1
|
Hoffmann AH, Crevecoeur F. Dissociable Effects of Urgency and Evidence Accumulation during Reaching Revealed by Dynamic Multisensory Integration. eNeuro 2024; 11:ENEURO.0262-24.2024. [PMID: 39542732 PMCID: PMC11628215 DOI: 10.1523/eneuro.0262-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
When making perceptual decisions, humans combine information across sensory modalities dependent on their respective uncertainties. However, it remains unknown how the brain integrates multisensory feedback during movement and which factors besides sensory uncertainty influence sensory contributions. We performed two reaching experiments on healthy adults to investigate whether movement corrections to combined visual and mechanical perturbations scale with visual uncertainty. To describe the dynamics of multimodal feedback responses, we further varied movement time and visual feedback duration during the movement. The results of our first experiment show that the contribution of visual feedback decreased with uncertainty. Additionally, we observed a transient phase during which visual feedback responses were stronger during faster movements. In a follow-up experiment, we found that the contribution of vision increased more quickly during slow movements when we presented the visual feedback for a longer time. Muscle activity corresponding to these visual responses exhibited modulations with sensory uncertainty and movement speed ca. 100 ms following the onset of the visual feedback. Using an optimal feedback control model, we show that the increased response to visual feedback during fast movements can be explained by an urgency-dependent increase in control gains. Further, the fact that a longer viewing duration increased the visual contributions suggests that the brain accumulates sensory information over time to estimate the state of the arm during reaching. Our results provide additional evidence concerning the link between reaching control and decision-making, both of which appear to be influenced by sensory evidence accumulation and response urgency.
Collapse
Affiliation(s)
- Anne H Hoffmann
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels 1200, Belgium
| | - Frédéric Crevecoeur
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels 1200, Belgium
- WEL Research Institute, Wavre 1300, Belgium
| |
Collapse
|
2
|
Maurus P, Mahdi G, Cluff T. Increased muscle coactivation is linked with fast feedback control when reaching in unpredictable visual environments. iScience 2024; 27:111174. [PMID: 39524350 PMCID: PMC11550142 DOI: 10.1016/j.isci.2024.111174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Humans encounter unpredictable disturbances in daily activities and sports. When encountering unpredictable physical disturbances, healthy participants increase the peak velocity of their reaching movements, muscle coactivation, and responses to sensory feedback. Emerging evidence suggests that muscle coactivation may facilitate responses to sensory feedback and may not solely increase stiffness to resist displacements. We tested this idea by examining how healthy participants alter the control of reaching movements and responses to sensory feedback when encountering variable visuomotor rotations. The rotations changed amplitude and direction between movements, creating unpredictable errors that required fast online corrections. Participants increased the peak velocity of their movements, muscle coactivation, and responses to visual and proprioceptive feedback with the variability of the visuomotor rotations. The findings highlight an increase in neural responsiveness to sensory feedback and suggest that muscle coactivation may prime the nervous system for fast responses to sensory feedback that accommodate properties of unpredictable visual environments.
Collapse
Affiliation(s)
- Philipp Maurus
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ghadeer Mahdi
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Fooken J, Balalaie P, Park K, Flanagan JR, Scott SH. Rapid eye and hand responses in an interception task are differentially modulated by context-dependent predictability. J Vis 2024; 24:10. [PMID: 39556082 DOI: 10.1167/jov.24.12.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
When catching a falling ball or avoiding a collision with traffic, humans can quickly generate eye and limb responses to unpredictable changes in their environment. Mechanisms of limb and oculomotor control when responding to sudden changes in the environment have mostly been investigated independently. Here, we investigated eye-hand coordination in a rapid interception task where human participants used a virtual paddle to intercept a moving target. The target moved vertically down a computer screen and could suddenly jump to the left or right. In high-certainty blocks, the target always jumped; in low-certainty blocks, the target only jumped in a portion of the trials. Further, we manipulated response urgency by varying the time of target jumps, with early jumps requiring less urgent responses and late jumps requiring more urgent responses. Our results highlight differential effects of certainty and urgency on eye-hand coordination. Participants initiated both eye and hand responses earlier for high-certainty compared with low-certainty blocks. Hand reaction times decreased and response vigor increased with increasing urgency levels. However, eye reaction times were lowest for medium-urgency levels and eye vigor was unaffected by urgency. Across all trials, we found a weak positive correlation between eye and hand responses. Taken together, these results suggest that the limb and oculomotor systems use similar early sensorimotor processing; however, rapid responses are modulated differentially to attain system-specific sensorimotor goals.
Collapse
Affiliation(s)
- Jolande Fooken
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Psychology and Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Parsa Balalaie
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Kayne Park
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
4
|
De Comite A, Lefèvre P, Crevecoeur F. Continuous evaluation of cost-to-go for flexible reaching control and online decisions. PLoS Comput Biol 2023; 19:e1011493. [PMID: 37756355 PMCID: PMC10561875 DOI: 10.1371/journal.pcbi.1011493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/09/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Humans consider the parameters linked to movement goal during reaching to adjust their control strategy online. Indeed, rapid changes in target structure or disturbances interfering with their initial plan elicit rapid changes in behavior. Here, we hypothesize that these changes could result from the continuous use of a decision variable combining motor and cognitive components. We combine an optimal feedback controller with a real-time evaluation of the expected cost-to-go, which considers target- and movement-related costs, in a common theoretical framework. This model reproduces human behaviors in presence of changes in the target structure occurring during movement and of online decisions to flexibly change target following external perturbations. It also predicts that the time taken to decide to select a novel goal after a perturbation depends on the amplitude of the disturbance and on the rewards of the different options, which is a direct result of the continuous monitoring of the cost-to-go. We show that this result was present in our previously collected dataset. Together our developments point towards a continuous evaluation of the cost-to-go during reaching to update control online and make efficient decisions about movement goal.
Collapse
Affiliation(s)
- Antoine De Comite
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Philippe Lefèvre
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
| | - Frédéric Crevecoeur
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Maurus P, Jackson K, Cashaback JG, Cluff T. The nervous system tunes sensorimotor gains when reaching in variable mechanical environments. iScience 2023; 26:106756. [PMID: 37213228 PMCID: PMC10197011 DOI: 10.1016/j.isci.2023.106756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/23/2023] Open
Abstract
Humans often move in the presence of mechanical disturbances that can vary in direction and amplitude throughout movement. These disturbances can jeopardize the outcomes of our actions, such as when drinking from a glass of water on a turbulent flight or carrying a cup of coffee while walking on a busy sidewalk. Here, we examine control strategies that allow the nervous system to maintain performance when reaching in the presence of mechanical disturbances that vary randomly throughout movement. Healthy participants altered their control strategies to make movements more robust against disturbances. The change in control was associated with faster reaching movements and increased responses to proprioceptive and visual feedback that were tuned to the variability of the disturbances. Our findings highlight that the nervous system exploits a continuum of control strategies to increase its responsiveness to sensory feedback when reaching in the presence of increasingly variable physical disturbances.
Collapse
Affiliation(s)
- Philipp Maurus
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Kuira Jackson
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Joshua G.A. Cashaback
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Corresponding author
| |
Collapse
|
6
|
Codol O, Kashefi M, Forgaard CJ, Galea JM, Pruszynski JA, Gribble PL. Sensorimotor feedback loops are selectively sensitive to reward. eLife 2023; 12:81325. [PMID: 36637162 PMCID: PMC9910828 DOI: 10.7554/elife.81325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Although it is well established that motivational factors such as earning more money for performing well improve motor performance, how the motor system implements this improvement remains unclear. For instance, feedback-based control, which uses sensory feedback from the body to correct for errors in movement, improves with greater reward. But feedback control encompasses many feedback loops with diverse characteristics such as the brain regions involved and their response time. Which specific loops drive these performance improvements with reward is unknown, even though their diversity makes it unlikely that they are contributing uniformly. We systematically tested the effect of reward on the latency (how long for a corrective response to arise?) and gain (how large is the corrective response?) of seven distinct sensorimotor feedback loops in humans. Only the fastest feedback loops were insensitive to reward, and the earliest reward-driven changes were consistently an increase in feedback gains, not a reduction in latency. Rather, a reduction of response latencies only tended to occur in slower feedback loops. These observations were similar across sensory modalities (vision and proprioception). Our results may have implications regarding feedback control performance in athletic coaching. For instance, coaching methodologies that rely on reinforcement or 'reward shaping' may need to specifically target aspects of movement that rely on reward-sensitive feedback responses.
Collapse
Affiliation(s)
- Olivier Codol
- Brain and Mind Institute, University of Western OntarioLondonCanada
- Department of Psychology, University of Western OntarioLondonCanada
- School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Mehrdad Kashefi
- Brain and Mind Institute, University of Western OntarioLondonCanada
- Department of Psychology, University of Western OntarioLondonCanada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western OntarioOntarioCanada
- Robarts Research Institute, University of Western OntarioLondonCanada
| | - Christopher J Forgaard
- Brain and Mind Institute, University of Western OntarioLondonCanada
- Department of Psychology, University of Western OntarioLondonCanada
| | - Joseph M Galea
- School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - J Andrew Pruszynski
- Brain and Mind Institute, University of Western OntarioLondonCanada
- Department of Psychology, University of Western OntarioLondonCanada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western OntarioOntarioCanada
- Robarts Research Institute, University of Western OntarioLondonCanada
| | - Paul L Gribble
- Brain and Mind Institute, University of Western OntarioLondonCanada
- Department of Psychology, University of Western OntarioLondonCanada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western OntarioOntarioCanada
- Haskins LaboratoriesNew HavenUnited States
| |
Collapse
|
7
|
Mathew J, Crevecoeur F. Adaptive Feedback Control in Human Reaching Adaptation to Force Fields. Front Hum Neurosci 2022; 15:742608. [PMID: 35027886 PMCID: PMC8751623 DOI: 10.3389/fnhum.2021.742608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Sensorimotor adaptation is a central function of the nervous system, as it allows humans and other animals to flexibly anticipate their interaction with the environment. In the context of human reaching adaptation to force fields, studies have traditionally separated feedforward (FF) and feedback (FB) processes involved in the improvement of behavior. Here, we review computational models of FF adaptation to force fields and discuss them in light of recent evidence highlighting a clear involvement of feedback control. Instead of a model in which FF and FB mechanisms adapt in parallel, we discuss how online adaptation in the feedback control system can explain both trial-by-trial adaptation and improvements in online motor corrections. Importantly, this computational model combines sensorimotor control and short-term adaptation in a single framework, offering novel perspectives for our understanding of human reaching adaptation and control.
Collapse
Affiliation(s)
- James Mathew
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Catholic University of Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience (IoNS), Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Frédéric Crevecoeur
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Catholic University of Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience (IoNS), Catholic University of Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|