1
|
Saluja S, Tóth AL, Peter MG, Fondberg R, Tognetti A, Lundström JN. Congenital anosmia and subjective tactile function: A pilot study. Behav Brain Res 2025; 484:115487. [PMID: 39984129 DOI: 10.1016/j.bbr.2025.115487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/20/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Anosmia, the complete loss of olfactory perception, has been associated with sensory compensation in non-chemical senses such as vision and hearing, but its relationship with tactile perception remains unclear. This study investigates whether isolated congenital anosmia (ICA)-a rare condition in which individuals are born without a sense of smell but are otherwise healthy-is linked to heightened self-reported tactile sensitivity compared to healthy controls. Drawing on sensory compensation theory and anecdotal evidence from related studies, we hypothesized that individuals with ICA would report increased tactile sensitivity, particularly in response to discomfort. To test this hypothesis, we surveyed individuals with ICA (n = 40) and healthy controls (n = 40), matched for sex and age, using standardized questionnaires and a specially developed questionnaire focused on discomfort related to materials, food textures, stickiness, and pressure. Contrary to our pre-registered hypothesis, the results revealed no significant differences in overall self-reported touch sensitivity between the groups. However, exploratory analysis indicated that individuals with ICA exhibit greater sensitivity to temperature sensations and to overall tactile discomfort, specifically in response to pressure and food textures, compared to controls. We propose that individuals with ICA may compensate for their olfactory loss through heightened sensitivity to certain tactile stimuli related to discomfort, as both touch and olfaction play overlapping roles in the detection of aversive stimuli. These exploratory findings underscore the need for further investigation into the sensory compensation mechanisms of olfaction on touch.
Collapse
Affiliation(s)
- Supreet Saluja
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Laura Tóth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Moa G Peter
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Robin Fondberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Arnaud Tognetti
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; CEE-M, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Monell Chemical Senses Center, Philadephia, USA.
| |
Collapse
|
2
|
Drummond J, Makdani A, Pawling R, Walker SC. Congenital Anosmia and Facial Emotion Recognition. Physiol Behav 2024; 278:114519. [PMID: 38490365 DOI: 10.1016/j.physbeh.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Major functions of the olfactory system include guiding ingestion and avoidance of environmental hazards. People with anosmia report reliance on others, for example to check the edibility of food, as their primary coping strategy. Facial expressions are a major source of non-verbal social information that can be used to guide approach and avoidance behaviour. Thus, it is of interest to explore whether a life-long absence of the sense of smell heightens sensitivity to others' facial emotions, particularly those depicting threat. In the present, online study 28 people with congenital anosmia (mean age 43.46) and 24 people reporting no olfactory dysfunction (mean age 42.75) completed a facial emotion recognition task whereby emotionally neutral faces (6 different identities) morphed, over 40 stages, to express one of 5 basic emotions: anger, disgust, fear, happiness, or sadness. Results showed that, while the groups did not differ in their ability to identify the final, full-strength emotional expressions, nor in the accuracy of their first response, the congenital anosmia group successfully identified the emotions at significantly lower intensity (i.e. an earlier stage of the morph) than the control group. Exploratory analysis showed this main effect was primarily driven by an advantage in detecting anger and disgust. These findings indicate the absence of a functioning sense of smell during development leads to compensatory changes in visual, social cognition. Future work should explore the neural and behavioural basis for this advantage.
Collapse
Affiliation(s)
- James Drummond
- Research Centre for Brain & Behaviour, School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, UK
| | - Adarsh Makdani
- Research Centre for Brain & Behaviour, School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, UK
| | - Ralph Pawling
- Research Centre for Brain & Behaviour, School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, UK
| | - Susannah C Walker
- Research Centre for Brain & Behaviour, School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
3
|
Peter MG, Darki F, Thunell E, Mårtensson G, Postma EM, Boesveldt S, Westman E, Lundström JN. Lifelong olfactory deprivation-dependent cortical reorganization restricted to orbitofrontal cortex. Hum Brain Mapp 2023; 44:6459-6470. [PMID: 37915233 PMCID: PMC10681638 DOI: 10.1002/hbm.26522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Prolonged sensory deprivation has repeatedly been linked to cortical reorganization. We recently demonstrated that individuals with congenital anosmia (CA, complete olfactory deprivation since birth) have seemingly normal morphology in piriform (olfactory) cortex despite profound morphological deviations in the orbitofrontal cortex (OFC), a finding contradictory to both the known effects of blindness on visual cortex and to the sparse literature on brain morphology in anosmia. To establish whether these unexpected findings reflect the true brain morphology in CA, we first performed a direct replication of our previous study to determine if lack of results was due to a deviant control group, a confound in cross sectional studies. Individuals with CA (n = 30) were compared to age and sex matched controls (n = 30) using voxel- and surface-based morphometry. The replication results were near identical to the original study: bilateral clusters of group differences in the OFC, including CA atrophy around the olfactory sulci and volume increases in the medial orbital gyri. Importantly, no group differences in piriform cortex were detected. Subsequently, to assess any subtle patterns of group differences not detectable by our mass-univariate analysis, we explored the data from a multivariate perspective. Combining the newly collected data with data from the replicated study (CA = 49, control = 49), we performed support vector machine classification based on gray matter volume. In line with the mass-univariate analyses, the multivariate analysis could accurately differentiate between the groups in bilateral OFC, whereas the classification accuracy in piriform cortex was at chance level. Our results suggest that despite lifelong olfactory deprivation, piriform (olfactory) cortex is morphologically unaltered and the morphological deviations in CA are confined to the OFC.
Collapse
Affiliation(s)
- Moa G. Peter
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Fahimeh Darki
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Evelina Thunell
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Gustav Mårtensson
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Elbrich M. Postma
- Smell and Taste Centre, Hospital Gelderse ValleiEdethe Netherlands
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
| | - Sanne Boesveldt
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
| | - Eric Westman
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Johan N. Lundström
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
- Monell Chemical Senses CenterPhiladelphiaPennsylvaniaUSA
- Stockholm University Brain Imaging CenterStockholm UniversityStockholmSweden
| |
Collapse
|
4
|
Golub EM, Conner B, Edwards M, Gilllis L, Lacreuse A. Potential trade-off between olfactory and visual discrimination learning in common marmosets (Callithrix jacchus): Implications for the assessment of age-related cognitive decline. Am J Primatol 2022; 84:e23427. [PMID: 35942572 PMCID: PMC9444974 DOI: 10.1002/ajp.23427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/17/2022] [Accepted: 07/23/2022] [Indexed: 11/09/2022]
Abstract
Olfactory dysfunction has been identified as an early biomarker for dementia risk but has rarely been assessed in nonhuman primate models of human aging. To better characterize common marmosets as such models, we assessed olfactory discrimination performance in a sample of 10 animals (5 females), aged 2.5-8.9 years old. The monkeys were proficient in the discrimination and reversal of visual stimuli but naïve to odor stimuli. For olfactory discrimination, the monkeys performed a series of six discriminations of increasing difficulty between two odor stimuli. We found no evidence for an age-related decline as both young and older individuals were able to perform the discriminations in roughly the same number of trials. In addition, the older monkeys had faster responses than the younger animals. However, we noted that when adjusted for age, the speed of acquisition of the first discrimination in the olfactory modality was inversely correlated to the speed of acquisition of their first discrimination of two visual stimuli months earlier. These results suggest that marmosets may compensate for sensory deficits in one modality with higher sensory performance in another. These data have broad implications for the assessment of age-related cognitive decline and the categorization of animals as impaired or nonimpaired.
Collapse
Affiliation(s)
| | - Bryce Conner
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst MA
| | - Mélise Edwards
- Neuroscience and Behavior Program, University of Massachusetts Amherst MA
| | - Lacey Gilllis
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst MA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst MA
- Neuroscience and Behavior Program, University of Massachusetts Amherst MA
| |
Collapse
|
5
|
Ball F, Nentwich A, Noesselt T. Cross-modal perceptual enhancement of unisensory targets is uni-directional and does not affect temporal expectations. Vision Res 2021; 190:107962. [PMID: 34757275 DOI: 10.1016/j.visres.2021.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
Temporal structures in the environment can shape temporal expectations (TE); and previous studies demonstrated that TEs interact with multisensory interplay (MSI) when multisensory stimuli are presented synchronously. Here, we tested whether other types of MSI - evoked by asynchronous yet temporally flanking irrelevant stimuli - result in similar performance patterns. To this end, we presented sequences of 12 stimuli (10 Hz) which consisted of auditory (A), visual (V) or alternating auditory-visual stimuli (e.g. A-V-A-V-…) with either auditory or visual targets (Exp. 1). Participants discriminated target frequencies (auditory pitch or visual spatial frequency) embedded in these sequences. To test effects of TE, the proportion of early and late temporal target positions was manipulated run-wise. Performance for unisensory targets was affected by temporally flanking distractors, with auditory temporal flankers selectively improving visual target perception (Exp. 1). However, no effect of temporal expectation was observed. Control experiments (Exp. 2-3) tested whether this lack of TE effect was due to the higher presentation frequency in Exp. 1 relative to previous experiments. Importantly, even at higher stimulation frequencies redundant multisensory targets (Exp. 2-3) reliably modulated TEs. Together, our results indicate that visual target detection was enhanced by MSI. However, this cross-modal enhancement - in contrast to the redundant target effect - was still insufficient to generate TEs. We posit that unisensory target representations were either instable or insufficient for the generation of TEs while less demanding MSI still occurred; highlighting the need for robust stimulus representations when generating temporal expectations.
Collapse
Affiliation(s)
- Felix Ball
- Department of Biological Psychology, Faculty of Natural Science, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University Magdeburg, Germany.
| | - Annika Nentwich
- Department of Biological Psychology, Faculty of Natural Science, Otto-von-Guericke-University Magdeburg, Germany
| | - Toemme Noesselt
- Department of Biological Psychology, Faculty of Natural Science, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University Magdeburg, Germany
| |
Collapse
|