1
|
Chizari M, Navi K, Khosrowabadi R. TMS-EEG evidence links random exploration to inhibitory mechanisms in the dorsolateral prefrontal cortex. Sci Rep 2025; 15:15654. [PMID: 40325029 PMCID: PMC12053588 DOI: 10.1038/s41598-025-00034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
Adaptive decision-making in uncertain environments requires balancing exploration and exploitation. Computational models distinguish between directed exploration, involving deliberate information-seeking, and random exploration, characterized by stochastic variability. The neural correlates of these strategies have been investigated in previous studies. However, while prior research implicates the dorsolateral prefrontal cortex (DLPFC) in random exploration, its underlying excitatory and inhibitory mechanisms remain unclear. Understanding these processes is essential for explaining how individuals adapt to a dynamic environment. To investigate this, we combined transcranial magnetic stimulation (TMS) with electroencephalography (EEG) to directly assess cortical excitatory and inhibitory functions. Twenty-five healthy participants completed the Horizon Task, a behavioral paradigm designed to dissociate directed and random exploration, and after the task, they received single-pulse TMS over the DLPFC. The TMS-evoked potentials (TEPs) N45, P60, and N100 were examined as neurophysiological markers of GABAA, GABAB, and glutamate activity. Results revealed a significant positive correlation between the N100 amplitude at the right DLPFC and random exploration, suggesting that GABAB-mediated inhibition plays a key role in stochastic decision-making. Additionally, a correlation between the decision noise parameter in the logistic model and the N100 amplitude further validated this association. These findings highlight the importance of prefrontal inhibition in exploratory behavior and underscore the utility of TMS-EEG in uncovering the neural mechanisms underlying adaptive decision-making.
Collapse
Affiliation(s)
- Mojtaba Chizari
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Keivan Navi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Sazhin D, Dachs A, Smith DV. Meta-Analysis Reveals That Explore-Exploit Decisions are Dissociable by Activation in the Dorsal Lateral Prefrontal Cortex, Anterior Insula, and the Dorsal Anterior Cingulate Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.21.563317. [PMID: 37961286 PMCID: PMC10634720 DOI: 10.1101/2023.10.21.563317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Explore-exploit research faces challenges in generalizability due to a limited theoretical basis for exploration and exploitation. Neuroimaging can help identify whether explore-exploit decisions involve an opponent processing system to address this issue. Thus, we conducted a coordinate-based meta-analysis (N=23 studies) finding activation in the dorsal lateral prefrontal cortex, anterior insula, and anterior cingulate cortex during exploration versus exploitation, which provides some evidence for opponent processing. However, the conjunction of explore-exploit decisions was associated with activation in the dorsal anterior cingulate cortex and dorsal medial prefrontal cortex, suggesting that these brain regions do not engage in opponent processing. Furthermore, exploratory analyses revealed heterogeneity in brain responses between task types during exploration and exploitation respectively. Coupled with results suggesting that activation during exploration and exploitation decisions is generally more similar than it is different suggests that there remain significant challenges in characterizing explore-exploit decision making. Nonetheless, dorsal lateral prefrontal cortex, anterior insula, and dorsal anterior cingulate cortex activation differentiate explore and exploit decisions and identifying these responses can aid in targeted interventions aimed at manipulating these decisions.
Collapse
Affiliation(s)
- Daniel Sazhin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Abraham Dachs
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - David V Smith
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Pérez-González AP, de Anda-Jáuregui G, Hernández-Lemus E. Differential Transcriptional Programs Reveal Modular Network Rearrangements Associated with Late-Onset Alzheimer's Disease. Int J Mol Sci 2025; 26:2361. [PMID: 40076979 PMCID: PMC11900169 DOI: 10.3390/ijms26052361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is a complex, genetically heterogeneous disorder. The diverse phenotypes associated with AD result from interactions between genetic and environmental factors, influencing multiple biological pathways throughout disease progression. Network-based approaches offer a way to assess phenotype-specific states. In this study, we calculated key network metrics to characterize the network transcriptional structure and organization in LOAD, focusing on genes and pathways implicated in AD pathology within the dorsolateral prefrontal cortex (DLPFC). Our findings revealed disease-specific coexpression markers associated with diverse metabolic functions. Additionally, significant differences were observed at both the mesoscopic and local levels between AD and control networks, along with a restructuring of gene coexpression and biological functions into distinct transcriptional modules. These results show the molecular reorganization of the transcriptional program occurring in LOAD, highlighting specific adaptations that may contribute to or result from cellular responses to pathological stressors. Our findings may support the development of a unified model for the causal mechanisms of AD, suggesting that its diverse manifestations arise from multiple pathways working together to produce the disease's complex clinical patho-phenotype.
Collapse
Affiliation(s)
- Alejandra Paulina Pérez-González
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
- Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado Edificio B Primer Piso, Ciudad Universitaria, Mexico City 04510, Mexico
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico
| | - Guillermo de Anda-Jáuregui
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Investigadores por M’exico, Conahcyt, Mexico City 03940, Mexico
| | - Enrique Hernández-Lemus
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Sazhin D, Dachs A, Smith DV. Meta-Analysis Reveals That Explore-Exploit Decisions Are Dissociable by Activation in the Dorsal Lateral Prefrontal Cortex, Anterior Insula, and Dorsal Anterior Cingulate Cortex. Eur J Neurosci 2025; 61:e70081. [PMID: 40125571 DOI: 10.1111/ejn.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Explore-exploit research faces challenges in generalizability due to a limited theoretical basis for exploration and exploitation. Neuroimaging can help identify whether explore-exploit decisions involve an opponent processing system to address this issue. Thus, we conducted a coordinate-based meta-analysis (N = 23 studies) finding activation in the dorsal lateral prefrontal cortex, anterior insula, and dorsal anterior cingulate cortex during exploration versus exploitation, which provides some evidence for opponent processing. However, the conjunction of explore-exploit decisions was associated with activation in the anterior cingulate cortex and dorsal medial prefrontal cortex, suggesting that these brain regions do not engage in opponent processing. Furthermore, exploratory analyses revealed heterogeneity in brain responses between task types during exploration and exploitation respectively. Coupled with results suggesting that activation during exploration and exploitation decisions is generally more similar than it is different suggests that there remain significant challenges in characterizing explore-exploit decision-making. Nonetheless, dorsal lateral prefrontal cortex, anterior insula, and dorsal anterior cingulate cortex activation differentiate explore and exploit decisions, and identifying these responses can aid in targeted interventions aimed at manipulating these decisions.
Collapse
Affiliation(s)
- Daniel Sazhin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Abraham Dachs
- Department of Psychology & Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - David V Smith
- Department of Psychology & Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Zanini L, Picano C, Spitoni GF. The Iowa Gambling Task: Men and Women Perform Differently. A Meta-analysis. Neuropsychol Rev 2025; 35:211-231. [PMID: 38462590 PMCID: PMC11965174 DOI: 10.1007/s11065-024-09637-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
The Iowa Gambling Task (IGT) was designed to assess decision-making under conditions of complexity and uncertainty; it is currently one of the most widely used tests to assess decision-making in both experimental and clinical settings. In the original version of the task, participants are given a loan of play money and four decks of cards and are asked to maximize profits. Although any single card unpredictably yields wins/losses, variations in frequency and size of gains/losses ultimately make two decks more advantageous in the long term. Several studies have previously suggested that there may be a sex-related difference in IGT performance. Thus, the present study aimed to explore and quantify sex differences in IGT performance by pooling the results of 110 studies. The meta-analysis revealed that males tend to perform better than females on the classic 100-trial IGT (UMD = 3.381; p < 0.001). Furthermore, the significant heterogeneity observed suggests high variability in the results obtained by individual studies. Results were not affected by publication bias or other moderators. Factors that may contribute to differences in male and female performance are discussed, such as functional sex-related asymmetries in the ventromedial prefrontal cortex and amygdala, as well as differences in sensitivity to wins/losses.
Collapse
Affiliation(s)
- Ludovica Zanini
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli, 1, Rome, Italy.
| | - Chiara Picano
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli, 1, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
6
|
Dai P, Yu HX, Wang ZX, Liu SH, Liu CB, Xu GQ. Effect of continuous theta burst stimulation on the glymphatic system, brain network and cognitive function in patients with cerebral small vessel disease. Front Hum Neurosci 2025; 18:1509483. [PMID: 39906273 PMCID: PMC11790558 DOI: 10.3389/fnhum.2024.1509483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/24/2024] [Indexed: 02/06/2025] Open
Abstract
Objective We aim to investigate the impact of continuous theta burst stimulation (cTBS) on glymphatic system (GS), brain network (BN) and cognition in cerebral small vessel disease (CSVD). Methods This exploratory study included a small cohort of 11 patients, divided into a cTBS group (6 patients) and a sham-cTBS group (5 patients). Over a period of 2 weeks, all participants underwent cTBS to the right dorsolateral prefrontal cortex (DLPFC). The efficiency of the GS was assessed by along the perivascular space (ALPS) index. BN was measured using global efficiency (GE), characteristic path length (CPL) and clustering coefficient (Cp ). Cognition was evaluated by Montreal Cognitive Assessment (MoCA). Results In the cTBS group, the ALPS index increased 4 out of 6 after treatment, compared to an increase in only 2 out of 5 in the control. Improvements in GE, CPL and Cp were observed in 4 out of 6 patients in the cTBS group, whereas no improvements were noted in the control group. The MoCA scores for all patients in the cTBS improved after treatment. Additionally, completion times of the Stroop color and word test C (Stroop C) were reduced for all individuals in the cTBS group, while the control saw an increase in one case. The Digital Span Test-backward (DST-backward) scores were significantly higher in the cTBS group than those in the control. Conclusion Applying cTBS to the DLPFC in CSVD may enhance the efficiency of brain glymphatic clearance, optimize network connectivity and improve cognitive function to a certain extent.
Collapse
Affiliation(s)
- Pei Dai
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-xian Yu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhao-xia Wang
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Si-hao Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chang-bin Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guang-qing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Salice S, Antonietti A, Colautti L. The effect of transcranial Direct Current Stimulation on the Iowa Gambling Task: a scoping review. Front Psychol 2024; 15:1454796. [PMID: 39744021 PMCID: PMC11688180 DOI: 10.3389/fpsyg.2024.1454796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Among the tasks employed to investigate decisional processes, the Iowa Gambling Task (IGT) appears to be the most effective since it allows for deepening the progressive learning process based on feedback on previous choices. Recently, the study of decision making through the IGT has been combined with the application of transcranial direct current stimulation (tDCS) to understand the cognitive mechanisms and the neural structures involved. However, to date no review regarding the effects of tDCS on decisional processes assessed through the IGT is available. This scoping review aims to provide a comprehensive exploration of the potential effects of tDCS in enhancing decisional processes, assessed with the IGT, through the evaluation of the complete range of target cases. Methods The existing literature was analyzed through the PRISMA approach. Results Results reported that tDCS can enhance performance in the IGT and highlighted a pivotal role of the dorsolateral prefrontal cortex and the orbitofrontal cortex in risky and ambiguous decisions. Discussion Thus, tDCS over the brain regions identified improves the decisional processes in healthy subjects and patients, confirming its potential to enhance decision making in everyday contexts and deepen the neural correlates. Suggestions for further studies are provided to delve into decisional mechanisms and how to better support them.
Collapse
Affiliation(s)
| | | | - Laura Colautti
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
8
|
Toghi A, Chizari M, Khosrowabadi R. A causal role of the right dorsolateral prefrontal cortex in random exploration. Sci Rep 2024; 14:24796. [PMID: 39433838 PMCID: PMC11493979 DOI: 10.1038/s41598-024-76025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Decision to explore new options with uncertain outcomes or exploit familiar options with known outcomes is a fundamental challenge that the brain faces in almost all real-life decisions. Previous studies have shown that humans use two main explorative strategies to negotiate this explore-exploit tradeoff. Exploring for the sake of information is called directed exploration, and exploration driven by behavioral variability is known as random exploration. While previous neuroimaging studies have shown different neural correlates for these explorative strategies, including right frontopolar cortex (FPC), right dorsolateral prefrontal cortex (DLPFC), and dorsal anterior cingulate cortex (dACC), there is still a lack of causal evidence for most of these brain regions. Here, we focused on the right DLPFC, which was previously supported to be involved in exploration. Using the continuous theta burst stimulation (cTBS) and Horizon task on twenty-five healthy right-handed adult participants, we showed that inhibiting rDLPFC did not change directed exploration but selectively reduced random exploration, by increasing reward sensitivity over the average reward of each option. This suggests a causal role for rDLPFC in random exploration, and further supports dissociable neural implementations for these two explorative strategies.
Collapse
Affiliation(s)
- Armin Toghi
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Mojtaba Chizari
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
9
|
Ngetich R, Villalba-García C, Soborun Y, Vékony T, Czakó A, Demetrovics Z, Németh D. Learning and memory processes in behavioural addiction: A systematic review. Neurosci Biobehav Rev 2024; 163:105747. [PMID: 38870547 DOI: 10.1016/j.neubiorev.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Similar to addictive substances, addictive behaviours such as gambling and gaming are associated with maladaptive modulation of key brain areas and functional networks implicated in learning and memory. Therefore, this review sought to understand how different learning and memory processes relate to behavioural addictions and to unravel their underlying neural mechanisms. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched four databases - PsycINFO, PubMed, Scopus, and Web of Science using the agreed-upon search string. Findings suggest altered executive function-dependent learning processes and enhanced habit learning in behavioural addiction. Whereas the relationship between working memory and behavioural addiction is influenced by addiction type, working memory aspect, and task nature. Additionally, long-term memory is incoherent in individuals with addictive behaviours. Consistently, neurophysiological evidence indicates alterations in brain areas and networks implicated in learning and memory processes in behavioural addictions. Overall, the present review argues that, like substance use disorders, alteration in learning and memory processes may underlie the development and maintenance of behavioural addictions.
Collapse
Affiliation(s)
- Ronald Ngetich
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar
| | | | - Yanisha Soborun
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France; Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Andrea Czakó
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsolt Demetrovics
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia.
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France; Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain; BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
10
|
Aksu S, Soyata AZ, Şeker S, Akkaya G, Yılmaz Y, Kafalı T, Evren C, Umut G. Transcranial direct current stimulation combined with cognitive training improves decision making and executive functions in opioid use disorder: a triple-blind sham-controlled pilot study. J Addict Dis 2024; 42:154-165. [PMID: 36861945 DOI: 10.1080/10550887.2023.2168991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Opioid use disorder (OUD) is a chronic disorder with a considerable amount of morbidity and mortality. Despite remarkable improvement achieved by maintenance programs, an array of treatment goals were still unmet. Mounting evidence suggests that transcranial Direct Current Stimulation (tDCS) improves decision making and cognitive functions in addictive disorders. tDCS paired with a decision making task was depicted to diminish impulsivity as well. The present study aimed to assess the effect of tDCS combined with cognitive training (CT) in OUD for the first time. In this triple-blind randomized sham-controlled pilot study, 38 individuals with OUD from the Buprenorphine-Naloxone Maintenance Therapy program were administered 20-minutes of 2 mA active/sham tDCS over the dorsolateral prefrontal cortex with concomitant cognitive training. A selected test battery evaluating decision making under risk and ambiguity as well as executive functions, verbal fluency and working memory was utilized before and after the intervention. Greater improvements were observed in decision making under ambiguity (p = 0.016), set shifting ability and alternating fluency while no improvements were observed in decision making under risk in the active group, compared to sham. Deficits of decision making and executive functions have a pivotal role in the perpetuation and the relapse of the OUD. Alleviation of these impairments brought tDCS/CT forth as an expedient neuroscientifically-grounded treatment option that merits further exploration in OUD, Trial registration: NCT05568251.
Collapse
Affiliation(s)
- Serkan Aksu
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Zihni Soyata
- Psychiatry Outpatient Clinic, Başakşehir State Hospital, İstanbul, Turkey
| | - Sercan Şeker
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gözde Akkaya
- Department of Child Development, Istanbul Topkapı University, Istanbul, Turkey
| | - Yasemin Yılmaz
- Department of Psychology, İstanbul University, Istanbul, Turkey
| | - Tuğba Kafalı
- Department of Psychology, Akdeniz University, Antalya, Turkey
| | - Cüneyt Evren
- Department of Psychology, Istanbul Gelisim University, Istanbul, Turkey
| | - Gökhan Umut
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry Neurology and Neurosurgery, Turkey, Istanbul
| |
Collapse
|
11
|
Markman M, Saruco E, Al-Bas S, Wang BA, Rose J, Ohla K, Xue Li Lim S, Schicker D, Freiherr J, Weygandt M, Rramani Q, Weber B, Schultz J, Pleger B. Differences in Discounting Behavior and Brain Responses for Food and Money Reward. eNeuro 2024; 11:ENEURO.0153-23.2024. [PMID: 38569920 PMCID: PMC10993202 DOI: 10.1523/eneuro.0153-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Most neuroeconomic research seeks to understand how value influences decision-making. The influence of reward type is less well understood. We used functional magnetic resonance imaging (fMRI) to investigate delay discounting of primary (i.e., food) and secondary rewards (i.e., money) in 28 healthy, normal-weighted participants (mean age = 26.77; 18 females). To decipher differences in discounting behavior between reward types, we compared how well-different option-based statistical models (exponential, hyperbolic discounting) and attribute-wise heuristic choice models (intertemporal choice heuristic, dual reasoning and implicit framework theory, trade-off model) captured the reward-specific discounting behavior. Contrary to our hypothesis of different strategies for different rewards, we observed comparable discounting behavior for money and food (i.e., exponential discounting). Higher k values for food discounting suggest that individuals decide more impulsive if confronted with food. The fMRI revealed that money discounting was associated with enhanced activity in the right dorsolateral prefrontal cortex, involved in executive control; the right dorsal striatum, associated with reward processing; and the left hippocampus, involved in memory encoding/retrieval. Food discounting, instead, was associated with higher activity in the left temporoparietal junction suggesting social reinforcement of food decisions. Although our findings do not confirm our hypothesis of different discounting strategies for different reward types, they are in line with the notion that reward types have a significant influence on impulsivity with primary rewards leading to more impulsive choices.
Collapse
Affiliation(s)
- M Markman
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum 44869, Germany
| | - E Saruco
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum 44869, Germany
| | - S Al-Bas
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum 44869, Germany
| | - B A Wang
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum 44869, Germany
| | - J Rose
- Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum 44801, Germany
| | - K Ohla
- Firmenich SA, Satigny 1242, Switzerland
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14558, Germany
| | - S Xue Li Lim
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14558, Germany
- Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich 52428, Germany
| | - D Schicker
- Sensory Analytics & Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising 85354, Germany
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - J Freiherr
- Sensory Analytics & Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising 85354, Germany
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - M Weygandt
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin 10115, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Q Rramani
- Center for Economics and Neuroscience (CENs), University of Bonn, Bonn 53113, Germany
- Institute of Experimental Epileptology and Cognition Research (IEECR), University of Bonn, Bonn 53127, Germany
| | - B Weber
- Center for Economics and Neuroscience (CENs), University of Bonn, Bonn 53113, Germany
- Institute of Experimental Epileptology and Cognition Research (IEECR), University of Bonn, Bonn 53127, Germany
| | - J Schultz
- Center for Economics and Neuroscience (CENs), University of Bonn, Bonn 53113, Germany
- Institute of Experimental Epileptology and Cognition Research (IEECR), University of Bonn, Bonn 53127, Germany
| | - B Pleger
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum 44869, Germany
| |
Collapse
|
12
|
Çakar T, Son-Turan S, Girişken Y, Sayar A, Ertuğrul S, Filiz G, Tuna E. Unlocking the neural mechanisms of consumer loan evaluations: an fNIRS and ML-based consumer neuroscience study. Front Hum Neurosci 2024; 18:1286918. [PMID: 38375365 PMCID: PMC10875049 DOI: 10.3389/fnhum.2024.1286918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction This study conducts a comprehensive exploration of the neurocognitive processes underlying consumer credit decision-making using cutting-edge techniques from neuroscience and machine learning (ML). Employing functional Near-Infrared Spectroscopy (fNIRS), the research examines the hemodynamic responses of participants while evaluating diverse credit offers. Methods The experimental phase of this study investigates the hemodynamic responses collected from 39 healthy participants with respect to different loan offers. This study integrates fNIRS data with advanced ML algorithms, specifically Extreme Gradient Boosting, CatBoost, Extra Tree Classifier, and Light Gradient Boosted Machine, to predict participants' credit decisions based on prefrontal cortex (PFC) activation patterns. Results Findings reveal distinctive PFC regions correlating with credit behaviors, including the dorsolateral prefrontal cortex (dlPFC) associated with strategic decision-making, the orbitofrontal cortex (OFC) linked to emotional valuations, and the ventromedial prefrontal cortex (vmPFC) reflecting brand integration and reward processing. Notably, the right dorsomedial prefrontal cortex (dmPFC) and the right vmPFC contribute to positive credit preferences. Discussion This interdisciplinary approach bridges neuroscience, machine learning and finance, offering unprecedented insights into the neural mechanisms guiding financial choices regarding different loan offers. The study's predictive model holds promise for refining financial services and illuminating human financial behavior within the burgeoning field of neurofinance. The work exemplifies the potential of interdisciplinary research to enhance our understanding of human financial decision-making.
Collapse
Affiliation(s)
- Tuna Çakar
- Department of Computer Engineering, MEF University, Istanbul, Türkiye
| | - Semen Son-Turan
- Department of Business Administration, MEF University, Maslak, Türkiye
| | - Yener Girişken
- Faculty of Economics and Administrative Sciences, Final International University, Istanbul, Türkiye
| | - Alperen Sayar
- Informatics Technologies Master Program, MEF University, Istanbul, Türkiye
| | - Seyit Ertuğrul
- Informatics Technologies Master Program, MEF University, Istanbul, Türkiye
| | - Gözde Filiz
- Computer Science and Engineering Ph.D. Program, MEF University, Istanbul, Türkiye
| | - Esin Tuna
- Department of Psychology, MEF University, Istanbul, Türkiye
| |
Collapse
|
13
|
Zhang Y, Ye W, Yin J, Wu Q, Huang Y, Hao N, Cui L, Zhang M, Cai D. Exploring the role of mutual prediction in inter-brain synchronization during competitive interactions: an fNIRS hyperscanning investigation. Cereb Cortex 2024; 34:bhad483. [PMID: 38100358 DOI: 10.1093/cercor/bhad483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Mutual prediction is crucial for understanding the mediation of bodily actions in social interactions. Despite this importance, limited studies have investigated neurobehavioral patterns under the mutual prediction hypothesis in natural competitive scenarios. To address this gap, our study employed functional near-infrared spectroscopy hyperscanning to examine the dynamics of real-time rock-paper-scissors games using a computerized paradigm with 54 participants. Firstly, our results revealed activations in the right inferior frontal gyrus, bilateral dorsolateral prefrontal cortex, and bilateral frontopolar cortex, each displaying distinct temporal profiles indicative of diverse cognitive processes during the task. Subsequently, a task-related increase in inter-brain synchrony was explicitly identified in the right dorsolateral prefrontal cortex, which supported the mutual prediction hypothesis across the two brains. Moreover, our investigation uncovered a close association between the coherence value in the right dorsolateral prefrontal cortex and the dynamic predictive performances of dyads using inter-subject representational similarity analysis. Finally, heightened inter-brain synchrony values were observed in the right dorsolateral prefrontal cortex before a draw compared to a no-draw scenario in the second block, suggesting that cross-brain signal patterns could be reflected in behavioral responses during competition. In summary, these findings provided initial support for expanding the understanding of cognitive processes underpinning natural competitive engagements.
Collapse
Affiliation(s)
- Yuxuan Zhang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Weihao Ye
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
- School of Psychology, Zhejiang Normal University, Zhejiang 321004, China
| | - Junting Yin
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Qin Wu
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yao Huang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Na Hao
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Liying Cui
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Mingming Zhang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Dan Cai
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
14
|
Dai P, Wang ZX, Yu HX, Liu CB, Liu SH, Zhang H. The Effect of Continuous Theta Burst Stimulation over the Right Dorsolateral Prefrontal Cortex on Cognitive Function and Emotional Regulation in Patients with Cerebral Small Vessel Disease. Brain Sci 2023; 13:1309. [PMID: 37759910 PMCID: PMC10526451 DOI: 10.3390/brainsci13091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVES Cognitive impairment in cerebral small vessel disease (CSVD) is a common cause of vascular dementia and is often accompanied by mental disorders. The purpose of this study was to investigate the effect of continuous theta burst stimulation (cTBS) over the right dorsolateral prefrontal cortex (DLPFC) on the cognitive function and Hamilton depression (HAMD) scores in patients with CSVD. METHODS A total of 30 CSVD patients who met the inclusion criteria were randomly assigned to either the sham or cTBS group. The patients in both groups received routine cognitive function training. All the patients were under treatment for 14 sessions, with one session per day (each cTBS conditioning session consisted of three-pulse bursts at 50 Hz repeated at 5 Hz, 80% MT, and 600 pulses). Before and after the treatment, the patients in both groups were evaluated using the Montreal Cognitive Assessment (MoCA), Stroop Color-Word Test (SCWT), Trail Marking Test (TMT), Digital Span Test (DST), and HAMD test. The time to complete the SCWT and TMT were recorded. The scores of the MoCA, DST and HAMD test were recorded. RESULTS The HAMD scores in the cTBS group decreased significantly compared to the control (p < 0.05). There were no significant differences in the MoCA (including the MoCA subitems) or DST scores or in the SCWT or TMT completion times between the two groups (p > 0.05). For the HAMD scores and the MoCA subitem visuospatial/executive scores, the SCWT-B and SCWT-C completion times in the two groups both improved significantly before and after treatment (p < 0.05). For the MoCA scores, the DST-backward scores and the TMT-B completion times in the cTBS group improved significantly before and after treatment (p < 0.05). There was no significant difference in the SCWT-A, TMT-A completion times and MoCA subitems naming, attention, language, abstraction, delayed recall, and orientation scores either before or after treatment in the two groups or between the two groups (p > 0.05). CONCLUSIONS In this study, cTBS over the right DLPFC decreased the HAMD scores significantly in patients with CSVD but had no significant improvement or impairment effects on cognitive function. cTBS over the right DLPFC could be used to treat CSVD patients with depression symptoms.
Collapse
Affiliation(s)
- Pei Dai
- School of Rehabilitation, Capital Medical University, China Rehabilitation Research Center, Beijing 100068, China
| | - Zhao-Xia Wang
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Hui-Xian Yu
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Chang-Bin Liu
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Si-Hao Liu
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, China Rehabilitation Research Center, Beijing 100068, China
| |
Collapse
|
15
|
Zhao H, Zhang C, Tao R, Duan H, Xu S. Distinct inter-brain synchronization patterns underlying group decision-making under uncertainty with partners in different interpersonal relationships. Neuroimage 2023; 272:120043. [PMID: 37003448 DOI: 10.1016/j.neuroimage.2023.120043] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Humans may behave in different manners when making decisions with friends and strangers. Whether the interpersonal relationship and the characteristics of the individuals in the group affected the group decision-making under uncertainty in the real-time interaction remains unknown. Using the turn-based Balloon Analogue Risk Task (BART), the present study examined the group decision-making propensity under uncertainty with partners in different interpersonal relationships and interpersonal orientations. Corresponding inter-brain synchronization (IBS) patterns at the prefrontal cortex (PFC) were also uncovered with the fNIRS-based hyperscanning approach. Behavioral results identified that dyads in the friend group exhibited the uncertainty-averse propensity when comparing with the stranger group. The fNIRS results reported that feedback-related IBS at the left inferior frontal gyrus (l-IFG) and medial frontopolar cortex (mFPC) during different feedbacks was modulated by interpersonal relationships. The IBS at all channels in the PFC during the positive and negative feedbacks, respectively, predicted the decision-making propensity under uncertainty in the stranger and friend groups based on the support vector machine (SVM) algorithm. The moderating role of the social value orientation (SVO) was also verified in the mediation effect of the dyad closeness on the decision-making propensity under uncertainty via the IBS at the right lateral frontopolar cortex (r-FPC). These findings demonstrated disparate behavioral responses and inter-brain synchronization patterns underlying group decision-making under uncertainty with partners in different interpersonal relationships.
Collapse
Affiliation(s)
- Hanxuan Zhao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Can Zhang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Ruiwen Tao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Haijun Duan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, 199 South Chang' an Road, Xi'an 710062, China.
| | - Sihua Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China; School of Education, Huaibei Normal University, Huaibei, China; Anhui Engineering Research Center for Intelligent Computing and Application on Cognitive Behavior, Huaibei Normal University, Huaibei, China.
| |
Collapse
|
16
|
Computational mechanisms underpinning greater exploratory behaviour in excess weight relative to healthy weight adolescents. Appetite 2023; 183:106484. [PMID: 36754172 DOI: 10.1016/j.appet.2023.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Obesity in adolescence is associated with cognitive changes that lead to difficulties in shifting unhealthy habits in favour of alternative healthy behaviours, similar to addictive behaviours. An outstanding question is whether this shift in goal-directed behaviour is driven by over-exploitation or over-exploration of rewarding outcomes. Here, we addressed this question by comparing explore/exploit behaviour on the Iowa Gambling Task in 43 adolescents with excess weight against 38 adolescents with healthy weight. We computationally modelled both exploitation behaviour (e.g., reinforcement sensitivity and inverse decay parameters), and explorative behaviour (e.g., maximum directed exploration value). We found that overall, adolescents with excess weight displayed more behavioural exploration than their healthy-weight counterparts - specifically, demonstrating greater overall switching behaviour. Computational models revealed that this behaviour was driven by a higher maximum directed exploration value in the excess-weight group (U = 520.00, p = .005, BF10 = 5.11). Importantly, however, we found substantial evidence that groups did not differ in reinforcement sensitivity (U = 867.00, p = .641, BF10 = 0.30). Overall, our study demonstrates a preference for exploratory behaviour in adolescents with excess weight, independent of sensitivity to reward. This pattern could potentially underpin an intrinsic desire to explore energy-dense unhealthy foods - an as-yet untapped mechanism that could be targeted in future treatments of obesity in adolescents.
Collapse
|
17
|
Niu B, Li Y, Ding X, Shi C, Zhou B, Gong J. Neural correlates of bribe-taking decision dilemma: An fNIRS study. Brain Cogn 2023; 166:105951. [PMID: 36680856 DOI: 10.1016/j.bandc.2023.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Bribe-taking decision is a social dilemma for individuals: the pursuit of economic self-interest vs. compliance with social norms. Despite the well-known existence of the conflict in deciding whether to accept bribes, little is known about its neural responses. Using functional near-infrared imaging (fNIRS) technology and the bribe-taking decision game (economic gambling game as a control condition), the current study dissociated the neural correlates of the different motivations in the bribery dilemma, as well as the inhibitory effect of social norms on bribery and its underlying brain mechanisms in supra-cortical regions. Findings revealed that if individuals are more motivated by economic interest, rejecting money (vs. accepting money) accompanies higher activity in the dorsolateral prefrontal cortex (DLPFC) and frontopolar cortex (FPC), which reflects impulse inhibition and decision evaluation; whereas, if individuals are more consider social norms, their DLPFC is more active when they accept bribes (vs. reject bribes), which reflects their fear of punishment. Additionally, the key brain region where social norms inhibit bribery involves the left DLPFC. The current findings contribute to the literature on the neural manifestations of corrupt decisions and provide some insights into the anti-corruption movement.
Collapse
Affiliation(s)
- Bingyu Niu
- School of Psychology, Central China Normal University, No. 152 Luoyu Street, Hongshan District, Wuhan 430079, Hubei, China; Key Laboratory of Adolescent Cyber Psychology and Behavior (CCNU), Ministry of Education, Wuhan, China
| | - Ye Li
- School of Psychology, Central China Normal University, No. 152 Luoyu Street, Hongshan District, Wuhan 430079, Hubei, China; Key Laboratory of Adolescent Cyber Psychology and Behavior (CCNU), Ministry of Education, Wuhan, China.
| | - Xianfeng Ding
- School of Psychology, Central China Normal University, No. 152 Luoyu Street, Hongshan District, Wuhan 430079, Hubei, China; Key Laboratory of Adolescent Cyber Psychology and Behavior (CCNU), Ministry of Education, Wuhan, China.
| | - Congrong Shi
- School of Psychology, Central China Normal University, No. 152 Luoyu Street, Hongshan District, Wuhan 430079, Hubei, China; Key Laboratory of Adolescent Cyber Psychology and Behavior (CCNU), Ministry of Education, Wuhan, China
| | - Bingping Zhou
- School of Psychology, Central China Normal University, No. 152 Luoyu Street, Hongshan District, Wuhan 430079, Hubei, China; Key Laboratory of Adolescent Cyber Psychology and Behavior (CCNU), Ministry of Education, Wuhan, China
| | - Jian Gong
- School of Psychology, Central China Normal University, No. 152 Luoyu Street, Hongshan District, Wuhan 430079, Hubei, China; Key Laboratory of Adolescent Cyber Psychology and Behavior (CCNU), Ministry of Education, Wuhan, China
| |
Collapse
|
18
|
Mugruza-Vassallo CA, Granados-Domínguez JL, Flores-Benites V, Córdova-Berríos L. Different Markov chains modulate visual stimuli processing in a Go-Go experiment in 2D, 3D, and augmented reality. Front Hum Neurosci 2022; 16:955534. [PMID: 36569471 PMCID: PMC9769205 DOI: 10.3389/fnhum.2022.955534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
The introduction of Augmented Reality (AR) has attracted several developments, although the people's experience of AR has not been clearly studied or contrasted with the human experience in 2D and 3D environments. Here, the directional task was applied in 2D, 3D, and AR using simplified stimulus in video games to determine whether there is a difference in human answer reaction time prediction using context stimulus. Testing of the directional task adapted was also done. Research question: Are the main differences between 2D, 3D, and AR able to be predicted using Markov chains? Methods: A computer was fitted with a digital acquisition card in order to record, test and validate the reaction time (RT) of participants attached to the arranged RT for the theory of Markov chain probability. A Markov chain analysis was performed on the participants' data. Subsequently, the way certain factors influenced participants RT amongst the three tasks time on the accuracy of the participants was sought in the three tasks (environments) were statistically tested using ANOVA. Results: Markov chains of order 1 and 2 successfully reproduced the average reaction time by participants in 3D and AR tasks, having only 2D tasks with the variance predicted with the current state. Moreover, a clear explanation of delayed RT in every environment was done. Mood and coffee did not show significant differences in RTs on a simplified videogame. Gender differences were found in 3D, where endogenous directional goals are in 3D, but no gender differences appeared in AR where exogenous AR buttons can explain the larger RT that compensate for the gender difference. Our results suggest that unconscious preparation of selective choices is not restricted to current motor preparation. Instead, decisions in different environments and gender evolve from the dynamics of preceding cognitive activity can fit and improve neurocomputational models.
Collapse
Affiliation(s)
| | | | - Victor Flores-Benites
- Facultad de Ingeniería y Arquitectura, Universidad de Lima, Lima, Peru
- Universidad de Ingeniería y Tecnología (UTEC), Lima, Peru
| | | |
Collapse
|
19
|
Colautti L, Antonietti A, Iannello P. Executive Functions in Decision Making under Ambiguity and Risk in Healthy Adults: A Scoping Review Adopting the Hot and Cold Executive Functions Perspective. Brain Sci 2022; 12:1335. [PMID: 36291269 PMCID: PMC9599766 DOI: 10.3390/brainsci12101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Decision making (DM) has a pivotal role in supporting individual autonomy and well-being. It is considered a complex ability exploiting many cognitive functions, among which executive functions (EFs) are crucial. Few studies analyzed the role played by EFs in DM in healthy adults under ambiguity and risk, which are common conditions for most decisions in daily life. This scoping review aims to analyze the relationships between two individual tasks widely used to assess DM under these conditions (Iowa Gambling Task and Game of Dice Task) and EFs. According to the organizing principle that conceptualizes hot and cold EFs, DM under such conditions mainly implies hot EFs, but the relationship with cold EFs is still unclear. Using such an approach, a comprehensive framework is provided, highlighting main findings and identifying possible gaps in the literature. The results suggest different roles played by cold EFs in DM under ambiguity and risk, according to the characteristics of the tasks. The findings can offer guidance to further studies and to design interventions to support DM in healthy adults.
Collapse
Affiliation(s)
- Laura Colautti
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | | | | |
Collapse
|
20
|
Differentiation of Self in Family Members’ of SUD Loved Ones: An Analysis of Prefrontal Cortex Activation. CONTEMPORARY FAMILY THERAPY 2022. [DOI: 10.1007/s10591-022-09639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Petzke TM, Schomaker J. A bias toward the unknown: individual and environmental factors influencing exploratory behavior. Ann N Y Acad Sci 2022; 1512:61-75. [PMID: 35218049 PMCID: PMC9306615 DOI: 10.1111/nyas.14757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Abstract
With limited resources, exploring new opportunities is crucial for survival. Exploring novel options, however, comes at the cost of uncertainty. Therefore, there is a trade‐off between exploiting options with a known beneficial outcome and exploring novel options with a potentially higher gain. Computational models have suggested that novelty may promote exploratory behavior by inducing a so‐called novelty bonus through reward‐related processes. So far, few studies have provided behavioral evidence for such a novelty bonus. In this study, we aimed to investigate whether spatial novelty can stimulate exploratory behavior (Experiment 1), and whether age, novelty‐seeking, and reduced action radius or social interactions due to COVID‐19 restrictions influenced the exploration–exploitation trade‐off (Experiment 2). In both experiments, we employed a novel paradigm in which participants made binary decisions between food items, while on rare trials, a surprise option was presented. Results from Experiment 1 are in line with a novelty bonus, with spatial novelty promoting exploratory behavior. In Experiment 2, we found that exploratory behavior declined with age, high novelty seekers made more exploratory choices than low novelty seekers, and participants with a smaller action radius made fewer exploratory choices. These findings are consistent with previous findings in animals and predictions from computational models.
Collapse
Affiliation(s)
- Tara M Petzke
- Department of Health, Medical & Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Judith Schomaker
- Department of Health, Medical & Neuropsychology, Leiden University, Leiden, the Netherlands.,Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|