1
|
Dernoncourt F, Avrillon S, Logtens T, Cattagni T, Farina D, Hug F. Flexible control of motor units: is the multidimensionality of motor unit manifolds a sufficient condition? J Physiol 2025; 603:2349-2368. [PMID: 39964831 PMCID: PMC12013786 DOI: 10.1113/jp287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Understanding flexibility in the neural control of movement requires identifying the distribution of common inputs to the motor units. In this study, we identified large samples of motor units from two lower limb muscles: the vastus lateralis (VL; up to 60 motor units per participant) and the gastrocnemius medialis (GM; up to 67 motor units per participant). First, we applied a linear dimensionality reduction method to assess the dimensionality of the manifolds underlying the motor unit activity. We subsequently investigated the flexibility in motor unit control under two conditions: sinusoidal contractions with torque feedback, and online control with visual feedback on motor unit firing rates. Overall, we found that the activity of GM motor units was effectively captured by a single latent factor defining a unidimensional manifold, whereas the VL motor units were better represented by three latent factors defining a multidimensional manifold. Despite this difference in dimensionality, the recruitment of motor units in the two muscles exhibited similarly low levels of flexibility. Using a spiking network model, we tested the hypothesis that dimensionality derived from factorization does not solely represent descending cortical commands but is also influenced by spinal circuitry. We demonstrated that a heterogeneous distribution of inputs to motor units, or specific configurations of recurrent inhibitory circuits, could produce a multidimensional manifold. This study clarifies an important debated issue, demonstrating that while motor unit firings of a non-compartmentalized muscle can lie in a multidimensional manifold, the CNS may still have limited capacity for flexible control of these units. KEY POINTS: To generate movement, the CNS distributes both excitatory and inhibitory inputs to the motor units. The level of flexibility in the neural control of these motor units remains a topic of debate with significant implications for identifying the smallest unit of movement control. By combining experimental data and in silico models, we demonstrated that the activity of a large sample of motor units from a single muscle can be represented by a multidimensional linear manifold; however, these units show very limited flexibility in their recruitment. The dimensionality of the linear manifold may not directly reflect the dimensionality of descending inputs but could instead relate to the organization of local spinal circuits.
Collapse
Affiliation(s)
| | - Simon Avrillon
- Université Côte d'Azur, LAMHESSNiceFrance
- Department of Bioengineering, Faculty of EngineeringImperial College LondonLondonUK
| | | | - Thomas Cattagni
- Nantes Université, Laboratory ‘MovementInteractions, Performance’ (UR 4334)NantesFrance
| | - Dario Farina
- Department of Bioengineering, Faculty of EngineeringImperial College LondonLondonUK
| | - François Hug
- Université Côte d'Azur, LAMHESSNiceFrance
- The University of QueenslandSchool of Biomedical SciencesBrisbaneQueenslandAustralia
| |
Collapse
|
2
|
Albaladejo-Belmonte M, Houston M, Dias N, Spitznagle T, Lai H, Zhang Y, Garcia-Casado J. Does Muscle Pain Induce Alterations in the Pelvic Floor Motor Unit Activity Properties in Interstitial Cystitis/Bladder Pain Syndrome? A High-Density sEMG-Based Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:7417. [PMID: 39685954 DOI: 10.3390/s24237417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Several studies have shown interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic condition that poses challenges in both diagnosis and treatment, is associated with painful pelvic floor muscles (PFM) and altered neural drive to these muscles. However, its pathophysiology could also involve other alterations in the electrical activity of PFM motor units (MUs). Studying these alterations could provide novel insights into IC/BPS and help its clinical management. This study aimed to characterize PFM activity at the MU level in women with IC/BPS and pelvic floor myalgia using high-density surface electromyography (HD-sEMG). Signals were recorded from 15 patients and 15 healthy controls and decomposed into MU action potential (MUAP) spike trains. MUAP amplitude, firing rate, and magnitude-squared coherence between spike trains were compared across groups. Results showed that MUAPs had significantly lower amplitudes during contractions on the patients' left PFM, and delta-band coherence was significantly higher at rest on their right PFM compared to controls. These findings suggest altered PFM tissue and neuromuscular control in women with IC/BPS and pelvic floor myalgia. Our results demonstrate that HD-sEMG can provide novel insights into IC/BPS-related PFM dysfunction and biomarkers that help identify subgroups of IC/BPS patients, which may aid their diagnosis and treatment.
Collapse
Affiliation(s)
- Monica Albaladejo-Belmonte
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Nicholas Dias
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Theresa Spitznagle
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Henry Lai
- Division of Urologic Surgery, Departments of Surgery and Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- Desai Sethi Urology Institute, University of Miami, 1120 NW 14th Street, Miami, FL 33136, USA
- Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace #48, Miami, FL 33136, USA
| | - Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
3
|
Sartori F, Fagnani PLF, Monne-Guasch L, La Cagnina G, Picañol J, Puig-Diví A. Ultrasound-guided gluteal nerves electrical stimulation to enhance strength and power in individuals with chronic knee pain: a randomized controlled pilot trial. Front Med (Lausanne) 2024; 11:1410495. [PMID: 39021827 PMCID: PMC11251890 DOI: 10.3389/fmed.2024.1410495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Various pathophysiological contexts can be accompanied by weakness, arthrogenic muscle inhibition, and even disability. In this scenario, peripheral nerve stimulation has been studied not only for pain management but also for the improvement of neuromuscular parameters. For this purpose, the use of Transcutaneous Electrical Nerve Stimulation (TENS) has typically been investigated, but recently, the use of ultrasound-guided percutaneous peripheral nerve stimulation (pPNS) has gained popularity. In this regard, electrical stimulation has a predisposition to activate Type II muscle fibers and has been shown to be capable of generating short-term potentiation by increasing calcium sensitivity. However, the evidence of pPNS applied in humans investigating such variables is rather limited. Objectives This pilot study aimed to assess the feasibility of the methodology and explore the potential of pPNS in enhancing hip extension performance in individuals suffering from knee pain, comparing it with TENS. Methods Twelve participants were divided into pPNS and TENS groups, undergoing pre- and post-intervention assessments of peak concentric power (W), strength (N), execution speed (m/s), and one-repetition maximum (1RM) (kg) estimation. For pPNS, two needles were positioned adjacent to the superior and inferior gluteal nerves under ultrasound guidance. For TENS, electrodes were positioned between the posterosuperior iliac spine and the ischial tuberosity, and halfway between the posterosuperior iliac spine and the greater trochanter. The interventions consisted of 10 stimulations of 10 s at a frequency of 10 Hz with a pulse width of 240 μs, with rest intervals of 10 s between stimulations. Results Peripheral nerve stimulation significantly improved concentric power at 30% (p = 0.03) and 50% (p = 0.03) of 1RM, surpassing TENS, which showed minimal changes. No significant strength differences were observed post-intervention in either group. Conclusion This work presents evidence where pPNS applied to the gluteal nerves results in an enhanced performance of hip extension at submaximal loads. However, this improvement does not seem to be reflected in short-term changes in the estimation of the 1RM by the force-velocity profile.
Collapse
Affiliation(s)
- Francesco Sartori
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | | | - Laia Monne-Guasch
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | | | - Javier Picañol
- Department of Health Sciences, Tecnocampus, Pompeu Fabra University, Mataró, Spain
| | - Albert Puig-Diví
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| |
Collapse
|
4
|
Ogalo E, Linde LD, Ro H, Ortiz O, Kramer JLK, Berger MJ. Evaluating peripheral neuromuscular function with brief movement-evoked pain. J Neurophysiol 2024; 131:789-796. [PMID: 38353653 PMCID: PMC11383610 DOI: 10.1152/jn.00472.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 04/24/2024] Open
Abstract
Movement-evoked pain is an understudied manifestation of musculoskeletal conditions that contributes to disability, yet little is known about how the neuromuscular system responds to movement-evoked pain. The present study examined whether movement-evoked pain impacts force production, electromyographic (EMG) muscle activity, and the rate of force development (RFD) during submaximal muscle contractions. Fifteen healthy adults (9 males; age = 30.3 ± 10.2 yr, range = 22-59 yr) performed submaximal isometric first finger abduction contractions without pain (baseline) and with movement-evoked pain induced by laser stimulation to the dorsum of the hand. Normalized force (% maximal voluntary contraction) and RFD decreased by 11% (P < 0.001) and 15% (P = 0.003), respectively, with movement-evoked pain, without any change in normalized peak EMG (P = 0.77). Early contractile RFD, force impulse, and corresponding EMG amplitude computed within time segments of 50, 100, 150, and 200 ms relative to the onset of movement were also unaffected by movement-evoked pain (P > 0.05). Our results demonstrate that movement-evoked pain impairs peak characteristics and not early measures of submaximal force production and RFD, without affecting EMG activity (peak and early). Possible explanations for the stability in EMG with reduced force include antagonist coactivation and a reorganization of motoneuronal activation strategy, which is discussed here.NEW & NOTEWORTHY We provide neurophysiological evidence to indicate that peak force and rate of force development are reduced by movement-evoked pain despite a lack of change in EMG and early rapid force development in the first dorsal interosseous muscle. Additional evidence suggests that these findings may coexist with a reorganization in motoneuronal activation strategy.
Collapse
Affiliation(s)
- Emmanuel Ogalo
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lukas D Linde
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Hannah Ro
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Oscar Ortiz
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael J Berger
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
6
|
Shraim MA, Massé-Alarie H, Salomoni SE, Hodges PW. The effect of skilled motor training on corticomotor control of back muscles in different presentations of low back pain. J Electromyogr Kinesiol 2023; 71:102782. [PMID: 37290203 DOI: 10.1016/j.jelekin.2023.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has revealed differences in the motor cortex (M1) between people with and without low back pain (LBP). There is potential to reverse these changes using motor skill training, but it remains unclear whether changes can be induced in people with LBP or whether this differs between LBP presentations. This study (1) compared TMS measures of M1 (single and paired-pulse) and performance of a motor task (lumbopelvic tilting) between individuals with LBP of predominant nociceptive (n = 9) or nociplastic presentation (n = 9) and pain-free individuals (n = 16); (2) compared these measures pre- and post-training; and (3) explored correlations between TMS measures, motor performance, and clinical features. TMS measures did not differ between groups at baseline. The nociplastic group undershot the target in the motor task. Despite improved motor performance for all groups, only MEP amplitudes increased across the recruitment curve and only for the pain-free and nociplastic groups. TMS measures did not correlate with motor performance or clinical features. Some elements of motor task performance and changes in corticomotor excitability differed between LBP groups. Absence of changes in intra-cortical TMS measures suggests regions other than M1 are likely to be involved in skill learning of back muscles.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia; Centre interdisciplinaire de recherche en réadaptation et integration sociale (CIRRIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia.
| |
Collapse
|
7
|
Becker K, Goethel M, Fonseca P, Vilas-Boas JP, Ervilha U. The Strategy of the Brain to Maintain the Force Production in Painful Contractions-A Motor Units Pool Reorganization. Cells 2022; 11:cells11203299. [PMID: 36291165 PMCID: PMC9601229 DOI: 10.3390/cells11203299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 12/29/2022] Open
Abstract
A common symptom in neuromuscular diseases is pain, which changes human movement in many ways. Using the decomposed electromyographic signal, we investigate the strategy of the brain in recruiting different pools of motor units (MUs) to produce torque during induced muscle pain in terms of firing rate (FR), recruitment threshold (RT) and action potential amplitude (MUAPAMP). These properties were used to define two groups (G1/G2) based on a K-means clusterization method. A 2.0 mL intramuscular hypertonic (6%) or isotonic (0.9%) saline solution was injected to induce pain or act as a placebo during isometric and isokinetic knee extension contractions. While isometric torque decreases after pain induction with hypertonic solution, this does not occur in isokinetic torque. This occurs because the MUs re-organized after the injection of both solutions. This is supported by an increase in RT, in both G1 and G2 MUs. However, when inducing pain with the hypertonic solution, RT increase is exacerbated. In this condition, FR also decreases, while MUAPAMP increases only for G1 MUs. Therefore, this study proposes that the strategy for maintaining force production during pain is to recruit MUs with higher RT and MUAPAMP.
Collapse
Affiliation(s)
- Klaus Becker
- Porto Biomechanics Laboratory, University of Porto, 4200-450 Porto, Portugal
- Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Correspondence:
| | - Márcio Goethel
- Porto Biomechanics Laboratory, University of Porto, 4200-450 Porto, Portugal
- Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Pedro Fonseca
- Porto Biomechanics Laboratory, University of Porto, 4200-450 Porto, Portugal
| | - João Paulo Vilas-Boas
- Porto Biomechanics Laboratory, University of Porto, 4200-450 Porto, Portugal
- Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Ulysses Ervilha
- Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Laboratory of Physical Activity Sciences, School of Arts, Sciences, and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| |
Collapse
|
8
|
Cleary J, Coombes BK, Hodges P, Tucker K. Motor Unit Recruitment is Altered When Acute Experimental Pain is Induced at a Site Distant to the Contracting Muscle. Neuroscience 2022; 496:141-151. [PMID: 35710065 DOI: 10.1016/j.neuroscience.2022.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Acute pain alters motor unit discharge properties in muscles that are painful or influence loading of painful structures. Less is known about the changes in discharge when pain is induced in distant tissues that are unable or have limited capacity to modify the load of the contracting muscle. We aimed to determine whether acute experimental pain alters quadriceps motor unit discharge when pain is induced in; (i) a muscle that is unlikely to be mechanically influenced by modified quadriceps activity (tibialis anterior: TA), or (ii) the antagonist muscle (biceps femoris: BF). Using a within-subject design, 16 adults performed force-matched isometric knee extension during pain-free control conditions, and trials after painful hypertonic saline injections into TA or BF. Surface and intramuscular electromyography recordings were made. Despite maintained force, discharge rate of quadriceps motor units was lower during Pain than Control conditions for TA and BF trials (both P < 0.001). Redistribution of motor unit activity was observed; some units were recruited in control or pain but not both. As modified quadriceps motor unit discharge has limited/no potential to modify load in the painful tissue to protect the painful part, the findings might support an alternative hypothesis that activity is redistributed to larger motor units.
Collapse
Affiliation(s)
- Jennifer Cleary
- The University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Brooke K Coombes
- The University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, Australia; Griffith University, School of Health Sciences and Social Work, Griffith University, Brisbane, Australia
| | - Paul Hodges
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Queensland, Australia
| | - Kylie Tucker
- The University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Rohel A, Desmons M, Leonard G, Desgagnés A, da Silva R, Simoneau M, Mercier C, Massé-Alarie H. The influence of experimental low back pain on neural networks involved in the control of lumbar erector spinae muscles. J Neurophysiol 2022; 127:1593-1605. [PMID: 35608262 DOI: 10.1152/jn.00030.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Low back pain (LBP) often modifies spine motor control, but the neural origin of these motor control changes remains largely unexplored. This study aimed to determine the impact of experimental low back pain on the excitability of cortical, subcortical, and spinal networks involved in the control of back muscles. METHOD Thirty healthy subjects were recruited and allocated to Pain (capsaicin and heat) or Control (heat) groups. Corticospinal excitability (motor-evoked potential-MEP) and intracortical networks were assessed by single- and paired-pulse transcranial magnetic stimulation, respectively. Electrical vestibular stimulation was applied to assess vestibulospinal excitability (vestibular MEP-VMEP), and the stretch reflex for excitability of the spinal or supraspinal loop (R1 and R2, respectively). Evoked back motor responses were measured before, during and after pain induction. Nonparametric rank-based ANOVA determined if pain modulated motor neural networks. RESULTS A decrease of R1 amplitude was present after the pain disappearance (p=0.01) whereas an increase was observed in the control group (p=0.03) compared to the R1 amplitude measured at pre-pain and pre-heat period, respectively (Group x Time interaction - p<0.001). No difference in MEP and VMEP amplitude was present during and after pain (p>0.05). CONCLUSION During experimental LBP, no change in cortical, subcortical, or spinal networks was observed. After pain disappearance, the reduction of the R1 amplitude without modification of MEP and VMEP amplitude suggest a reduction in spinal excitability potentially combined with an increase in descending drives. The absence of effect during pain needs to be further explored.
Collapse
Affiliation(s)
- Antoine Rohel
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Mikaël Desmons
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Guillaume Leonard
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, Canada
| | - Amélie Desgagnés
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Rubens da Silva
- BioNR Research Lab, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Martin Simoneau
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Catherine Mercier
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Hugo Massé-Alarie
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|