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
14
|
Youssef L, Harroum N, Francisco BA, Johnson L, Arvisais D, Pageaux B, Romain AJ, Hayward KS, Neva JL. Neurophysiological effects of acute aerobic exercise in young adults: a systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 164:105811. [PMID: 39025386 DOI: 10.1016/j.neubiorev.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Evidence continues to accumulate that acute aerobic exercise (AAE) impacts neurophysiological excitability as measured by transcranial magnetic stimulation (TMS). Yet, uncertainty exists about which TMS measures are modulated after AAE in young adults. The influence of AAE intensity and duration of effects are also uncertain. This pre-registered meta-analysis (CRD42017065673) addressed these uncertainties by synthesizing data from 23 studies (including 474 participants) published until February 2024. Meta-analysis was run using a random-effects model and Hedge's g used as effect size. Our results demonstrated a decrease in short-interval intracortical inhibition (SICI) following AAE (g = 0.27; 95 % CI [0.16-0.38]; p <.0001), particularly for moderate (g = 0.18; 95 % CI [0.05-0.31]; p <.01) and high (g = 0.49; 95 % CI [0.27-0.71]; p <.0001) AAE intensities. These effects remained for 30 minutes after AAE. Additionally, increased corticospinal excitability was only observed for high intensity AAE (g = 0.28; 95 % CI, [0.07-0.48]; p <.01). Our results suggest potential mechanisms for inducing a more susceptible neuroplastic environment following AAE.
Collapse
Affiliation(s)
- Layale Youssef
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada.
| | - Nesrine Harroum
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| | - Beatrice A Francisco
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Liam Johnson
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Denis Arvisais
- Direction des bibliothèques, Bibliothèques des sciences de la santé, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| | - Ahmed Jérôme Romain
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Research Center of the University Institute of Mental Health of Montreal, Montreal, QC, Canada
| | - Kathryn S Hayward
- Departments of Physiotherapy and Medicine (RMH), University of Melbourne, Parkville, VIC, Australia
| | - Jason L Neva
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| |
Collapse
|
15
|
Pimenta DC, Cardenas-Rojas A, Camargo L, Lima D, Kelso J, Navarro-Flores A, Pacheco-Barrios K, Fregni F. Exercise effects on cortical excitability in pain populations: A systematic review and meta-analysis. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2024; 29:e2102. [PMID: 38861661 DOI: 10.1002/pri.2102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Transcranial Magnetic Stimulation (TMS) studies examining exercise-induced neuroplasticity in pain populations have produced contradictory findings. We conducted a systematic review to explore how exercise impacts cortical excitability in pain populations using TMS metrics. This review aims to summarize the effect sizes and to understand their sources of heterogeneity. METHODS We searched multiple databases from inception to December 2022. We included randomized controlled trials (RCTs) with any type of pain population, including acute and chronic pain; exercise interventions were compared to sham exercise or other active interventions. The primary outcomes were TMS metrics, and pain intensity was the secondary outcome. Risk of bias assessment was conducted using the Cochrane tool. RESULTS This review included five RCTs (n = 155). The main diagnoses were fibromyalgia and cervical dystonia. The interventions included submaximal contractions, aerobic exercise, physical therapy, and exercise combined with transcranial direct current stimulation. Three studies are considered to have a high risk of bias. All five studies showed significant pain improvement with exercise. The neurophysiological data revealed improvements in cortical excitability measured by motor-evoked potentials; standardized mean difference = 2.06, 95% confidence interval 1.35-2.78, I2 = 19%) but no significant differences in resting motor threshold. The data on intracortical inhibition/facilitation (ICI/ICF) was not systematically analyzed, but one study (n = 45) reported higher ICI and lower ICF after exercise. CONCLUSIONS These findings suggest that exercise interventions positively affect pain relief by modifying corticospinal excitability, but their effects on ICI/ICF are still unclear. While the results are inconclusive, they provide a basis for further exploration in this area of research; future studies should focus on establishing standardized TMS measurements and exercise protocols to ensure consistent and reliable findings. A large-scale RCT that examines various exercise interventions and their effects on cortical excitability could offer valuable insights to optimize its application in promoting neuroplasticity in pain populations.
Collapse
Affiliation(s)
- Danielle Carolina Pimenta
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucas Camargo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Lima
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Kelso
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alba Navarro-Flores
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Zou J, Hao S. Exercise-induced neuroplasticity: a new perspective on rehabilitation for chronic low back pain. Front Mol Neurosci 2024; 17:1407445. [PMID: 38912176 PMCID: PMC11191426 DOI: 10.3389/fnmol.2024.1407445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Chronic low back pain patients often experience recurrent episodes due to various peripheral and central factors, leading to physical and mental impairments, affecting their daily life and work, and increasing the healthcare burden. With the continuous advancement of neuropathological research, changes in brain structure and function in chronic low back pain patients have been revealed. Neuroplasticity is an important mechanism of self-regulation in the brain and plays a key role in neural injury repair. Targeting neuroplasticity and regulating the central nervous system to improve functional impairments has become a research focus in rehabilitation medicine. Recent studies have shown that exercise can have beneficial effects on the body, such as improving cognition, combating depression, and enhancing athletic performance. Exercise-induced neuroplasticity may be a potential mechanism through which exercise affects the brain. This article systematically introduces the theory of exercise-induced neuroplasticity, explores the central effects mechanism of exercise on patients with chronic low back pain, and further looks forward to new directions in targeted neuroplasticity-based rehabilitation treatment for chronic low back pain.
Collapse
Affiliation(s)
- Jianpeng Zou
- Department of Rehabilitation and Physiotherapy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shijie Hao
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
17
|
Wang YH, Gau SF, Yang LK, Chang JC, Cheong PL, Kuo HI. Acute aerobic exercise at different intensities modulates inhibitory control and cortical excitability in adults with attention-deficit hyperactivity disorder (ADHD). Asian J Psychiatr 2024; 95:103993. [PMID: 38485649 DOI: 10.1016/j.ajp.2024.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 03/02/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND This study aimed to investigate the effects of different aerobic exercise intensities on inhibitory control and cortical excitability in adults with attention-deficit/hyperactivity disorder (ADHD). METHODS The study was conducted in a within-subject design. Twenty-four adults with ADHD completed a stop signal task and received cortical excitability assessment by transcranial magnetic stimulation (TMS) before and after a single session of low-, moderate-, high-intensity aerobic exercise or a control intervention. RESULTS Acute moderate-, and high-intensity aerobic exercise improved inhibitory control in adults with ADHD. Moreover, the improving effect was similar between moderate-, and high-intensity aerobic exercise conditions. As shown by the brain physiology results, short interval intracortical inhibition was significantly increased following both, moderate- and high-intensity aerobic exercise intervention conditions. Additionally, the alteration of short interval intracortical inhibition and inhibitory control improvement were positively correlated. CONCLUSIONS The moderate-, and high-intensity aerobic exercise-dependent alterations of cortical excitability in adults with ADHD might partially explain the inhibitory control-improving effects of aerobic exercise in this population.
Collapse
Affiliation(s)
- Yu-Han Wang
- School and Graduate Institute of Physical Therapy, National Taiwan University, No. 17, Xu-Zhou Road, Taipei 10055, Taiwan
| | - Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital, No 7, Zhongshan S Road, Taipei 10055, Taiwan
| | - Li-Kuang Yang
- Department of Psychiatry, National Taiwan University Hospital, No 7, Zhongshan S Road, Taipei 10055, Taiwan
| | - Jung-Chi Chang
- Department of Psychiatry, National Taiwan University Hospital, No 7, Zhongshan S Road, Taipei 10055, Taiwan
| | - Pou-Leng Cheong
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Hospital, No. 25, Lane 442, Section 1, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Po-Ai Street, Hsinchu 300, Taiwan
| | - Hsiao-I Kuo
- School and Graduate Institute of Physical Therapy, National Taiwan University, No. 17, Xu-Zhou Road, Taipei 10055, Taiwan.
| |
Collapse
|
18
|
Skog HM, Määttä S, Säisänen L, Lakka TA, Haapala EA. Associations of physical fitness with cortical inhibition and excitation in adolescents and young adults. Front Neurosci 2024; 18:1297009. [PMID: 38741791 PMCID: PMC11090042 DOI: 10.3389/fnins.2024.1297009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Objective We investigated the longitudinal associations of cumulative motor fitness, muscular strength, and cardiorespiratory fitness (CRF) from childhood to adolescence with cortical excitability and inhibition in adolescence. The other objective was to determine cross-sectional associations of motor fitness and muscular strength with brain function in adolescence. Methods In 45 healthy adolescents (25 girls and 20 boys) aged 16-19 years, we assessed cortical excitability and inhibition by navigated transcranial magnetic stimulation (nTMS), and motor fitness by 50-m shuttle run test and Box and block test, and muscular strength by standing long jump test. These measures of physical fitness and CRF by maximal exercise were assessed also at the ages 7-9, 9-11, and 15-17 years. Cumulative measures of physical measures were computed by summing up sample-specific z-scores at ages 7-9, 9-11, and 15-17 years. Results Higher cumulative motor fitness performance from childhood to adolescence was associated with lower right hemisphere resting motor threshold (rMT), lower silent period threshold (SPt), and lower motor evoked potential (MEP) amplitude in boys. Better childhood-to-adolescence cumulative CRF was also associated with longer silent period (SP) duration in boys and higher MEP amplitude in girls. Cross-sectionally in adolescence, better motor fitness and better muscular strength were associated with lower left and right rMT among boys and better motor fitness was associated with higher MEP amplitude and better muscular strength with lower SPt among girls. Conclusion Physical fitness from childhood to adolescence modifies cortical excitability and inhibition in adolescence. Motor fitness and muscular strength were associated with motor cortical excitability and inhibition. The associations were selective for specific TMS indices and findings were sex-dependent.
Collapse
Affiliation(s)
- Hanna Mari Skog
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo A. Lakka
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Eero A. Haapala
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
19
|
Li P, Li J, Xiao Z, Sheng D, Liu W, Xiao B, Zhou L. Genetic causal association between physical activities and epilepsy: A Mendelian randomization study. Brain Behav 2024; 14:e3463. [PMID: 38451009 PMCID: PMC10918602 DOI: 10.1002/brb3.3463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Despite numerous investigations into the relationship between physical activities (PA) and epilepsy, the causal effects remain contentious. Thus, we conducted a two-sample Mendelian randomization (MR) study to assess the potential causality. METHODS Single-nucleotide polymorphisms (SNPs) predisposed to self-reported moderate and vigorous physical activities (MPA and VPA) and overall acceleration average (OAA) calculated through wrist-worn accelerometers were selected as exposure instrumental variables. Five subtypes of epilepsy, including all epilepsy, focal epilepsy and generalized epilepsy (with or without each other), focal epilepsy-strict definition and generalized epilepsy-strict definition (without overlap), were chosen as the outcomes. The MR study utilized the inverse-variance weighted (IVW) method as the primary analytical tool, supplemented by MR-Egger, simple mode, weighted mode, and weighted median methods. Cochran's Q and MR-Egger intercept tests were employed to assess heterogeneity and pleiotropy, while MR pleiotropy residual sum and outlier and leave-one-out analyses were conducted to identify potential SNP outliers. RESULTS The study indicated that OAA was genetically linked to a decreased risk of both focal epilepsy (OR = 0.812, 95% CI: 0.687-0.960, p = .015, IVW) and focal epilepsy-strict definition (OR = 0.732, 95% CI: 0.596-0.900, p = .003, IVW; OR = 0.749, 95% CI: 0.573-0.979, p = .035, Weighted median). Genetically predicted MPA and VPA did not exhibit a causal association with all epilepsy or its subtypes (p>.05). No evidence of heterogeneity, pleiotropy, or SNP outlier was observed. CONCLUSIONS Our findings suggested that PA with accelerometer monitoring may potentially reduce the risk of focal epilepsy, while there is no evidence supporting causal association between self-reported MPA or VPA and either focal or generalized epilepsy.
Collapse
Affiliation(s)
- Peihong Li
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jiaxin Li
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zheng Xiao
- Department of PathologyFirst Hospital of ChangshaChangshaHunanChina
| | - Dandan Sheng
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Weiping Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Bo Xiao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Luo Zhou
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
20
|
Peier F, Mouthon M, De Pretto M, Chabwine JN. Response to experimental cold-induced pain discloses a resistant category among endurance athletes, with a distinct profile of pain-related behavior and GABAergic EEG markers: a case-control preliminary study. Front Neurosci 2024; 17:1287233. [PMID: 38287989 PMCID: PMC10822956 DOI: 10.3389/fnins.2023.1287233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Pain is a major public health problem worldwide, with a high rate of treatment failure. Among promising non-pharmacological therapies, physical exercise is an attractive, cheap, accessible and innocuous method; beyond other health benefits. However, its highly variable therapeutic effect and incompletely understood underlying mechanisms (plausibly involving the GABAergic neurotransmission) require further research. This case-control study aimed to investigate the impact of long-lasting intensive endurance sport practice (≥7 h/week for the last 6 months at the time of the experiment) on the response to experimental cold-induced pain (as a suitable chronic pain model), assuming that highly trained individual would better resist to pain, develop advantageous pain-copying strategies and enhance their GABAergic signaling. For this purpose, clinical pain-related data, response to a cold-pressor test and high-density EEG high (Hβ) and low beta (Lβ) oscillations were documented. Among 27 athletes and 27 age-adjusted non-trained controls (right-handed males), a category of highly pain-resistant participants (mostly athletes, 48.1%) was identified, displaying lower fear of pain, compared to non-resistant non-athletes. Furthermore, they tolerated longer cold-water immersion and perceived lower maximal sensory pain. However, while having similar Hβ and Lβ powers at baseline, they exhibited a reduction between cold and pain perceptions and between pain threshold and tolerance (respectively -60% and - 6.6%; -179.5% and - 5.9%; normalized differences), in contrast to the increase noticed in non-resistant non-athletes (+21% and + 14%; +23.3% and + 13.6% respectively). Our results suggest a beneficial effect of long-lasting physical exercise on resistance to pain and pain-related behaviors, and a modification in brain GABAergic signaling. In light of the current knowledge, we propose that the GABAergic neurotransmission could display multifaceted changes to be differently interpreted, depending on the training profile and on the homeostatic setting (e.g., in pain-free versus chronic pain conditions). Despite limitations related to the sample size and to absence of direct observations under acute physical exercise, this precursory study brings into light the unique profile of resistant individuals (probably favored by training) allowing highly informative observation on physical exercise-induced analgesia and paving the way for future clinical translation. Further characterizing pain-resistant individuals would open avenues for a targeted and physiologically informed pain management.
Collapse
Affiliation(s)
- Franziska Peier
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael De Pretto
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Joelle Nsimire Chabwine
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Neurology Division, Department of Internal Medicine, Fribourg-Cantonal Hospital, Fribourg, Switzerland
| |
Collapse
|
21
|
Chacon-Barba JC, Moral-Munoz JA, De Miguel-Rubio A, Lucena-Anton D. Effects of Resistance Training on Spasticity in People with Stroke: A Systematic Review. Brain Sci 2024; 14:57. [PMID: 38248272 PMCID: PMC10813883 DOI: 10.3390/brainsci14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Resistance training induces neuromuscular adaptations and its impact on spasticity remains inadequately researched. This systematic review (PROSPERO: CRD42022322164) aimed to analyze the effects of resistance training, compared with no treatment, conventional therapy, or other therapies, in people with stroke-related spasticity. A comprehensive search was conducted up to October 2023 in PubMed, PEDro, Cochrane, Web of Science, and Scopus databases. Selection criteria were randomized controlled trials involving participants with stroke-related spasticity intervened with resistance training. The PEDro scale was used to evaluate the methodological quality. From a total of 274 articles, 23 full-text articles were assessed for eligibility and nine articles were included in the systematic review, involving 225 participants (155 males, 70 females; mean age: 59.4 years). Benefits were found to spasticity after resistance training. Furthermore, studies measuring spasticity also reported benefits to function, strength, gait, and balance. In conclusion, resistance training was superior to, or at least equal to, conventional therapy, other therapies, or no intervention for improving spasticity, as well as function, strength, gait, and balance. However, the results should be taken with caution because of the heterogeneity of the protocols used. Further research is needed to explore the effects of resistance training programs on people with stroke.
Collapse
Affiliation(s)
- Juan Carlos Chacon-Barba
- Department of Nursing and Physiotherapy, University of Cádiz, 11009 Cadiz, Spain; (J.C.C.-B.); (D.L.-A.)
| | - Jose A. Moral-Munoz
- Department of Nursing and Physiotherapy, University of Cádiz, 11009 Cadiz, Spain; (J.C.C.-B.); (D.L.-A.)
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009 Cadiz, Spain
| | - Amaranta De Miguel-Rubio
- Department of Nursing, Pharmacology and Physiotherapy, University of Cordoba, 14004 Cordoba, Spain;
| | - David Lucena-Anton
- Department of Nursing and Physiotherapy, University of Cádiz, 11009 Cadiz, Spain; (J.C.C.-B.); (D.L.-A.)
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009 Cadiz, Spain
| |
Collapse
|
22
|
Wang YR, Boré A, Tremblay J, Descoteaux M, Champoux F, Théoret H. Exploratory analysis of cortical thickness in low- and high-fit young adults. Neuroreport 2023; 34:868-872. [PMID: 37942739 DOI: 10.1097/wnr.0000000000001968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Studies have shown changes in the human brain associated with physical activity and cardiorespiratory fitness (CRF). The effects of CRF on cortical thickness have been well-described in older adults, where a positive association between CRF and cortical thickness has been reported, but the impact of sustained aerobic activity in young adults remains poorly described. Here, exploratory analysis was performed on cortical thickness data that was collected in groups of fit and sedentary young adults. METHODS Twenty healthy sedentary individuals (<2 h/week physical activity) were compared to 20 active individuals (>6 h/week physical activity) and cortical thickness was measured in 34 cortical areas. Cortical thickness values were compared between groups, and correlations between cortical thickness and VO2 max were tested. RESULTS Cardiorespiratory fitness was significantly higher in active individuals compared to sedentary individuals. Cortical thickness was lower in regions of the left (lateral and medial orbitofrontal cortex, pars orbitalis, pars triangularis, rostral anterior cingulate cortex, superior temporal cortex and frontal pole) and right (lateral and medial orbitofrontal cortex and pars opercularis) hemispheres. Only the left frontal pole and right lateral orbitofrontal cortical thickness remained significant after false discovery rate correction. Negative correlations were observed between VO2 max and cortical thickness in the left (frontal pole) and right (caudal anterior cingulate and medial orbitofrontal cortex) hemispheres. CONCLUSION The present exploratory analysis supports previous findings suggesting that neuroplastic effects of cardiorespiratory fitness may be attenuated in young compared with older individuals, underscoring a moderating effect of age on the relationship between fitness and cortical thickness.
Collapse
Affiliation(s)
- Yi Ran Wang
- Département de psychologie, Université de Montréal
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec
| | - Arnaud Boré
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - François Champoux
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, Québec, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal
| |
Collapse
|
23
|
Ren J, Xiao H. Exercise Intervention for Alzheimer's Disease: Unraveling Neurobiological Mechanisms and Assessing Effects. Life (Basel) 2023; 13:2285. [PMID: 38137886 PMCID: PMC10744739 DOI: 10.3390/life13122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and a major cause of age-related dementia, characterized by cognitive dysfunction and memory impairment. The underlying causes include the accumulation of beta-amyloid protein (Aβ) in the brain, abnormal phosphorylation, and aggregation of tau protein within nerve cells, as well as neuronal damage and death. Currently, there is no cure for AD with drug therapy. Non-pharmacological interventions such as exercise have been widely used to treat AD, but the specific molecular and biological mechanisms are not well understood. In this narrative review, we integrate the biology of AD and summarize the knowledge of the molecular, neural, and physiological mechanisms underlying exercise-induced improvements in AD progression. We discuss various exercise interventions used in AD and show that exercise directly or indirectly affects the brain by regulating crosstalk mechanisms between peripheral organs and the brain, including "bone-brain crosstalk", "muscle-brain crosstalk", and "gut-brain crosstalk". We also summarize the potential role of artificial intelligence and neuroimaging technologies in exercise interventions for AD. We emphasize that moderate-intensity, regular, long-term exercise may improve the progression of Alzheimer's disease through various molecular and biological pathways, with multimodal exercise providing greater benefits. Through in-depth exploration of the molecular and biological mechanisms and effects of exercise interventions in improving AD progression, this review aims to contribute to the existing knowledge base and provide insights into new therapeutic strategies for managing AD.
Collapse
Affiliation(s)
- Jianchang Ren
- Institute of Sport and Health, Guangdong Provincial Kay Laboratory of Development and Education for Special Needs Child, Lingnan Normal University, Zhanjiang 524037, China
- Institute of Sport and Health, South China Normal University, Guangzhou 510631, China
| | - Haili Xiao
- Institute of Sport and Health, Lingnan Normal University, Zhanjiang 524037, China;
| |
Collapse
|
24
|
Bangen KJ, Calcetas AT, Thomas KR, Wierenga C, Smith CN, Bordyug M, Brenner EK, Wing D, Chen C, Liu TT, Zlatar ZZ. Greater accelerometer-measured physical activity is associated with better cognition and cerebrovascular health in older adults. J Int Neuropsychol Soc 2023; 29:859-869. [PMID: 36789631 PMCID: PMC10425574 DOI: 10.1017/s1355617723000140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Physical activity (PA) may help maintain brain structure and function in aging. Since the intensity of PA needed to effect cognition and cerebrovascular health remains unknown, we examined associations between PA and cognition, regional white matter hyperintensities (WMH), and regional cerebral blood flow (CBF) in older adults. METHOD Forty-three older adults without cognitive impairment underwent magnetic resonance imaging (MRI) and comprehensive neuropsychological assessment. Waist-worn accelerometers objectively measured PA for approximately one week. RESULTS Higher time spent in moderate to vigorous PA (MVPA) was uniquely associated with better memory and executive functioning after adjusting for all light PA. Higher MVPA was also uniquely associated with lower frontal WMH volume although the finding was no longer significant after additionally adjusting for age and accelerometer wear time. MVPA was not associated with CBF. Higher time spent in all light PA was uniquely associated with higher CBF but not with cognitive performance or WMH volume. CONCLUSIONS Engaging in PA may be beneficial for cerebrovascular health, and MVPA in particular may help preserve memory and executive function in otherwise cognitively healthy older adults. There may be differential effects of engaging in lighter PA and MVPA on MRI markers of cerebrovascular health although this needs to be confirmed in future studies with larger samples. Future randomized controlled trials that increase PA are needed to elucidate cause-effect associations between PA and cerebrovascular health.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Amanda T Calcetas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christina Wierenga
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christine N Smith
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Maria Bordyug
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Einat K Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Conan Chen
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Thomas T Liu
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Zvinka Z Zlatar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Wang Z, Donahue EK, Guo Y, Renteln M, Petzinger GM, Jakowec MW, Holschneider DP. Exercise alters cortico-basal ganglia network metabolic connectivity: a mesoscopic level analysis informed by anatomic parcellation defined in the mouse brain connectome. Brain Struct Funct 2023; 228:1865-1884. [PMID: 37306809 PMCID: PMC10516800 DOI: 10.1007/s00429-023-02659-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
The basal ganglia are important modulators of the cognitive and motor benefits of exercise. However, the neural networks underlying these benefits remain poorly understood. Our study systematically analyzed exercise-associated changes in metabolic connectivity in the cortico-basal ganglia-thalamic network during the performance of a new motor task, with regions-of-interest defined based on mesoscopic domains recently defined in the mouse brain structural connectome. Mice were trained on a motorized treadmill for six weeks or remained sedentary (control), thereafter undergoing [14C]-2-deoxyglucose metabolic brain mapping during wheel walking. Regional cerebral glucose uptake (rCGU) was analyzed in 3-dimensional brains reconstructed from autoradiographic brain sections using statistical parametric mapping. Metabolic connectivity was assessed by calculating inter-regional correlation of rCGU cross-sectionally across subjects within a group. Compared to controls, exercised animals showed broad decreases in rCGU in motor areas, but increases in limbic areas, as well as the visual and association cortices. In addition, exercised animals showed (i) increased positive metabolic connectivity within and between the motor cortex and caudoputamen (CP), (ii) newly emerged negative connectivity of the substantia nigra pars reticulata with the globus pallidus externus, and CP, and (iii) reduced connectivity of the prefrontal cortex (PFC). Increased metabolic connectivity in the motor circuit in the absence of increases in rCGU strongly suggests greater network efficiency, which is also supported by the reduced involvement of PFC-mediated cognitive control during the performance of a new motor task. Our study delineates exercise-associated changes in functional circuitry at the subregional level and provides a framework for understanding the effects of exercise on functions of the cortico-basal ganglia-thalamic network.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
| | - Erin K. Donahue
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
| | - Yumei Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
| | - Michael Renteln
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Giselle M. Petzinger
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Michael W. Jakowec
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Daniel P. Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California USA
| |
Collapse
|
26
|
Ramdeo KR, Fahnestock M, Gibala M, Selvaganapathy PR, Lee J, Nelson AJ. The Effects of Exercise on Synaptic Plasticity in Individuals With Mild Cognitive Impairment: Protocol for a Pilot Intervention Study. JMIR Res Protoc 2023; 12:e50030. [PMID: 37851488 PMCID: PMC10620638 DOI: 10.2196/50030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a syndrome preceding more severe impairment characterized by dementia. MCI affects an estimated 15% to 20% of people older than 65 years. Nonpharmacological interventions including exercise are recommended as part of overall MCI management based on the positive effects of exercise on cognitive performance. Interval training involves brief intermittent bouts of exercise interspersed with short recovery periods. This type of exercise promotes cognitive improvement and can be performed in individuals with MCI. Synaptic plasticity can be assessed in vivo by the neurophysiological response to repetitive transcranial magnetic stimulation (rTMS). A method to assess synaptic plasticity uses an intermittent theta burst stimulation (iTBS), which is a patterned form of rTMS. Individuals with MCI have decreased responses to iTBS, reflecting reduced synaptic plasticity. It is unknown whether interval training causes changes in synaptic plasticity in individuals living with MCI. OBJECTIVE This research will determine whether interval training performed using a cycle ergometer enhances synaptic plasticity in individuals with MCI. The three aims are to (1) quantify synaptic plasticity after interval training performed at a self-determined intensity in individuals with MCI; (2) determine whether changes in synaptic plasticity correlate with changes in serum brain-derived neurotrophic factor, osteocalcin, and cognition; and (3) assess participant compliance to the exercise schedule. METHODS 24 individuals diagnosed with MCI will be recruited for assignment to 1 of the 2 equally sized groups: exercise and no exercise. The exercise group will perform exercise 3 times per week for 4 weeks. Synaptic plasticity will be measured before and following the 4-week intervention. At these time points, synaptic plasticity will be measured as the response to single-pulse TMS, reflected as the percent change in the average amplitude of 20 motor-evoked potentials before and after an iTBS rTMS protocol, which is used to induce synaptic plasticity. In addition, individuals will complete a battery of cognitive assessments and provide a blood sample from the antecubital vein to determine serum brain-derived neurotrophic factor and osteocalcin. RESULTS The study began in September 2023. CONCLUSIONS The proposed research is the first to assess whether synaptic plasticity is enhanced after exercise training in individuals with MCI. If exercise does indeed modify synaptic plasticity, this will create a new avenue by which we can study and manipulate neural plasticity in these individuals. TRIAL REGISTRATION ClinicalTrials.gov NCT05663918; https://clinicaltrials.gov/study/NCT05663918. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/50030.
Collapse
Affiliation(s)
- Karishma R Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Martin Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Justin Lee
- Department of Geriatric Medicine, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
27
|
Aktar B, Balci B, Eraslan Boz H, Oztura I, Baklan B. Yoga and aerobic exercise in epilepsy: Study protocol for a randomized controlled trial. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2023; 28:e2013. [PMID: 37151132 DOI: 10.1002/pri.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND There has been a growing interest in demonstrating the health benefits of exercise among people with epilepsy in recent years. Although exercise is recommended for people with epilepsy, there is uncertainty concerning the effects of yoga and aerobic exercise on multiple health outcomes in epilepsy. PURPOSE The aim of this trial was to examine the effects of yoga and aerobic exercise training on physical activity, seizure frequency, health-related physical fitness, mental, emotional, and psychological health status, and quality of life. METHODS This study was designed as a single-center, 8-week, randomized controlled trial in a three-arm parallel group. Participants will be randomly allocated to yoga, aerobic exercise, or wait-list control groups. The primary outcome is physical activity/sedentary behavior measured by the ActiGraph GT9X accelerometer and seizure frequency. Secondary outcomes include functional capacity, lower extremity strength, balance, body composition, waist and hip circumference, cognition, depression, anxiety, perceived stress, fatigue, sleep quality, and quality of life. The outcomes will be evaluated at baseline and at 8 weeks of follow-up. IMPLICATIONS OF PHYSIOTHERAPY PRACTICE This study is the first randomized controlled trial comparing the effects of yoga and aerobic exercise among people with epilepsy. The findings of this study could provide important information about the effects of yoga and aerobic exercise training on a variety of health conditions in people with epilepsy. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05066880, registered October 4, 2021.
Collapse
Affiliation(s)
- Burcin Aktar
- Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- Faculty of Physical Therapy and Rehabilitation, Dokuz Eylul University, Izmir, Turkey
| | - Birgul Balci
- Faculty of Physical Therapy and Rehabilitation, Dokuz Eylul University, Izmir, Turkey
| | - Hatice Eraslan Boz
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- Department of Neurology, Unit of Neuropscyhology, Dokuz Eylul University, Izmir, Turkey
| | - Ibrahim Oztura
- Department of Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Baris Baklan
- Department of Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
28
|
Wang YR, Lefebvre G, Picard M, Lamoureux-Andrichuk A, Ferland MC, Therrien-Blanchet JM, Boré A, Tremblay J, Descoteaux M, Champoux F, Théoret H. Physiological, Anatomical and Metabolic Correlates of Aerobic Fitness in Human Primary Motor Cortex: A Multimodal Study. Neuroscience 2023; 517:70-83. [PMID: 36921757 DOI: 10.1016/j.neuroscience.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Physical activity (PA) has been shown to benefit various cognitive functions and promote neuroplasticity. Whereas the effects of PA on brain anatomy and function have been well documented in older individuals, data are scarce in young adults. Whether high levels of cardiorespiratory fitness (CRF) achieved through regular PA are associated with significant structural and functional changes in this age group remains largely unknown. In the present study, twenty young adults that engaged in at least 8 hours per week of aerobic exercise during the last 5 years were compared to twenty sedentary controls on measures of cortical excitability, white matter microstructure, cortical thickness and metabolite concentration. All measures were taken in the left primary motor cortex and CRF was assessed with VO2max. Transcranial magnetic stimulation (TMS) revealed higher corticospinal excitability in high- compared to low-fit individuals reflected by greater input/output curve amplitude and slope. No group differences were found for other TMS (short-interval intracortical inhibition and intracortical facilitation), diffusion MRI (fractional anisotropy and apparent fiber density), structural MRI (cortical thickness) and magnetic resonance spectroscopy (NAA, GABA, Glx) measures. Taken together, the present data suggest that brain changes associated with increased CRF are relatively limited, at least in primary motor cortex, in contrast to what has been observed in older adults.
Collapse
Affiliation(s)
- Yi Ran Wang
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Geneviève Lefebvre
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Maude Picard
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Arnaud Boré
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Jonathan Tremblay
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
29
|
Soldan A, Alfini A, Pettigrew C, Faria A, Hou X, Lim C, Lu H, Spira AP, Zipunnikov V, Albert M. Actigraphy-estimated physical activity is associated with functional and structural brain connectivity among older adults. Neurobiol Aging 2022; 116:32-40. [PMID: 35551019 PMCID: PMC10167793 DOI: 10.1016/j.neurobiolaging.2022.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/04/2022] [Accepted: 04/09/2022] [Indexed: 12/20/2022]
Abstract
Higher physical activity levels are associated with reduced cognitive decline among older adults; however, current understanding of underlying brain mechanisms is limited. This cross-sectional study investigated the relationship between actigraphy-estimated total volume of physical activity (TVPA) and magnetic resonance imaging (MRI) measures of white matter hyperintensities (WMH), and functional and structural brain connectivity, measured by resting-state functional MRI and diffusion tensor imaging. Study participants (N = 156, mean age = 71 years) included 136 with normal cognition and 20 with Mild Cognitive Impairment. Higher TVPA was associated with greater functional connectivity within the default-mode network and greater network modularity (a measure of network specialization), as well as with greater anisotropy and lower radial diffusion in white matter, suggesting better structural connectivity. These associations with functional and structural connectivity were independent of one another and independent of the level of vascular risk, APOE-ε4 status, cognitive reserve, and WMH volume, which were not associated with TVPA. Findings suggest that physical activity is beneficial for brain connectivity among older individuals with varying levels of risk for cognitive decline.
Collapse
Affiliation(s)
- Anja Soldan
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Alfonso Alfini
- National Center on Sleep Disorders Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Corinne Pettigrew
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andreia Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chantelle Lim
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adam P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marilyn Albert
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Neves LM, Ritti-Dias R, Juday V, Marquesini R, Gerage AM, Laurentino GC, Hoffmann Nunes R, Stubbs B, Ugrinowitsch C. Objective physical activity accumulation and brain volume in older adults: An MRI and whole brain volume study. J Gerontol A Biol Sci Med Sci 2022:6647057. [PMID: 35857361 DOI: 10.1093/gerona/glac150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
A decrease in brain volume (i.e., brain atrophy) is a marker of cognitive health in older adults. Insufficient weekly accumulation of moderate and vigorous physical activity (MVPA) has been associated with lower brain volume. As this association has been established for a small number of brain areas and structures and atrophy rates seem to be nonuniform between them, more comprehensive analyses are warranted. We compared the volume of 71 brain areas and structures in 45 older adults who met and did not meet objectively measured MVPA recommendations. In addition, we used multiple regression models to determine whether cardiorespiratory fitness (VO2PEAK), MVPA and health-related risk factors could affect the atrophy of brain areas and structures. An accelerometer (GT9-X ActiGraph®) was worn for 7 days. Participants were then classified into two groups: <150 minutes MVPA (< 150'MVPA) (n=20) and ≥150 minutes MVPA (≥ 150'MVPA) (n=25) per week. Older adults who accumulated ≥ 150'MVPA per week had significantly higher absolute and relative (% of intracranial volume) volumes of 39 and 9 brain areas and structures, respectively, than those who accumulated < 150'MVPA per week. Higher VO2PEAK seems to be a key predictor of the atrophy of brain areas and structures. In conclusion, meeting weekly physical activity recommendations seems to have a widespread effect on preserving the volume of more than 30 brain areas and structures in older adults. VO2PEAK seems to be the most frequent and important predictor of brain volume preservation.
Collapse
Affiliation(s)
- Lucas Melo Neves
- Post-Graduate Program in Health Sciences, Santo Amaro University, UNISA, São Paulo, Brazil.,PROMAN (Bipolar Disorder Research Program), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | | | - Raquel Marquesini
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Gilberto Cândido Laurentino
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,São Judas University, São Paulo, Brazil
| | - Renato Hoffmann Nunes
- Dasa Laboratório, São Paulo, Brazil.,Faculty of Medical Science, Santa Casa de São Paulo, São Paulo, Brazil
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Hortobágyi T, Vetrovsky T, Balbim GM, Sorte Silva NCB, Manca A, Deriu F, Kolmos M, Kruuse C, Liu-Ambrose T, Radák Z, Váczi M, Johansson H, Dos Santos PCR, Franzén E, Granacher U. The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Res Rev 2022; 80:101698. [PMID: 35853549 DOI: 10.1016/j.arr.2022.101698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine the effects of low- vs. high-intensity aerobic and resistance training on motor and cognitive function, brain activation, brain structure, and neurochemical markers of neuroplasticity and the association thereof in healthy young and older adults and in patients with multiple sclerosis, Parkinson's disease, and stroke. DESIGN Systematic review and robust variance estimation meta-analysis with meta-regression. DATA SOURCES Systematic search of MEDLINE, Web of Science, and CINAHL databases. RESULTS Fifty studies with 60 intervention arms and 2283 in-analyses participants were included. Due to the low number of studies, the three patient groups were combined and analyzed as a single group. Overall, low- (g=0.19, p = 0.024) and high-intensity exercise (g=0.40, p = 0.001) improved neuroplasticity. Exercise intensity scaled with neuroplasticity only in healthy young adults but not in healthy older adults or patient groups. Exercise-induced improvements in neuroplasticity were associated with changes in motor but not cognitive outcomes. CONCLUSION Exercise intensity is an important variable to dose and individualize the exercise stimulus for healthy young individuals but not necessarily for healthy older adults and neurological patients. This conclusion warrants caution because studies are needed that directly compare the effects of low- vs. high-intensity exercise on neuroplasticity to determine if such changes are mechanistically and incrementally linked to improved cognition and motor function.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Hungary; Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany; Hungarian University of Sports Science, Department of Kinesiology, Budapest, Hungary.
| | - Tomas Vetrovsky
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Guilherme Moraes Balbim
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Nárlon Cássio Boa Sorte Silva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy
| | - Mia Kolmos
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Zsolt Radák
- Research Center of Molecular Exercise Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Márk Váczi
- Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Hungary
| | - Hanna Johansson
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | | | - Erika Franzén
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
32
|
Su WC, Amonkar N, Cleffi C, Srinivasan S, Bhat A. Neural Effects of Physical Activity and Movement Interventions in Individuals With Developmental Disabilities-A Systematic Review. Front Psychiatry 2022; 13:794652. [PMID: 35242063 PMCID: PMC8886122 DOI: 10.3389/fpsyt.2022.794652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023] Open
Abstract
Individuals with developmental disabilities present with perceptuo-motor, social communication, and cognitive impairments that often relate to underlying atypical brain structure and functioning. Physical activity/movement interventions improve behavioral performance of individuals with and without developmental disabilities. Majority of the evidence on potential neural mechanisms explaining the impact of physical activity/movement interventions is based on studies in individuals with typical development; there is a dearth of systematic reviews synthesizing the neural effects of physical activity/movement interventions in individuals with developmental disabilities. In this systematic review, we have gathered evidence on the neural effects of physical activity/movement interventions from 32 papers reporting substantial neural effects and behavioral improvements in individuals with developmental disabilities. Chronic intervention effects (multiple sessions) were greater than acute intervention effects (single session). Specifically, using electroencephalogram, functional magnetic resonance imaging, diffusion tensor imaging, and functional near-infrared spectroscopy, studies found physical activity/movement intervention-related changes in neural activity, indicating normalization of cortical arousal in individuals with attention-deficit /hyperactivity disorder (ADHD), increased social brain connectivity in individuals with autism spectrum disorder (ASD), and more efficient executive functioning processes in individuals with a wide range of other developmental disabilities. Despite promising results, more research is clearly needed in this area with larger sample sizes, using standardized neuroimaging tools/variables, and across multiple diagnoses to further explore the neural mechanisms underlying physical activity/movement interventions and to replicate findings from the present review.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States
| | - Nidhi Amonkar
- Physical Therapy Program, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Corina Cleffi
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States
| | - Sudha Srinivasan
- Physical Therapy Program, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Institute for Health, Intervention, and Policy (InCHIP), University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT, United States
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
33
|
Lehmann N, Villringer A, Taubert M. Priming cardiovascular exercise improves complex motor skill learning by affecting the trajectory of learning-related brain plasticity. Sci Rep 2022; 12:1107. [PMID: 35064175 PMCID: PMC8783021 DOI: 10.1038/s41598-022-05145-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, mounting evidence from animal models and studies in humans has accumulated for the role of cardiovascular exercise (CE) in improving motor performance and learning. Both CE and motor learning may induce highly dynamic structural and functional brain changes, but how both processes interact to boost learning is presently unclear. Here, we hypothesized that subjects receiving CE would show a different pattern of learning-related brain plasticity compared to non-CE controls, which in turn associates with improved motor learning. To address this issue, we paired CE and motor learning sequentially in a randomized controlled trial with healthy human participants. Specifically, we compared the effects of a 2-week CE intervention against a non-CE control group on subsequent learning of a challenging dynamic balancing task (DBT) over 6 consecutive weeks. Structural and functional MRI measurements were conducted at regular 2-week time intervals to investigate dynamic brain changes during the experiment. The trajectory of learning-related changes in white matter microstructure beneath parieto-occipital and primary sensorimotor areas of the right hemisphere differed between the CE vs. non-CE groups, and these changes correlated with improved learning of the CE group. While group differences in sensorimotor white matter were already present immediately after CE and persisted during DBT learning, parieto-occipital effects gradually emerged during motor learning. Finally, we found that spontaneous neural activity at rest in gray matter spatially adjacent to white matter findings was also altered, therefore indicating a meaningful link between structural and functional plasticity. Collectively, these findings may lead to a better understanding of the neural mechanisms mediating the CE-learning link within the brain.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany. .,Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,Mind and Brain Institute, Charité and Humboldt University, Luisenstraße 56, 10117, Berlin, Germany
| | - Marco Taubert
- Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.,Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
34
|
Hand BJ, Opie GM, Sidhu SK, Semmler JG. Motor cortex plasticity and visuomotor skill learning in upper and lower limbs of endurance-trained cyclists. Eur J Appl Physiol 2021; 122:169-184. [DOI: 10.1007/s00421-021-04825-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
|
35
|
Li F, Geng X, Yun HJ, Haddad Y, Chen Y, Ding Y. Neuroplastic Effect of Exercise Through Astrocytes Activation and Cellular Crosstalk. Aging Dis 2021; 12:1644-1657. [PMID: 34631212 PMCID: PMC8460294 DOI: 10.14336/ad.2021.0325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Physical exercise is an effective therapy for neurorehabilitation. Exercise has been shown to induce remodeling and proliferation of astrocyte. Astrocytes potentially affect the recruitment and function of neurons; they could intensify responses of neurons and bring more neurons for the process of neuroplasticity. Interactions between astrocytes, microglia and neurons modulate neuroplasticity and, subsequently, neural circuit function. These cellular interactions promote the number and function of synapses, neurogenesis, and cerebrovascular remodeling. However, the roles and crosstalk of astrocytes with neurons and microglia and any subsequent neuroplastic effects have not been studied extensively in exercise-induced settings. This article discusses the impact of physical exercise on astrocyte proliferation and highlights the interplay between astrocytes, microglia and neurons. The crosstalk between these cells may enhance neuroplasticity, leading to the neuroplastic effects of exercise.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yazeed Haddad
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
36
|
Clinical guidelines and care pathway for management of low back pain with or without radicular pain. Joint Bone Spine 2021; 88:105227. [PMID: 34051387 DOI: 10.1016/j.jbspin.2021.105227] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To develop guidelines for low back pain management according to previous international guidelines and the updated literature. METHODS A report was compiled from a review of systematic reviews of guidelines published between 2013 and 2018 and meta-analysis of the management of low back pain published between 2015 and 2018. This report summarized the state-of-the-art scientific knowledge for each predefined area of the guidelines from a critical review of selected literature. A multidisciplinary panel of experts including 17 health professionals involved in low back pain management and 2 patient representatives formulated preliminary guidelines based on the compilation report and a care pathway. The compilation report and preliminary guidelines were submitted to 25 academic institutions and stakeholders for the consultation phase. From responses of academic institutions and stakeholders, the final guidelines were developed. For each area of the guidelines, agreement between experts was assessed by the RAND/UCLA method. RESULTS The expert panel drafted 32 preliminary recommendations including a care pathway, which was amended after academic institution and stakeholder consultation. The consensus of the multidisciplinary expert panel was assessed for each final guideline: 32 recommendations were assessed as appropriate; none was assessed as uncertain or inappropriate. Strong approval was obtained for 27 recommendations and weak for 5. CONCLUSION These new guidelines introduce several concepts, including the need to early identify low back pain at risk of chronicity to provide quicker intensive and multidisciplinary management if necessary.
Collapse
|
37
|
Tortella GR, Seabra AB, Padrão J, Díaz-San Juan R. Mindfulness and Other Simple Neuroscience-Based Proposals to Promote the Learning Performance and Mental Health of Students during the COVID-19 Pandemic. Brain Sci 2021; 11:552. [PMID: 33925627 PMCID: PMC8145019 DOI: 10.3390/brainsci11050552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has had a negative impact on education. The restrictions imposed have undoubtedly led to impairment of the psychological well-being of both teachers and students, and of the way they experience interpersonal relationships. As reported previously in the literature, adverse effects such as loneliness, anxiety, and stress have resulted in a decrease in the cognitive performance of school and higher education students. Therefore, the objective of this work is to present a general overview of the reported adverse effects of the COVID-19 pandemic which may potentially influence the learning performance of students. Some neuroscientific findings related to memory and cognition, such as neuroplasticity and long-term potentiation, are also shown. We also discuss the positive effects of the practice of mindfulness, as well as other simple recommendations based on neuroscientific findings such as restful sleep, physical activity, and nutrition, which can act on memory and cognition. Finally, we propose some practical recommendations on how to achieve more effective student learning in the context of the pandemic. The aim of this review is to provide some assistance in this changing and uncertain situation in which we all find ourselves, and we hope that some of the information could serve as a starting point for hypotheses to be tested in educational research and their association with neuroscience.
Collapse
Affiliation(s)
- Gonzalo R. Tortella
- Center of Excellence (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- PhD Program in Natural Resource Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Amedea B. Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001-Bangú, Santo André 09210-580, SP, Brazil;
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Rodrigo Díaz-San Juan
- Educational Neurosciences and Psychology Department, Centenario School, Temuco 4810936, Chile;
| |
Collapse
|