1
|
González-González E, Requena C, Barbosa F. Examining the influence of self-care practices on brain activity in healthy older adults. Front Aging Neurosci 2024; 16:1420072. [PMID: 39026994 PMCID: PMC11254819 DOI: 10.3389/fnagi.2024.1420072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Studies on the aging brain often occur in active settings, but comparatively few investigate brain activity in resting states. However, exploring brain activity in a resting state offers valuable insights into spontaneous neural processes unaffected by task-specific influences. Objective: To investigate the relationship between self-care practices, cognitive function, and patterns of brain activity in healthy older adults, taking into account predictions from aging brain models. Methodology 77 older adults aged 61 to 87 completing a self-care practices questionnaire, neuropsychological tests, and resting-state electroencephalogram (EEG) recordings. Participants were classified into two groups according to their self-care practices: traditional self-care (T-SC) and developmental self-care (D-SC). Results Although neuropsychological tests did not yield significant differences between the D-SC and T-SC groups, patterns of brain activity revealed distinct behaviors. The T-SC group demonstrated patterns more consistent with established aging brain models, contrasting with the D-SC group, which exhibited brain activity akin to that observed in younger adults. Specifically, the T-SC group displayed hyperactivation related to memory and executive function performance, alongside heightened alpha power in posterior regions. Furthermore, bilateral frontal activation in the beta band was evident. Conclusions The findings suggest a nuanced relationship between self-care practices and brain activity in older adults. While the T-SC group demonstrated brain activity patterns consistent with conservative aging, indicating the preservation of typical aging characteristics, the D-SC group displayed activity suggestive of a potential protective effect. This effect may be linked to self-care strategies that foster development and resilience in cognitive aging.
Collapse
Affiliation(s)
| | - Carmen Requena
- Laboratory of Lab-EEG-Lifespan, University of León, León, Spain
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Fehr T, Mehrens S, Haag MC, Amelung A, Gloy K. Changes in Spatiotemporal Dynamics of Default Network Oscillations between 19 and 29 Years of Age. Brain Sci 2024; 14:671. [PMID: 39061412 PMCID: PMC11274777 DOI: 10.3390/brainsci14070671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The exploration of functional resting-state brain developmental parameters and measures can help to improve scientific, psychological, and medical applications. The present work focussed on both traditional approaches, such as topographical power analyses at the signal space level, and advanced approaches, such as the exploration of age-related dynamics of source space data. The results confirmed the expectation that the third life decade would show a kind of stability in oscillatory signal and source-space-related parameters. However, from a source dynamics perspective, different frequency ranges appear to develop quite differently, as reflected in age-related sequential network communication profiles. Among other discoveries, the left anterior cingulate source location could be shown to reduce bi-directional network communication in the lower alpha band, whereas it differentiated its uni- and bidirectional communication dynamics to sub-cortical and posterior brain locations. Higher alpha oscillations enhanced communication dynamics between the thalamus and particularly frontal areas. In conclusion, resting-state data appear to be, at least in part, functionally reorganized in the default mode network, while quantitative measures, such as topographical power and regional source activity, did not correlate with age in the third life decade. In line with other authors, we suggest the further development of a multi-perspective approach in biosignal analyses.
Collapse
Affiliation(s)
- Thorsten Fehr
- Institute for Psychology, University of Bremen, 28357 Bremen, Germany (K.G.)
- Center for Advanced Imaging, University of Bremen, 28357 Bremen, Germany
| | - Sophia Mehrens
- Institute for Psychology, University of Bremen, 28357 Bremen, Germany (K.G.)
| | | | - Anneke Amelung
- Institute for Psychology, University of Bremen, 28357 Bremen, Germany (K.G.)
| | - Kilian Gloy
- Institute for Psychology, University of Bremen, 28357 Bremen, Germany (K.G.)
| |
Collapse
|
3
|
Nagy P, Tóth B, Winkler I, Boncz Á. The effects of spatial leakage correction on the reliability of EEG-based functional connectivity networks. Hum Brain Mapp 2024; 45:e26747. [PMID: 38825981 PMCID: PMC11144954 DOI: 10.1002/hbm.26747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Electroencephalography (EEG) functional connectivity (FC) estimates are confounded by the volume conduction problem. This effect can be greatly reduced by applying FC measures insensitive to instantaneous, zero-lag dependencies (corrected measures). However, numerous studies showed that FC measures sensitive to volume conduction (uncorrected measures) exhibit higher reliability and higher subject-level identifiability. We tested how source reconstruction contributed to the reliability difference of EEG FC measures on a large (n = 201) resting-state data set testing eight FC measures (including corrected and uncorrected measures). We showed that the high reliability of uncorrected FC measures in resting state partly stems from source reconstruction: idiosyncratic noise patterns define a baseline resting-state functional network that explains a significant portion of the reliability of uncorrected FC measures. This effect remained valid for template head model-based, as well as individual head model-based source reconstruction. Based on our findings we made suggestions how to best use spatial leakage corrected and uncorrected FC measures depending on the main goals of the study.
Collapse
Affiliation(s)
- Péter Nagy
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Faculty of Electrical Engineering and Informatics, Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
| | - Brigitta Tóth
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - István Winkler
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Ádám Boncz
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
4
|
Auer T, Goldthorpe R, Peach R, Hebron H, Violante IR. Functionally annotated electrophysiological neuromarkers of healthy ageing and memory function. Hum Brain Mapp 2024; 45:e26687. [PMID: 38651629 PMCID: PMC11036379 DOI: 10.1002/hbm.26687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/22/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
The unprecedented increase in life expectancy presents a unique opportunity and the necessity to explore both healthy and pathological aspects of ageing. Electroencephalography (EEG) has been widely used to identify neuromarkers of cognitive ageing due to its affordability and richness in information. However, despite the growing volume of data and methodological advancements, the abundance of contradictory and non-reproducible findings has hindered clinical translation. To address these challenges, our study introduces a comprehensive workflow expanding on previous EEG studies and investigates various static and dynamic power and connectivity estimates as potential neuromarkers of cognitive ageing in a large dataset. We also assess the robustness of our findings by testing their susceptibility to band specification. Finally, we characterise our findings using functionally annotated brain networks to improve their interpretability and multi-modal integration. Our analysis demonstrates the effect of methodological choices on findings and that dynamic rather than static neuromarkers are not only more sensitive but also more robust. Consequently, they emerge as strong candidates for cognitive ageing neuromarkers. Moreover, we were able to replicate the most established EEG findings in cognitive ageing, such as alpha oscillation slowing, increased beta power, reduced reactivity across multiple bands, and decreased delta connectivity. Additionally, when considering individual variations in the alpha band, we clarified that alpha power is characteristic of memory performance rather than ageing, highlighting its potential as a neuromarker for cognitive ageing. Finally, our approach using functionally annotated source reconstruction allowed us to provide insights into domain-specific electrophysiological mechanisms underlying memory performance and ageing. HIGHLIGHTS: We provide an open and reproducible pipeline with a comprehensive workflow to investigate static and dynamic EEG neuromarkers. Neuromarkers related to neural dynamics are sensitive and robust. Individualised alpha power characterises cognitive performance rather than ageing. Functional annotation allows cross-modal interpretation of EEG findings.
Collapse
Affiliation(s)
- Tibor Auer
- School of PsychologyUniversity of SurreyGuildfordUK
| | | | | | - Henry Hebron
- School of PsychologyUniversity of SurreyGuildfordUK
| | | |
Collapse
|
5
|
Hanna A, Jirsch J, Alain C, Corvinelli S, Lee JS. Electroencephalogram measured functional connectivity for delirium detection: a systematic review. Front Neurosci 2023; 17:1274837. [PMID: 38033553 PMCID: PMC10687158 DOI: 10.3389/fnins.2023.1274837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Objective Delirium is an acute alteration of consciousness marked by confusion, inattention, and changes in cognition. Some speculate that delirium may be a disorder of functional connectivity, but the requirement to lay still may limit measurement with existing functional imaging modalities in this population. Electroencephalography (EEG) may allow for a more feasible approach to the study of potential connectivity disturbances in delirium. We conducted a systematic review to investigate whether there are EEG-measurable differences in brain functional connectivity in the resting state associated with delirium. Methods Medline, PubMed, PsychInfo, Embase and CINAHL were searched for relevant articles containing original data studying EEG functional connectivity measures in delirium. Results The search yielded 1,516 records. Following strict inclusion criteria, four studies were included in the review. The studies used a variety of EEG measures including phase lag index, coherence, entropy, shortest path length, minimum spanning tree, and network clustering coefficients to study functional connectivity between scalp electrodes. Across connectivity measures, delirium was associated with decreased brain functional connectivity. All four studies found decreased alpha band connectivity for patients with delirium. None of the studies directly compared the different motor subtypes of delirium. Significance This systematic review provides converging evidence for disturbances in oscillatory-based functional connectivity in delirium.
Collapse
Affiliation(s)
- Angelica Hanna
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON, Canada
| | - Jeffrey Jirsch
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Claude Alain
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute Baycrest, Toronto, ON, Canada
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Sara Corvinelli
- Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jacques S. Lee
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Martínez-Briones BJ, Fernández T, Silva-Pereyra J. Semantic Priming and Its Link to Verbal Comprehension and Working Memory in Children with Learning Disorders. Brain Sci 2023; 13:1022. [PMID: 37508954 PMCID: PMC10377304 DOI: 10.3390/brainsci13071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Children with learning disorders (LD children) often have heterogeneous cognitive impairments that affect their ability to learn and use basic academic skills. A proposed cause for this variability has been working memory (WM) capacity. Altered patterns of event-related potentials (ERPs) in these children have also been found in the N400 component associated with semantic priming. However, regarding the semantic priming effect in LD children, no distinction has been made for children with varying WM abilities. This study aims to explore the relationship of WM with the brain's electrophysiological response that underlies semantic priming in LD children that performed a lexical decision task. A total of 40 children (8-10 years old) participated: 28 children with LD and 12 age-matched controls. The ERPs were recorded for each group and analyzed with permutation-based t-tests. The N400 effect was observed only in the control group, and both groups showed a late positive complex (LPC). Permutation-based regression analyses were performed for the results from the LD group using the WISC-IV indices (e.g., Verbal Comprehension and WM) as independent predictors of the ERPs. The Verbal Comprehension Index, but not the WM index, was a significant predictor of the N400 and LPC effects in LD children.
Collapse
Affiliation(s)
| | - Thalía Fernández
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro 76230, Mexico
| | - Juan Silva-Pereyra
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlanepantla 54090, Mexico
| |
Collapse
|
7
|
Li Y, Zhao W, Peng X. Investigating mechanism of the effect of emotional facial expressions on attentional processing by data clustering approach. Sci Rep 2023; 13:6343. [PMID: 37072466 PMCID: PMC10113223 DOI: 10.1038/s41598-023-33197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023] Open
Abstract
To explore the mechanism of the effect of emotional facial expression on attentional process, time course and topographic map of Electroencephalographic activities affected by emotional stimuli were investigated. Emotional Stroop task was used to collect 64-channel event-related potentials (ERP) in nonclinical participants, and data clustering was applied to find significant effect of sad and happy facial expression on ERP. Several significant ERP clusters were found in the sad and happy conditions respectively. In the sad condition, the decreased N170 in the bilateral parietooccipital areas, the increased P3 in the right centroparietal region and the increased negative deflection between 600 and 650 ms in the prefrontal regions were observed, these alterations reflected inhibited perceptual processing of sad facial expression, and increased activations of the orienting network and the executive control network in attentional system, respectively. In the happy condition, increased negative slow wave was found in the left centroparietal region indicating strengthened awareness and readiness for successive trials. Importantly, nonpathological attentional bias to sad facial expression in nonclinical participants was associated with inhibited perceptual processing and increased activations of the orienting and executive control networks. It provides the basis for better understanding and application of attentional bias in psychiatric clinical utilization.
Collapse
Affiliation(s)
- Yuezhi Li
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Weifeng Zhao
- Department of Psychiatry, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, Guangdong, China.
| | - Xiaobo Peng
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China
| |
Collapse
|
8
|
Perinelli A, Assecondi S, Tagliabue CF, Mazza V. Power shift and connectivity changes in healthy aging during resting-state EEG. Neuroimage 2022; 256:119247. [PMID: 35477019 DOI: 10.1016/j.neuroimage.2022.119247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/15/2022] Open
Abstract
The neural activity of human brain changes in healthy individuals during aging. The most frequent variation in patterns of neural activity are a shift from posterior to anterior areas and a reduced asymmetry between hemispheres. These patterns are typically observed during task execution and by using functional magnetic resonance imaging data. In the present study we investigated whether analogous effects can also be detected during rest and by means of source-space time series reconstructed from electroencephalographic recordings. By analyzing oscillatory power distribution across the brain we indeed found a shift from posterior to anterior areas in older adults. We additionally examined this shift by evaluating connectivity and its changes with age. The findings indicated that inter-area connections among frontal, parietal and temporal areas were strengthened in older individuals. A more complex pattern was shown in intra-area connections, where age-related activity was enhanced in parietal and temporal areas, and reduced in frontal areas. Finally, the resulting network exhibits a loss of modularity with age. Overall, the results extend to resting-state condition the evidence of an age-related shift of brain activity from posterior to anterior areas, thus suggesting that this shift is a general feature of the aging brain rather than being task-specific. In addition, the connectivity results provide new information on the reorganization of resting-state brain activity in aging.
Collapse
Affiliation(s)
- Alessio Perinelli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto, TN, Italy.
| | - Sara Assecondi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto, TN, Italy
| | - Chiara F Tagliabue
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto, TN, Italy
| | - Veronica Mazza
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto, TN, Italy
| |
Collapse
|
9
|
Gu H, Shan X, He H, Zhao J, Li X. EEG Evidence of Altered Functional Connectivity and Microstate in Children Orphaned by HIV/AIDS. Front Psychiatry 2022; 13:898716. [PMID: 35845439 PMCID: PMC9277056 DOI: 10.3389/fpsyt.2022.898716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Children orphaned by HIV/AIDS ("AIDS orphans") suffer numerous early-life adverse events which have a long-lasting effect on brain function. Although previous studies found altered electroencephalography (EEG) oscillation during resting state in children orphaned by HIV/AIDS, data are limited regarding the alterations in connectivity and microstate. The current study aimed to investigate the functional connectivity (FC) and microstate in children orphaned by HIV/AIDS with resting-state EEG data. Data were recorded from 63 children orphaned by HIV/AIDS and 65 non-orphan controls during a close-eyes resting state. The differences in phase-locking value (PLV) of global average FC and temporal dynamics of microstate were compared between groups. For functional connectivity, children orphaned by HIV/AIDS showed decreased connectivity in alpha, beta, theta, and delta band compared with non-orphan controls. For microstate, EEG results demonstrated that children orphaned by HIV/AIDS show increased duration and coverage of microstate C, decreased occurrence and coverage of microstate B, and decreased occurrence of microstate D than non-orphan controls. These findings suggest that the microstate and functional connectivity has altered in children orphaned by HIV/AIDS compared with non-orphan controls and provide additional evidence that early life stress (ELS) would alter the structure and function of the brain and increase the risk of psychiatric disorders.
Collapse
Affiliation(s)
- Huang Gu
- Institute of Behavior and Psychology, School of Psychology, Henan University, Kaifeng, China
| | - Xueke Shan
- Institute of Behavior and Psychology, School of Psychology, Henan University, Kaifeng, China
| | - Hui He
- Institute of Behavior and Psychology, School of Psychology, Henan University, Kaifeng, China
| | - Junfeng Zhao
- Institute of Behavior and Psychology, School of Psychology, Henan University, Kaifeng, China
| | - Xiaoming Li
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| |
Collapse
|