1
|
Orso R, Viola TW, Heberle BA, Creutzberg KC, Lumertz FS, Grassi-Oliveira R. Sex-Specific Effects of Early-Life Stress Exposure on Memory Performance and the Medial Prefrontal Cortex Transcriptomic Pattern in Adolescent Mice. Mol Neurobiol 2025:10.1007/s12035-025-04803-x. [PMID: 40038196 DOI: 10.1007/s12035-025-04803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Early life stress (ELS) is considered a risk factor for the development of cognitive and executive dysfunctions throughout development. The medial portion of the prefrontal cortex (mPFC) is directly implicated in short-term working memory. Furthermore, due to its late development compared to other brain regions, the mPFC is considered a vulnerable brain region to ELS exposure. Here, we investigated the effects of the ELS on PFC-dependent memory and mPFC transcriptomic profiles. From postnatal day (PND) 2 to PND 15, BALB/cJ mice were exposed to maternal separation (MS) for 3 h per day combined with limited bedding (ELS group) or left undisturbed (CT group). During the period of stress, maternal behavior was recorded pre-MS and post-MS. From PND 45 to PND 47, males and females were tested for working memory performance in the Y-maze and short-term recognition memory in the object in place task (OIP). Later, we assessed mRNA level alterations in the mPFC by RNA-seq. Here, we showed that ELS increases maternal care post-MS and the number of nest exits pre-MS and post-MS. Furthermore, males and females exposed to ELS exhibited impairments in the OIP, while only females performed worse in the Y-maze. With respect to the mPFC transcriptome, we identified 13 DEGs in the females, which were significantly influenced by chaperone-mediated protein folding processes, while 4 genes were altered in males. In conclusion, we showed that, compared with male sex, ELS alters maternal behavior and leads to more extensive impairments in memory function and transcriptomic alterations in females.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Thiago Wendt Viola
- School of Medicine, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, Brazil
| | | | | | | | - Rodrigo Grassi-Oliveira
- School of Medicine, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, Brazil.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, A701-129, 8200, Aarhus, Denmark.
| |
Collapse
|
2
|
Hu ZY, Wei RM, Fei-Hu, Yu K, Fang SK, Li XY, Zhang YM, Chen GH. Neonatal maternal separation impairs cognitive function and synaptic plasticity in adult male CD-1 mice. IBRO Neurosci Rep 2024; 17:431-440. [PMID: 39629017 PMCID: PMC11612454 DOI: 10.1016/j.ibneur.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Maternal separation (MS) increases the risk of occurrence of anxiety, depression, and learning and memory impairment in offspring. However, the underlying molecular biological mechanisms remain unclear. In the current study, offspring CD-1 mice were separated from their mothers from postnatal day 4 to postnatal day 21. At 3 months of age, the male offspring were selected for the evaluation of anxiety- and depression-like behaviors and learning and memory function. Western blotting and RT-PCR were used to examine the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin. Long-term potentiation (LTP) and long-term depression (LTD) were recorded at Schaffer collateral/CA1 synapses. Furthermore, basal synaptic transmission was evaluated via the recording of the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). The results showed that adult offspring CD-1 mice displayed anxiety- and depressive-like behaviors as well as impaired spatial learning and memory abilities. Electrophysiological analysis indicated that MS impaired LTP, enhanced LTD, and reduced the frequency of mEPSCs in pyramidal neurons in the CA1 region. Our findings suggested that MS can lead to anxiety, depression, and cognitive deficits, and these effects are associated with alterations in the levels of synaptic plasticity-associated proteins, consequently, also synaptic plasticity.
Collapse
Affiliation(s)
- Zhen-Yu Hu
- The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Fei-Hu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ke Yu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Shi-Kun Fang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| |
Collapse
|
3
|
Tang FR, Tanaka IB, Wang H, Lau S, Tanaka S, Tan A, Takai D, Abe A. Effects of Continuous Prenatal Low Dose Rate Irradiation on Neurobehavior, Hippocampal Cellularity, Messenger RNA and MicroRNA Expression on B6C3F1 Mice. Cells 2024; 13:1423. [PMID: 39272995 PMCID: PMC11394438 DOI: 10.3390/cells13171423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Epidemiological, experimental, and ecological data have indicated the controversial effect of in utero chronic low dose rate (<6 mGy/h) with accumulative low (≤100 mGy) or high (>100 mGy) dose radiation exposure. Our main goal of this study was to examine if different low dose rates of chronic pre- and/or post-natal radiation exposure with accumulative high doses could induce hippocampal cellular, mRNA, and miRNA changes leading to neuropsychiatric disorders. The comprehensive mouse phenotypic traits, organ weight, pathological, and blood mRNA and miRNA changes were also studied. Using different approaches including SmithKline, Harwell, Imperial College, Royal Hospital, Phenotype Assessment (SHIRPA), neurobehavioral tests, pathological examination, immunohistochemistry, mRNA and miRNA sequencing, and real-time quantitative polymerase chain reaction (qRT-PCR) validation, we found that in prenatally irradiated (100 mGy/d for 18 days with an accumulative dose of 1.8 Gy) 1-year-old mice, no cellular changes, including immature neurons in the subgranular zone, mature neurons and glial cells in the hilus of the dentate gyrus and development of cognitive impairment, neuropsychiatric disorders, occurred. However, a significant reduction in body weight and mass index (BMI) was indicated by the SHIRPA test. A reduced exploratory behavior was shown by an open field test. Organ weights showed significant reductions in the testes, kidneys, heart, liver and epididymides with no abnormal pathology. mRNA and miRNA sequencing and qRT-PCR validation revealed the upregulation of Rubcnl and Abhd14b, and downregulation of Hspa1b, P4ha1, and Banp genes in both the hippocampus and blood of mice prenatally irradiated with 100 mGy/d. Meanwhile, downregulation of miR-448-3p and miR1298-5p in the hippocampus, miR-320-3p, miR-423-5p, miR-486b-5p, miR-486b-3p, miR-423-3p, miR-652-3p, miR-324-3p, miR-181b-5p, miR-let-7b, and miR-6904-5p in the blood was induced. The target scan revealed that Rubcnl is one of the miR-181b-5p targets in the blood. We, therefore, concluded that prenatal chronic irradiation with a low dose rate of 100 mGy/d and accumulative dose of 1.8 Gy or below might not induce significant adverse health effects on the offspring. Further study of different low dose rate radiation exposures with accumulative high doses may provide threshold doses for authorities or regulators to set new radiation safety guidelines to replace those extrapolated from acute high dose/dose rate irradiation to reduce unnecessary emergency evacuation or spending once a nuclear accident or leakage occurs.
Collapse
Affiliation(s)
- Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 118415, Singapore; (H.W.); (S.L.); (A.T.)
| | - Ignacia Braga Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan; (I.B.T.III); (S.T.)
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 118415, Singapore; (H.W.); (S.L.); (A.T.)
| | - Salihah Lau
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 118415, Singapore; (H.W.); (S.L.); (A.T.)
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan; (I.B.T.III); (S.T.)
| | - Amanda Tan
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 118415, Singapore; (H.W.); (S.L.); (A.T.)
| | - Daisaku Takai
- Tritium Research Center, Institute for Environmental Sciences, 2-121 Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan;
| | - Akiko Abe
- JAC Co., Ltd., 1-2-7 Higashiyama, Meguro, Tokyo 153-0043, Japan;
| |
Collapse
|
4
|
Modulation of the endoplasmic reticulum stress and unfolded protein response mitigates the behavioral effects of early-life stress. Pharmacol Rep 2023; 75:293-319. [PMID: 36843201 PMCID: PMC10060333 DOI: 10.1007/s43440-023-00456-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Early-life stress (ELS) affects brain development and increases the risk of mental disorders associated with the dysfunction of the medial prefrontal cortex (mPFC). The mechanisms of ELS action are not well understood. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are cellular processes involved in brain maturation through the regulation of pro-survival or proapoptotic processes. We hypothesized that ER stress and the UPR in the mPFC are involved in the neurobiology of ELS. METHODS We performed a maternal separation (MS) procedure from postnatal days 1 to 14 in rats. Before each MS, pups were injected with an inhibitor of ER stress, salubrinal or a vehicle. The mRNA and protein expression of UPR and apoptotic markers were evaluated in the mPFC using RT-qPCR and Western blot methods, respectively. We also estimated the numbers of neurons and glial cells using stereological methods. Additionally, we assessed behavioral phenotypes related to fear, anhedonia and response to psychostimulants. RESULTS MS slightly enhanced the activation of the UPR in juveniles and modulated the expression of apoptotic markers in juveniles and preadolescents but not in adults. Additionally, MS did not affect the numbers of neurons and glial cells at any age. Both salubrinal and vehicle blunted the expression of UPR markers in juvenile and preadolescent MS rats, often in a treatment-specific manner. Moreover, salubrinal and vehicle generally alleviated the behavioral effects of MS in preadolescent and adult rats. CONCLUSIONS Modulation of ER stress and UPR processes may potentially underlie susceptibility or resilience to ELS.
Collapse
|
5
|
Solarz A, Majcher-Maślanka I, Kryst J, Chocyk A. Early-life stress affects peripheral, blood-brain barrier, and brain responses to immune challenge in juvenile and adult rats. Brain Behav Immun 2023; 108:1-15. [PMID: 36400335 DOI: 10.1016/j.bbi.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/21/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Early-life stress (ELS) may affect brain maturation and neuroimmune interactions and, consequently, the inflammatory response to subsequent environmental factors later in life. Recently, the coexistence of blood-brain barrier (BBB) dysfunction and inflammation has been implicated in the etiology and progression of mental and/or neurodegenerative diseases. There are sex differences in the prevalence and outcomes of these disorders. The number of studies reporting the effects of ELS and sex on BBB functioning and neuroinflammatory processes in response to immune challenge is very limited, and the data are inconsistent. In the present study, we examined whether ELS, based on the maternal separation (MS) paradigm in rats, can condition male and female subjects to subsequent lipopolysaccharide (LPS)-induced immune challenge in juvenility or adulthood. Twenty-four hours after acute LPS injection, serum proinflammatory cytokines were measured, and BBB permeability in the medial prefrontal cortex (mPFC) and hippocampus (HP) was evaluated. Additionally, the mRNA expression of neuroinflammatory markers and BBB-related genes was also studied. We found that a single LPS challenge induced a proinflammatory response both in the periphery and in the mPFC and HP and increased BBB permeability in a sex-dependent fashion. Moreover, MS enhanced the neuroinflammatory response to LPS challenge in males (especially juveniles), whereas MS females showed no difference or a blunted central response to LPS compared with control females, mainly during adulthood. These results suggest that ELS may precondition individuals to subsequent environmental factors later in life in a sex-specific manner and potentially determine their susceptibility or resilience to mental and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Solarz
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland
| | - Joanna Kryst
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland; Department of Chemistry and Biochemistry, Institute for Basics Sciences, Faculty of Physiotherapy, University of Physical Education, Jana Pawła II Av. 78, 31-571 Kraków, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland.
| |
Collapse
|
6
|
Qiu X, Wei Y, Weisskopf M, Spiro A, Shi L, Castro E, Coull B, Koutrakis P, Schwartz J. Air pollution, climate conditions and risk of hospital admissions for psychotic disorders in U.S. residents. ENVIRONMENTAL RESEARCH 2023; 216:114636. [PMID: 36283440 PMCID: PMC9712244 DOI: 10.1016/j.envres.2022.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The physical environmental risk factors for psychotic disorders are poorly understood. This study aimed to examine the associations between exposure to ambient air pollution, climate measures and risk of hospitalization for psychotic disorders and uncover potential disparities by demographic, community factors. METHODS Using Health Cost and Utilization Project (HCUP) State Inpatient Databases (SIDs), we applied zero-inflated negative binomial regression to obtain relative risks of hospitalization due to psychotic disorders associated with increases in residential exposure to ambient air pollution (fine particulate matter, PM2.5; nitrogen dioxide, NO2), temperature and cumulative precipitation. The analysis covered all-age residents in eight U.S. states over the period of 2002-2016. We additionally investigated modification by age, sex and area-level poverty, percent of blacks and Hispanics. RESULTS Over the study period and among the covered areas, we identified 1,211,100 admissions due to psychotic disorders. For each interquartile (IQR) increase in exposure to PM2.5 and NO2, we observed a relative risk (RR) of 1.11 (95% confidence interval (CI) = 1.09, 1.13) and 1.27 (95% CI = 1.24, 1.31), respectively. For each 1 °C increase of temperature, the RR was 1.03 (95% CI = 1.03, 1.04). Males were more affected by NO2. Older age residents (≥30 yrs) were more sensitive to PM2.5 and temperature. Population living in economically disadvantaged areas were more affected by air pollution. CONCLUSIONS The study suggests that living in areas with higher levels of air pollutants and ambient temperature could contribute to additional risk of inpatient care for individuals with psychotic disorders.
Collapse
Affiliation(s)
- Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Avron Spiro
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA; Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Alele FO, Otto JR, Malau-Aduli BS, Malau-Aduli AEO. Next Generation Sequencing of Genotype Variants and Genetic Association between Heat Shock Proteins HSPA1B Single Nucleotide Polymorphism at the g.31829044 Locus and Heat Tolerance: A Pilot Quasi-Experimental Study. Biomolecules 2022; 12:biom12101465. [PMID: 36291674 PMCID: PMC9599234 DOI: 10.3390/biom12101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/18/2022] Open
Abstract
Heat tolerance and exertional heat stroke (EHS) are rare health conditions that have been described and characterised but have never been genetically solved. Knowledge of the role of single nucleotide polymorphisms (SNPs) in heat shock proteins (HSPs) genes and their associations with heat tolerance and EHS is limited. This pilot study aimed to identify SNP in HSPA1B, HSP90AA2 and DNAJA1 genes and their associations with heat tolerance and EHS history in a quasi-experimental design. Participants comprised Australian Defence Force members (ADF) who had a history of EHS and the general population. Genomic DNA samples were extracted from the venous blood samples of 48 participants, sequenced and analysed for SNP. Forty-four per cent (44%) of the participants were heat intolerant, and 29% had a history of EHS. Among participants with a history of EHS, there was an association between heat tolerance and HSPA1B SNP at the g.31829044 locus. However, there were no associations between HSPA1B and HSP90AA2 SNP and heat tolerance. All participants had the same distribution for the DNAJA1 SNP. In conclusion, the findings indicate an association between the HSPA1B genetic variant at the g.31829044 locus and heat tolerance among ADF participants with a history of EHS. Further research with a larger number of military participants will shed more light on the associations between HSP genes and heat tolerance.
Collapse
Affiliation(s)
- Faith O. Alele
- College of Healthcare Sciences, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - John R. Otto
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Bunmi S. Malau-Aduli
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Aduli E. O. Malau-Aduli
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence: ; Tel.: +61-7-4781-5339
| |
Collapse
|
8
|
Hasan M, Zafar A, Jabbar M, Tariq T, Manzoor Y, Ahmed MM, Hassan SG, Shu X, Mahmood N. Trident Nano-Indexing the Proteomics Table: Next-Version Clustering of Iron Carbide NPs and Protein Corona. Molecules 2022; 27:molecules27185754. [PMID: 36144499 PMCID: PMC9500999 DOI: 10.3390/molecules27185754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Protein corona composition and precise physiological understanding of differentially expressed proteins are key for identifying disease biomarkers. In this report, we presented a distinctive quantitative proteomics table of molecular cell signaling differentially expressed proteins of corona that formed on iron carbide nanoparticles (NPs). High-performance liquid chromatography/electrospray ionization coupled with ion trap mass analyzer (HPLC/ESI-Orbitrap) and MASCOT helped quantify 142 differentially expressed proteins. Among these proteins, 104 proteins showed upregulated behavior and 38 proteins were downregulated with respect to the control, whereas 48, 32 and 24 proteins were upregulated and 8, 9 and 21 were downregulated CW (control with unmodified NPs), CY (control with modified NPs) and WY (modified and unmodified NPs), respectively. These proteins were further categorized on behalf of their regularity, locality, molecular functionality and molecular masses using gene ontology (GO). A STRING analysis was used to target the specific range of proteins involved in metabolic pathways and molecular processing in different kinds of binding functionalities, such as RNA, DNA, ATP, ADP, GTP, GDP and calcium ion bindings. Thus, this study will help develop efficient protocols for the identification of latent biomarkers in early disease detection using protein fingerprints.
Collapse
Affiliation(s)
- Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Ayesha Zafar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Maryum Jabbar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yasmeen Manzoor
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shahbaz Gul Hassan
- College of Information Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Nasir Mahmood
- School of Science, RMIT University, Victoria 3000, Australia
- Correspondence: (M.H.); (X.S.); (N.M.)
| |
Collapse
|
9
|
Ma H, Cheng N, Zhang C. Schizophrenia and Alarmins. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060694. [PMID: 35743957 PMCID: PMC9230958 DOI: 10.3390/medicina58060694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Schizophrenia, consisting of a group of severe psychiatric disorders with a complex etiology, is a leading cause of disability globally. Due to the lack of objective indicators, accurate diagnosis and selection of effective treatments for schizophrenia remain challenging. The association between schizophrenia and alarmins levels has been proposed for many years, but without solid evidence. Alarmins are prestored molecules that do not require processing and can be released upon cell death or damage, making them an ideal candidate for an early initiator of inflammation. Immunological biomarkers seem to be related to disease progression and treatment effectiveness. Several studies suggest strong associations among the high-mobility group box 1 protein (HMGB1), interleukin-1α, interleukin-33, S100B, heat-shock proteins, and uric acid with schizophrenic disorders. The purpose of this review is to discuss the evidence of central and peripheral immune findings in schizophrenia, their potential causes, and the effects of immunomodulatory therapies on symptoms and outline potential applications of these markers in managing the illness. Although there are currently no effective markers for diagnosing or predicting treatment effects in patients with schizophrenia, we believe that screening immune-inflammatory biomarkers that are closely related to the pathological mechanism of schizophrenia can be used for early clinical identification, diagnosis, and treatment of schizophrenia, which may lead to more effective treatment options for people with schizophrenia.
Collapse
Affiliation(s)
- Huan Ma
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
| | - Ning Cheng
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
| | - Caiyi Zhang
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou 221000, China
- Department of Medical Psychology, Second Clinical College, Xuzhou Medical University, Xuzhou 221000, China
- Correspondence: ; Tel.: +86-137-7588-9105
| |
Collapse
|
10
|
Qiu X, Danesh-Yazdi M, Wei Y, Di Q, Just A, Zanobetti A, Weisskopf M, Dominici F, Schwartz J. Associations of short-term exposure to air pollution and increased ambient temperature with psychiatric hospital admissions in older adults in the USA: a case-crossover study. Lancet Planet Health 2022; 6:e331-e341. [PMID: 35397221 PMCID: PMC9044858 DOI: 10.1016/s2542-5196(22)00017-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Little is known about the associations between ambient environmental exposures and the risk of acute episodes of psychiatric disorders. We aimed to estimate the link between short-term exposure to atmospheric pollutants, temperature, and acute psychiatric hospital admissions in adults aged 65 years and older in the USA. METHODS For this study, we included all people (aged ≥65 years) enrolled in the Medicare programme in the USA who had an emergency or urgent hospital admission for a psychiatric disorder recorded between Jan 31, 2000, and Dec 31, 2016. We applied a case-crossover design to study the associations between short-term exposure to air pollution (fine particulate matter [PM2·5], ozone, and nitrogen dioxide [NO2]), ambient temperature, and the risk of acute hospital admissions for depression, schizophrenia, and bipolar disorder in this population. The percentage change in the risk of hospital admission and annual absolute risk differences were estimated. FINDINGS For each 5°C increase in short-term exposure to cold season temperature, the relative risk of acute hospital admission increased by 3·66% (95% CI 3·06-4·26) for depression, by 3·03% (2·04-4·02) for schizophrenia, and by 3·52% (2·38-4·68) for bipolar disorder in the US Medicare population. Increased short-term exposure to PM2·5 and NO2 was also associated with a significant increase in the risk of acute hospital admissions for psychiatric disorders. Each 5 μg/m3 increase in PM2·5 was associated with an increase in hospital admission rates of 0·62% (95% CI 0·23-1·02) for depression, 0·77% (0·11-1·44) for schizophrenia, and 1·19% (0·49-1·90) for bipolar disorder; each 5 parts per billion (ppb) increase in NO2, meanwhile, was linked to an increase in hospital admission rates of 0·35% (95% CI 0·03-0·66) for depression and 0·64% (0·20-1·08) for schizophrenia. No such associations were found with warm season temperature. INTERPRETATION In the US Medicare population, short-term exposure to elevated concentrations of PM2·5 and NO2 and cold season ambient temperature were significantly associated with an increased risk of hospital admissions for psychiatric disorders. Considering the increasing burden of psychiatric disorders in the US population, these findings suggest that intervening on air pollution and ambient temperature levels through stricter environmental regulations or climate mitigation could help ease the psychiatric health-care burden. FUNDING US National Institute of Environmental Health Sciences, US Environmental Protection Agency, and US National Institute on Aging.
Collapse
Affiliation(s)
- Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Mahdieh Danesh-Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Allan Just
- Icahn School of Medicine at Mount Sinai, New York City, New York, NY, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
11
|
Li G, Li D, Rao H, Liu X. Potential neurotoxicity, immunotoxicity, and carcinogenicity induced by metribuzin and tebuconazole exposure in earthworms (Eisenia fetida) revealed by transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150760. [PMID: 34619195 DOI: 10.1016/j.scitotenv.2021.150760] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Metribuzin and tebuconazole have been widely used in agriculture for several decades. Apart from endocrine disruption, little is known about their toxicological effects on organisms without thyroid organs, at the transcriptional level. To explore this toxicity, model earthworm species Eisenia fetida, hatched from the same cocoon and cultured under identical environmental conditions, were independently exposed to the two chemicals at non-lethal concentrations in OECD artificial soil for 48 h after exposure. RNA-seq technology was used to analyze and compare the gene expression profiles of earthworms exposed to metribuzin and tebuconazole. The functions of differentially expressed genes and their standard response patterns of upregulated and downregulated expression for both pesticides were verified. The findings demonstrated that metribuzin and tebuconazole are both potentially toxic to earthworms. Toxicological effects mainly involved the nervous system, immune system, and tumors, at the transcriptional level, as well as the induction of cytochrome P450-dependent detoxification and oxidative stress. In addition, the mitogen-activated protein kinase kinase kinase gene was identified as a biomarker, and the mitogen-activated protein kinase signaling pathway was verified to be a part of the adverse outcome pathway of metribuzin and tebuconazole and their structural analogs.
Collapse
Affiliation(s)
- Gang Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Dongxue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Huixian Rao
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Xinjǚ Liu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China.
| |
Collapse
|
12
|
Bilecki W, Wawrzczak-Bargieła A, Majcher-Maślanka I, Chmelova M, Maćkowiak M. Inhibition of BET Proteins during Adolescence Affects Prefrontal Cortical Development: Relevance to Schizophrenia. Int J Mol Sci 2021; 22:ijms22168710. [PMID: 34445411 PMCID: PMC8395847 DOI: 10.3390/ijms22168710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background: The present study investigated the role of proteins from the bromodomain and extra-terminal (BET) family in schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia induced by prenatal methylazoxymethanol (MAM) administration (MAM-E17). Methods: An inhibitor of BET proteins, JQ1, was administered during adolescence on postnatal days (P) 23–P29, and behavioural responses (sensorimotor gating, recognition memory) and prefrontal cortical (mPFC) function (long-term potentiation (LTP), molecular and proteomic analyses) studies were performed in adult males and females. Results: Deficits in sensorimotor gating and recognition memory were observed only in MAM-treated males. However, adolescent JQ1 treatment affected animals of both sexes in the control but not MAM-treated groups and reduced behavioural responses in both sexes. An electrophysiological study showed LTP impairments only in male MAM-treated animals, and JQ1 did not affect LTP in the mPFC. In contrast, MAM did not affect activity-dependent gene expression, but JQ1 altered gene expression in both sexes. A proteomic study revealed alterations in MAM-treated groups mainly in males, while JQ1 affected both sexes. Conclusions: MAM-induced schizophrenia-like abnormalities were observed only in males, while adolescent JQ1 treatment affected memory recognition and altered the molecular and proteomic landscape in the mPFC of both sexes. Thus, transient adolescent inhibition of the BET family might prompt permanent alterations in the mPFC.
Collapse
|
13
|
Solarz A, Majcher-Maślanka I, Chocyk A. Effects of early-life stress and sex on blood-brain barrier permeability and integrity in juvenile and adult rats. Dev Neurobiol 2021; 81:861-876. [PMID: 34320279 DOI: 10.1002/dneu.22846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Early-life stress (ELS) is considered a relevant etiological factor for neurodegenerative and mental disorders. In the present study, we hypothesized that ELS may persistently and sex dependently influence blood-brain barrier (BBB) integrity and function during critical periods of brain development and consequently determine susceptibility to and sex-related prevalence of chronic diseases in adult life. We used the maternal separation (MS) procedure in rats to model ELS and evaluated BBB permeability and gene expression of selected tight junction (TJ) proteins, glucose transporter type 1 (Slc2a1) and aquaporin 4 (Aqp4) in the medial prefrontal cortex (mPFC), dorsal striatum (dSTR) and hippocampus of juvenile and adult rats. Serum concentrations of a peripheral marker of BBB function (S100β) and proinflammatory cytokines were also assessed. We observed developmental sealing of the BBB and sex differences in the permeability of the BBB and the mRNA expression of TJ proteins and Slc2a1. Adult females showed lower BBB permeability and higher levels of Cldn3, Cldn5, Ocln, and Slc2a1 in the mPFC and dSTR than males. MS temporarily increased BBB permeability in the dSTR of juvenile males and affected mRNA expression of the majority of studied proteins related to BBB function in age-, region- and sex-dependent manners. Additionally, MS sex dependently decreased serum S100β levels and did not affect proinflammatory cytokine concentrations. In general, our study did not reveal a clear or strong negative effect of MS on BBB integrity. However, the results suggest that ELS may induce adaptive/maladaptive changes or compensatory mechanisms within the BBB of unknown yet consequences.
Collapse
Affiliation(s)
- Anna Solarz
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|