1
|
Masala C, Porcu M, Orofino G, Defazio G, Pinna I, Solla P, Ercoli T, Suri JS, Spinato G, Saba L. Neuroimaging evaluations of olfactory, gustatory, and neurological deficits in patients with long-term sequelae of COVID-19. Brain Imaging Behav 2024; 18:1480-1490. [PMID: 39340624 DOI: 10.1007/s11682-024-00936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The World Health Organization indicated that around 36 million of patients in the European Region showed long COVID associated with olfactory and gustatory deficits. The precise mechanism underlying long COVID clinical manifestations is still debated. The aim of this study was to evaluate potential correlations between odor threshold, odor discrimination, odor identification, and the activation of specific brain areas in patients after COVID-19. Sixty subjects, 27 patients (15 women and 12 men) with long COVID and a mean age of 40.6 ± 13.4 years, were compared to 33 age-matched healthy controls (20 women and 13 men) with a mean age of 40.5 ± 9.8 years. Our data showed that patients with long COVID symptoms exhibited a significant decrease in odor threshold, odor discrimination, odor identification, and their sum TDI score compared to age-matched healthy controls. In addition, our results indicated significant correlations between odor discrimination and the increased activation in the right hemisphere, in the frontal pole, and in the superior frontal gyrus. This study indicated that the resting-state fMRI in combination with the objective evaluation of olfactory and gustatory function may be useful for the evaluation of patients with long COVID associated with anosmia and hyposmia.
Collapse
Affiliation(s)
- Carla Masala
- Department of Biomedical Sciences, University of Cagliari, SP8 Cittadella Universitaria Monserrato, Monserrato, Cagliari, 09042, Italy.
| | - Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, SS 554 km 4.500, Cagliari, 09042, Italy
| | - Gianni Orofino
- Department of Neurology, AOU Cagliari, University of Cagliari, SS 554 km 4.500, Cagliari, 09042, Italy
| | - Giovanni Defazio
- Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, 70121, Italy
| | - Ilenia Pinna
- Department of Biomedical Sciences, University of Cagliari, SP8 Cittadella Universitaria Monserrato, Monserrato, Cagliari, 09042, Italy
| | - Paolo Solla
- Neurological Unit, AOU Sassari, University of Sassari, Viale S. Pietro 10, Sassari, 07100, Italy
| | - Tommaso Ercoli
- Neurological Unit, AOU Sassari, University of Sassari, Viale S. Pietro 10, Sassari, 07100, Italy
| | - Jasjit S Suri
- Department of ECE, Idaho State University, Pocatello, ID, 83209, USA
- Department of CE, Graphics Era Deemed to be University, Dehradun, 248002, India
- University Center for Research & Development, Chandigarh University, Mohali, India
- Symbiosis Institute of TechnologySymbiosis International (Deemed University), Nagpur Campus, Pune, India
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Giacomo Spinato
- Department of Neurosciences, Otolaryngology Unit, University of Padova, Padova, 35100, Italy
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, SS 554 km 4.500, Cagliari, 09042, Italy
| |
Collapse
|
2
|
Porcu M, Cocco L, Marrosu F, Cau R, Puig J, Suri JS, Saba L. Hippocampus and olfactory impairment in Parkinson disease: a comparative exploratory combined volumetric/functional MRI study. Neuroradiology 2024; 66:1941-1953. [PMID: 39046517 DOI: 10.1007/s00234-024-03436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Patients with Parkinson's Disease (PD) commonly experience Olfactory Dysfunction (OD). Our exploratory study examined hippocampal volumetric and resting-state functional magnetic resonance imaging (rs-fMRI) variations in a Healthy Control (HC) group versus a cognitively normal PD group, further categorized into PD with No/Mild Hyposmia (PD-N/MH) and PD with Severe Hyposmia (PD-SH). METHODS We calculated participants' relative Total Hippocampal Volume (rTHV) and performed Spearman's partial correlations, controlled for age and gender, to examine the correlation between rTHV and olfactory performance assessed by the Odor Stick Identification Test for the Japanese (OSIT-J) score. Mann-Whitney U tests assessed rTHV differences across groups and subgroups, rejecting the null hypothesis for p < 0.05. Furthermore, a seed-based rs-fMRI analysis compared hippocampal connectivity differences using a one-way ANCOVA covariate model with controls for age and gender. RESULTS Spearman's partial correlations indicated a moderate positive correlation between rTHV and OSIT-J in the whole study population (ρ = 0.406; p = 0.007), PD group (ρ = 0.493; p = 0.008), and PD-N/MH subgroup (ρ = 0.617; p = 0.025). Mann-Whitney U tests demonstrated lower rTHV in PD-SH subgroup compared to both HC group (p = 0.013) and PD-N/MH subgroup (p = 0.029). Seed-to-voxel rsfMRI analysis revealed reduced hippocampal connectivity in PD-SH subjects compared to HC subjects with a single cluster of voxels. CONCLUSIONS Although the design of the study do not allow to make firm conclusions, it is reasonable to speculate that the progressive involvement of the hippocampus in PD patients is associated with the progression of OD.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
- Department of Medical Imaging, Azienda Ospedaliera Universitaria di Cagliari, S.S. 554, km 4.500, CAP 09042, Monserrato (Cagliari), Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Josep Puig
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Yang X, Shang T, Ding Z, Qin X, Qi J, Han J, Lv D, Li T, Ma J, Zhan C, Xiao J, Sun Z, Wang N, Yu Z, Li C, Meng X, Chen Y, Li P. Abnormal structure and function of white matter in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111061. [PMID: 38901756 DOI: 10.1016/j.pnpbp.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/19/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Abnormal structure and function of gray matter (GM) have been discovered in the cortico-striatal-thalamic-cortical (CSTC) circuit in obsessive-compulsive disorder (OCD). The GM structure and function may be influenced by the structure and function of the white matter (WM). Therefore, it is crucial to explore the characteristics of WM in OCD. METHODS Diffusion tensor imaging and resting-state functional magnetic resonance imaging data of 52 patients with OCD and 39 healthy controls (HCs) were collected. The tract-based spatial statistics, amplitude of low-frequency fluctuations (ALFF), and structural-functional coupling approaches were utilized to explore the WM structure and function. Furthermore, the relationship between the abnormal WM structure and function and clinical symptoms of OCD was investigated using Pearson's correlation. Support vector machine was performed to evaluate whether patients with OCD could be identified with the changed WM structure and function. RESULTS Compared to HCs, the lower fractional anisotropy (FA) values of four clusters including the superior corona radiata, anterior corona radiata, right superior longitudinal fasciculus, corpus callosum, left posterior corona radiata, fornix, and the right anterior limb of internal capsule, reduced ALFF/FA ratio in the left anterior thalamic radiation (ATR), and the decreased functional connectivity between the left ATR and the left dorsal lateral prefrontal cortex within CSTC circuit at rest were observed in OCD. The decreased ALFF/FA ratio in the left ATR negatively correlated with Yale-Brown Obsessive-Compulsive Scale obsessive thinking scores and Hamilton Anxiety Rating Scale scores in OCD. Furthermore, the features that combined the abnormal WM structure and function performed best in distinguishing OCD from HCs with the appropriate accuracy (0.80), sensitivity (0.82), as well as specificity (0.80). CONCLUSION Current research discovered changed WM structure and function in OCD. Furthermore, abnormal WM structural-functional coupling may lead to aberrant GM connectivity within the CSTC circuit at rest in OCD. TRIAL REGISTRATION Study on the mechanism of brain network in obsessive-compulsive disorder with multi-model magnetic resonance imaging (ChiCTR-COC-17013301).
Collapse
Affiliation(s)
- Xu Yang
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Tinghuizi Shang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Zhipeng Ding
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Xiaoqing Qin
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jiale Qi
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jiaqi Han
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jidong Ma
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang 150050, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang 150050, China
| | - Jian Xiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Na Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Zengyan Yu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Xiangyu Meng
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang 150050, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China.
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China.
| |
Collapse
|
4
|
Li X, Meng F, Huang W, Cui Y, Meng F, Wu S, Xu H. The Alterations in the Brain Corresponding to Low Back Pain: Recent Insights and Advances. Neural Plast 2024; 2024:5599046. [PMID: 38529366 PMCID: PMC10963108 DOI: 10.1155/2024/5599046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 03/27/2024] Open
Abstract
Low back pain (LBP) is a leading cause of global disabilities. Numerous molecular, cellular, and anatomical factors are implicated in LBP. Current issues regarding neurologic alterations in LBP have focused on the reorganization of peripheral nerve and spinal cord, but neural mechanisms of exactly what LBP impacts on the brain required further researches. Based on existing clinical studies that chronic pain problems were accompanying alterations in brain structures and functions, researchers proposed logical conjectures that similar alterations occur in LBP patients as well. With recent extensive studies carried out using noninvasive neuroimaging technique, increasing number of abnormalities and alterations has been identified. Here, we reviewed brain alterations including white matters, grey matters, and neural circuits between brain areas, which are involved in chronic LBP. Moreover, brain structural and functional connectivity abnormalities are correlated to the happening and transition of LBP. The negative emotions related to back pain indicate possible alterations in emotional brain regions. Thus, the aim of this review is to summarize current findings on the alterations corresponding to LBP in the brain. It will not only further our understanding of etiology of LBP and understanding of negative emotions accompanying with back pain but also provide ideas and basis for new accesses to the diagnosis, treatment, and rehabilitation afterward based on integral medicine.
Collapse
Affiliation(s)
- Xuyang Li
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Fancheng Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Wenye Huang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yue Cui
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Fanbo Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Porcu M, Cocco L, Marrosu F, Cau R, Suri JS, Qi Y, Pineda V, Bosin A, Malloci G, Ruggerone P, Puig J, Saba L. Impact of corpus callosum integrity on functional interhemispheric connectivity and cognition in healthy subjects. Brain Imaging Behav 2024; 18:141-158. [PMID: 37955809 DOI: 10.1007/s11682-023-00814-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
To examine the corpus callosum's (CC) integrity in terms of fractional anisotropy (FA) and how it affects resting-state hemispheric connectivity (rs-IHC) and cognitive function in healthy individuals. Sixty-eight healthy individuals were recruited for the study. The global FA (gFA) and FA values of each CC tract (forceps minor, body, tapetum, and forceps major) were evaluated using diffusion-weighted imaging (DWI) sequences. The homotopic functional connectivity technique was used to quantify the effects of FA in the CC tracts on bilateral functional connectivity, including the confounding effect of gFA. Brain regions with higher or lower rs-IHC were identified using the threshold-free cluster enhancement family-wise error-corrected p-value of 0.05. The null hypothesis was rejected if the p-value was ≤ 0.05 for the nonparametric partial correlation technique. Several clusters of increased rs-IHC were identified in relation to the FA of individual CC tracts, each with a unique topographic distribution and extension. Only forceps minor FA values correlated with cognitive scores. The integrity of CC influences rs-IHC differently in healthy subjects. Specifically, forceps minor anisotropy impacts rs-IHC and cognition more than other CC tracts do.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
- Department of Medical Imaging, Azienda Ospedaliera Universitaria di Cagliari, S.S: 554, Km 4,500 - CAP, Monserrato, 09042, Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Yang Qi
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | - Victor Pineda
- Department of Medical Sciences, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cagliari, Italy
| | | | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Cagliari, Italy
| | - Josep Puig
- Department of Medical Sciences, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Porcu M, Cocco L, Cau R, Suri JS, Mannelli L, Manchia M, Puig J, Qi Y, Saba L. Correlation of Cognitive Reappraisal and the Microstructural Properties of the Forceps Minor: A Deductive Exploratory Diffusion Tensor Imaging Study. Brain Topogr 2024; 37:63-74. [PMID: 38062326 DOI: 10.1007/s10548-023-01020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/29/2023] [Indexed: 01/07/2024]
Abstract
Cognitive reappraisal (CR) is a mechanism for emotion regulation, and the prefrontal cortex (PFC) plays a central role in the regulation of emotions. We tested the hypothesis of an association between CR function and microstructural properties of forceps minor (a commissural bundle within the PFC) in healthy subjects (HS). We analyzed a population of 65 young HS of a public dataset. The diffusion tensor imaging (DTI) sequence of every subject was analyzed to extract the derived shape (diameter and volume) and DTI metrics in terms of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) of the forceps minor. The CR subscale of the German version of the Emotion Regulation Questionnaire (ERQ) was used for CR assessment. The Shapiro-Wilk test was applied to test the assumption of normality in all these parameters, adopting a statistical threshold at p < 0.05. Whenever appropriate a non-parametric two-tailed partial correlation analysis was applied to test for correlations between the CR ERQ score and the derived shape and DTI metrics, including age and sex as confounders, adopting a statistical threshold at p < 0.05. The non-parametric two-tailed partial correlation analysis revealed a mildly significant correlation with FA (ρ = 0.303; p = 0.016), a weakly significant negative correlation with MD (ρ = - 0.269; p = 0.033), and a mildly significant negative correlation with RD (ρ = - 0.305; p = 0.015). These findings suggest a correlation between DTI microstructural properties of forceps minor and CR.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
- Department of Medical Imaging, Azienda Ospedaliera Universitaria di Cagliari, S.S: 554, Km 4,500, Monserrato, 09042, Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | | | - Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Josep Puig
- Department of Radiology (IDI) and Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Yang Qi
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Kaļva K, Zdanovskis N, Šneidere K, Kostiks A, Karelis G, Platkājis A, Stepens A. Whole Brain and Corpus Callosum Fractional Anisotropy Differences in Patients with Cognitive Impairment. Diagnostics (Basel) 2023; 13:3679. [PMID: 38132263 PMCID: PMC10742911 DOI: 10.3390/diagnostics13243679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Diffusion tensor imaging (DTI) is an MRI analysis method that could help assess cognitive impairment (CI) in the ageing population more accurately. In this research, we evaluated fractional anisotropy (FA) of whole brain (WB) and corpus callosum (CC) in patients with normal cognition (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI). In total, 41 participants were included in a cross-sectional study and divided into groups based on Montreal Cognitive Assessment (MoCA) scores (NC group, nine participants, MCI group, sixteen participants, and SCI group, sixteen participants). All participants underwent an MRI examination that included a DTI sequence. FA values between the groups were assessed by analysing FA value and age normative percentile. We did not find statistically significant differences between the groups when analysing CC FA values. Both approaches showed statistically significant differences in WB FA values between the MCI-SCI and MCI-NC groups, where the MCI group participants showed the highest mean FA and highest mean FA normative percentile results in WB.
Collapse
Affiliation(s)
- Kalvis Kaļva
- Department of Radiology, Riga Stradins University, LV-1007 Riga, Latvia; (K.K.)
- Department of Radiology, Riga East Clinical University Hospital, LV-1038 Riga, Latvia
| | - Nauris Zdanovskis
- Department of Radiology, Riga Stradins University, LV-1007 Riga, Latvia; (K.K.)
- Department of Radiology, Riga East Clinical University Hospital, LV-1038 Riga, Latvia
- Military Medicine Research and Study Centre, Riga Stradins University, LV-1007 Riga, Latvia
| | - Kristīne Šneidere
- Military Medicine Research and Study Centre, Riga Stradins University, LV-1007 Riga, Latvia
- Department of Health Psychology and Paedagogy, Riga Stradins University, LV-1007 Riga, Latvia
| | - Andrejs Kostiks
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia; (A.K.)
| | - Guntis Karelis
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia; (A.K.)
- Department of Infectology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ardis Platkājis
- Department of Radiology, Riga Stradins University, LV-1007 Riga, Latvia; (K.K.)
- Department of Radiology, Riga East Clinical University Hospital, LV-1038 Riga, Latvia
| | - Ainārs Stepens
- Military Medicine Research and Study Centre, Riga Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
8
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
9
|
Yadav Y, Elumalai P, Williams N, Jost J, Samal A. Discrete Ricci curvatures capture age-related changes in human brain functional connectivity networks. Front Aging Neurosci 2023; 15:1120846. [PMID: 37293668 PMCID: PMC10244515 DOI: 10.3389/fnagi.2023.1120846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Geometry-inspired notions of discrete Ricci curvature have been successfully used as markers of disrupted brain connectivity in neuropsychiatric disorders, but their ability to characterize age-related changes in functional connectivity is unexplored. Methods We apply Forman-Ricci curvature and Ollivier-Ricci curvature to compare functional connectivity networks of healthy young and older subjects from the Max Planck Institute Leipzig Study for Mind-Body-Emotion Interactions (MPI-LEMON) dataset (N = 225). Results We found that both Forman-Ricci curvature and Ollivier-Ricci curvature can capture whole-brain and region-level age-related differences in functional connectivity. Meta-analysis decoding demonstrated that those brain regions with age-related curvature differences were associated with cognitive domains known to manifest age-related changes-movement, affective processing, and somatosensory processing. Moreover, the curvature values of some brain regions showing age-related differences exhibited correlations with behavioral scores of affective processing. Finally, we found an overlap between brain regions showing age-related curvature differences and those brain regions whose non-invasive stimulation resulted in improved movement performance in older adults. Discussion Our results suggest that both Forman-Ricci curvature and Ollivier-Ricci curvature correctly identify brain regions that are known to be functionally or clinically relevant. Our results add to a growing body of evidence demonstrating the sensitivity of discrete Ricci curvature measures to changes in the organization of functional connectivity networks, both in health and disease.
Collapse
Affiliation(s)
- Yasharth Yadav
- The Institute of Mathematical Sciences (IMSc), Chennai, India
- Indian Institute of Science Education and Research (IISER), Pune, India
| | | | - Nitin Williams
- Department of Computer Science, Helsinki Institute of Information Technology, Aalto University, Espoo, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jürgen Jost
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- The Santa Fe Institute, Santa Fe, NM, United States
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
10
|
Kaddu-Mulindwa D, Heit M, Wagenpfeil G, Bewarder M, Fassbender K, Behnke S, Yilmaz U, Fousse M. Fewer neurocognitive deficits and less brain atrophy by third ventricle measurement in PLWH treated with modern ART: A prospective analysis. Front Neurol 2022; 13:962535. [PMID: 36081869 PMCID: PMC9447481 DOI: 10.3389/fneur.2022.962535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Despite antiretroviral therapy, cognitive dysfunction seems to remain a major issue for people living with human immunodeficiency virus (PLWH). Previous studies showed a correlation between the width of the third ventricle (WTV) and neurocognitive disorders in PLWH. Patients and methods We investigated prevalence and correlation of neuropsychological disorders using WTV as a brain atrophy marker examined by transcranial sonography and MRI in PLWH and healthy age- and gender-matched controls. We used Becks Depression Inventory (BDI) for depression screening, the questionnaires Fatigue Severity Scale (FSS) for fatigue and Short-Form-36 (SF36) for quality of life (QoL) evaluation and Consortium to establish a registry for Alzheimer's disease (CERAD-PLUS) as neuropsychological test battery. Results 52 PLWH (47 males) and 28 non-infected controls (23 males) with a median age of 52 years (24–78 years) and 51 years (22–79) were analyzed. WTV correlated significantly with age (p < 0.01) but showed no significantly difference in PLWH (median = 3.4 mm) compared to healthy controls (median = 2.8 mm) (p = 0.085). PLWH had both significantly higher BDI-Scores (p = 0.005) and FSS-Scores (p = 0.012). Controls reported higher QoL (SF-36) with significant differences in most items. However, the overall cognitive performance (CERAD total score) showed no significant difference. The WTV of all subjects correlated with neurocognitive performance measured as CERAD total score (p = 0.009) and trail making tests A (p < 0.001) and B (p = 0.018). There was no correlation between the scores of BDI, FSS, SF-36, and CERAD-PLUS items and WTV. Conclusion WTV is considered as a predictor of cognitive deficits in neurodegenerative diseases. Nevertheless, we found no significant difference in WTV or overall cognitive performance between PLWH and controls. PLWH suffer more often from depression and fatigue and report reduced QoL when compared to healthy controls.
Collapse
Affiliation(s)
- Dominic Kaddu-Mulindwa
- Department of Hematology and Oncology, Saarland University Medical School, Homburg, Germany
| | - Matthias Heit
- Department of Hematology and Oncology, Saarland University Medical School, Homburg, Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometrics, Epidemiology and Medical Computer Science, Saarland University Medical School, Homburg, Germany
| | - Moritz Bewarder
- Department of Hematology and Oncology, Saarland University Medical School, Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University Medical School, Homburg, Germany
| | - Stefanie Behnke
- Department of Neurology, Saarland University Medical School, Homburg, Germany
| | - Umut Yilmaz
- Department of Neuroradiology, Saarland University Medical School, Homburg, Germany
| | - Mathias Fousse
- Department of Neurology, Saarland University Medical School, Homburg, Germany
- *Correspondence: Mathias Fousse
| |
Collapse
|
11
|
Huang SM, Wu CY, Lin YH, Hsieh HH, Yang HC, Chiu SC, Peng SL. Differences in brain activity between normal and diabetic rats under isoflurane anesthesia: a resting-state functional MRI study. BMC Med Imaging 2022; 22:136. [PMID: 35927630 PMCID: PMC9354416 DOI: 10.1186/s12880-022-00867-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altered neural activity based on the fractional amplitude of low-frequency fluctuations (fALFF) has been reported in patients with diabetes. However, whether fALFF can differentiate healthy controls from diabetic animals under anesthesia remains unclear. The study aimed to elucidate the changes in fALFF in a rat model of diabetes under isoflurane anesthesia. METHODS The first group of rats (n = 5) received a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to cause the development of diabetes. The second group of rats (n = 7) received a single intraperitoneal injection of the same volume of solvent. Resting-state functional magnetic resonance imaging was used to assess brain activity at 4 weeks after STZ or solvent administration. RESULTS Compared to the healthy control animals, rats with diabetes showed significantly decreased fALFF in various brain regions, including the cingulate cortex, somatosensory cortex, insula, and striatum (all P < 0.05). The decreased fALFF suggests the aberrant neural activities in the diabetic rats. No regions were detected in which the control group had a lower fALFF than that in the diabetes group. CONCLUSIONS The results of this study demonstrated that the fALFF could be used to differentiate healthy controls from diabetic animals, providing meaningful information regarding the neurological pathophysiology of diabetes in animal models.
Collapse
Affiliation(s)
- Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Chieh Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan. .,Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Porcu M, Cocco L, Cau R, Suri JS, Mannelli L, Puig J, Qi Y, Paraskevas KI, Saba L. Mid-term effects of carotid endarterectomy on cognition and white matter status evaluated by whole brain diffusion tensor imaging metrics: A preliminary analysis. Eur J Radiol 2022; 151:110314. [PMID: 35452954 DOI: 10.1016/j.ejrad.2022.110314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE To analyze the mid-term (12 months) effects of carotid endarterectomy (CEA) on cognition and on the microstructural properties of the whole brain white matter in terms of derived diffusion Tensor imaging (DTI) metrics. METHODS We analyzed a population of 19 asymptomatic patients with extra-cranial internal carotid artery stenosis (eICA) eligible for CEA. All patients underwent cognitive evaluation with the Italian version of the Mini-Mental State Examination corrected for age and schooling, and with a Magnetic Resonance Imaging (MRI) investigation on a 1.5 Tesla MRI scanner, that included a 34-directions Diffusion Weighted Imaging (DWI) sequence for DTI metrics analysis. The global fractional anisotropy (gFA), global mean diffusivity (gMD), global radial diffusivity (gRD) and global axial diffusivity (gAD) were calculated for each patient. Both the cognitive and the imaging evaluation were performed at baseline (PRE-CEA) and 12 months after CEA (POST-CEA). Two-tailed Paerson's correlation test and paired samples t-test were used for evaluating the correlation between PRE-CEA and POST-CEA values, adopting a p-value of <0.05 as statistically significant. RESULTS A statistically significant increase of the MMSE scores (p < 0.0001), as well as for gFA (p < 0.0001), and a statistically significant reduction of gMD (p = 0.027) and gRD (p = 0.0005) was observed 12 months following uncomplicated CEA. CONCLUSIONS These findings suggest that CEA is associated with a general improvement of the WM microstructure of the whole brain.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | | | - Josep Puig
- Department of Radiology (IDI) and Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Yang Qi
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | | | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Italy
| |
Collapse
|
13
|
Porcu M, Cocco L, Cau R, Suri JS, Wintermark M, Puig J, Qi Y, Lanzino G, Caulo M, Saba L. The restoring of interhemispheric brain connectivity following carotid endarterectomy: an exploratory observational study. Brain Imaging Behav 2022; 16:2037-2048. [PMID: 35622267 DOI: 10.1007/s11682-022-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to evaluate the differences of brain connectivity between healthy subjects (HS) and patients with extracranial internal carotid artery (eICA) stenosis before and after carotid endarterectomy (CEA). An exploratory prospective study was designed. The study population consisted of a patient group (PG) of 20 patients with eICA stenosis eligible for CEA, and a control group (CG) of 20 HS, matched for age and sex. The subjects of the PG group underwent Magnetic Resonance Imaging (MRI) for resting-state functional connectivity MRI (rs-fc MRI) analysis within one week from the CEA (pre-CEA) and 12 months following CEA (post-CEA). The CG underwent a single MRI with the same protocol utilized for the PG. Three region-of-interest to region-of-interest (ROI-to-ROI) rs-fc MRI analyses were conducted: analysis 1 to compare pre-CEA PG and CG; analysis 2 to compare pre-CEA PG and post-CEA PG; analysis 3 to compare post-CEA PG and CG. The Functional Network Connectivity multivariate parametric technique was used for statistical analysis, adopting a p-uncorrected (p-unc) < 0.05 as connection threshold, and a cluster level False Discovery Rate corrected p (p-FDR) < 0.05 as cluster threshold. The clusters were defined by using a data-driven hierarchical clustering procedure. Analysis 1 revealed two clusters of reduced interhemispheric connectivity of pre-CEA PG when compared to CG. Analysis 2 and 3 showed no statistically significant differences. Our exploratory analysis suggests that patients with eICA stenosis have reduced interhemispheric connectivity when compared to a matched control group, and this difference was not evident anymore following endarterectomy.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy. .,Department of Medical Imaging, Azienda Ospedaliera Universitaria Di Cagliari, S.S: 554, km 4,500, Monserrato, CAP: 09042, Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, CA, USA
| | - Josep Puig
- Department of Radiology (IDI) and Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Yang Qi
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | | | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
14
|
Porcu M, Cocco L, Cau R, Suri JS, Mannelli L, Yang Q, Defazio G, Wintermark M, Saba L. The mid-term effects of carotid endarterectomy on cognition and regional neural activity analyzed with the amplitude of low frequency fluctuations technique. Neuroradiology 2022; 64:531-541. [PMID: 34562140 PMCID: PMC8850244 DOI: 10.1007/s00234-021-02815-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE The study aims to evaluate the mid-term effects of carotid endarterectomy (CEA) on cognition and resting-state functional magnetic resonance imaging (rs-fMRI) using the Amplitude of Low Frequency Fluctuations (ALFF) technique. METHODS In this observational study, patients eligible for CEA were prospectively included. On the same day, within 1 week of the CEA procedure performed and 12 months after the CEA procedure, all patients underwent (i) an MRI examination for rs-fMRI analysis and (ii) a cognitive evaluation using the Italian version of the Mini-Mental State Examination (MMSE) corrected for age and schooling. Pre-CEA and post-CEA MMSE scores were evaluated using paired sample t-tests, adopting a p-value < 0.05 as statistical threshold. The ALFF technique was used for analyzing the differences between pre-CEA and post-CEA rs-fMRI scans in terms of regional neural activation. This was accomplished by applying non-parametric statistics based on randomization/permutation for cluster-level inferences, adopting a cluster-mass p-value corrected for false discovery < 0.05 for cluster threshold, and a p-uncorrected < 0.01 for the voxel threshold. RESULTS Twenty asymptomatic patients were enrolled. The mean MMSE score resulted improved following CEA procedure (p-value = 0.001). The ALFF analysis identified a single cluster of 6260 voxels of increased regional neural activity following CEA, and no cluster of reduced activity. The majority of voxels covered the right precentral gyrus, the right middle frontal gyrus, and the anterior division of the cingulate gyrus. CONCLUSION Mid-term cognitive improvements observed after CEA are associated to increased regional neural activity of several cerebral regions.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| | | | - Qi Yang
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | - Giovanni Defazio
- Department of Neurology, University of Cagliari, Cagliari, Italy
| | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, CA, USA
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
15
|
Paul S, Maindarkar M, Saxena S, Saba L, Turk M, Kalra M, Krishnan PR, Suri JS. Bias Investigation in Artificial Intelligence Systems for Early Detection of Parkinson's Disease: A Narrative Review. Diagnostics (Basel) 2022; 12:166. [PMID: 35054333 PMCID: PMC8774851 DOI: 10.3390/diagnostics12010166] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background and Motivation: Diagnosis of Parkinson's disease (PD) is often based on medical attention and clinical signs. It is subjective and does not have a good prognosis. Artificial Intelligence (AI) has played a promising role in the diagnosis of PD. However, it introduces bias due to lack of sample size, poor validation, clinical evaluation, and lack of big data configuration. The purpose of this study is to compute the risk of bias (RoB) automatically. METHOD The PRISMA search strategy was adopted to select the best 39 AI studies out of 85 PD studies closely associated with early diagnosis PD. The studies were used to compute 30 AI attributes (based on 6 AI clusters), using AP(ai)Bias 1.0 (AtheroPointTM, Roseville, CA, USA), and the mean aggregate score was computed. The studies were ranked and two cutoffs (Moderate-Low (ML) and High-Moderate (MH)) were determined to segregate the studies into three bins: low-, moderate-, and high-bias. RESULT The ML and HM cutoffs were 3.50 and 2.33, respectively, which constituted 7, 13, and 6 for low-, moderate-, and high-bias studies. The best and worst architectures were "deep learning with sketches as outcomes" and "machine learning with Electroencephalography," respectively. We recommend (i) the usage of power analysis in big data framework, (ii) that it must undergo scientific validation using unseen AI models, and (iii) that it should be taken towards clinical evaluation for reliability and stability tests. CONCLUSION The AI is a vital component for the diagnosis of early PD and the recommendations must be followed to lower the RoB.
Collapse
Affiliation(s)
- Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Maheshrao Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751003, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09121 Cagliari, Italy
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia
| | - Manudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
16
|
Masson-Trottier M, Sontheimer A, Durand E, Ansaldo AI. Resting-State Functional Connectivity following Phonological Component Analysis: The Combined Action of Phonology and Visual Orthographic Cues. Brain Sci 2021; 11:1458. [PMID: 34827457 PMCID: PMC8615968 DOI: 10.3390/brainsci11111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Anomia is the most frequent and pervasive symptom for people with aphasia (PWA). Phonological component analysis (PCA) is a therapy incorporating phonological cues to treat anomia. Investigations of neural correlates supporting improvements following PCA remain scarce. Resting-state functional connectivity (rsFC) as a marker of therapy-induced neuroplasticity has been reported by our team. The present study explores the efficacy of PCA in French and associated therapy-induced neuroplasticity using whole-brain rsFC analysis. Ten PWA participated in a pre-/post-PCA fMRI study with cognitive linguistic assessments. PCA was delivered in French following the standard procedure. PCA led to significant improvement with trained and untrained items. PCA also led to changes in rsFC between distributed ROIs in the semantic network, visual network, and sub-cortical areas. Changes in rsFC can be interpreted within the frame of the visual and phonological nature of PCA. Behavioral and rsFC data changes associated with PCA in French highlight its efficacy and point to the importance of phonological and orthographic cues to consolidate the word-retrieval strategy, contributing to generalization to untrained words.
Collapse
Affiliation(s)
- Michèle Masson-Trottier
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada;
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Anna Sontheimer
- Centre National de la Recherche Scientifique, Institut National Polytechnique-Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Centre Hospitalier Universitaire de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Edith Durand
- U.F.R. Lettres, Cultures et Sciences Humaines, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Ana Inés Ansaldo
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada;
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|