1
|
Pelles-Taskó B, Szekeres R, Takács B, Szilágyi A, Ujvárosy D, Bombicz M, Priksz D, Varga B, Gesztelyi R, Szabó Z, Szilvássy Z, Juhász B. From Nature to Treatment: The Impact of Pterostilbene on Mitigating Retinal Ischemia-Reperfusion Damage by Reducing Oxidative Stress, Inflammation, and Apoptosis. Life (Basel) 2024; 14:1148. [PMID: 39337931 PMCID: PMC11433448 DOI: 10.3390/life14091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Retinal ischemia-reperfusion (I/R) injury is a critical pathogenic mechanism in various eye diseases, and an effective therapeutic strategy remains unresolved. Natural derivatives have recently reemerged; therefore, in our present study, we examined the potential therapeutic effects of a stilbenoid that is chemically related to resveratrol. Pterostilbene, recognized for its anti-inflammatory, anti-carcinogenic, anti-diabetic, and neuroprotective properties, counteracts oxidative stress during I/R injury through various mechanisms. This study explored pterostilbene as a retinoprotective agent. Male Sprague Dawley rats underwent retinal I/R injury and one-week reperfusion and were treated with either vehicle or pterostilbene. After this functional electroretinographical (ERG) measurement, Western blot and histological analyses were performed. Pterostilbene treatment significantly improved retinal function, as evidenced by increased b-wave amplitude on ERG. Histological studies showed reduced retinal thinning and preserved the retinal structure in the pterostilbene-treated groups. Moreover, Western blot analysis revealed a decreased expression of glial fibrillary acidic protein (GFAP) and heat shock protein 70 (HSP70), indicating reduced glial activation and cellular stress. Additionally, the expression of pro-apoptotic and inflammatory markers, poly(ADP-ribose) polymerase 1 (PARP1) and nuclear factor kappa B (NFκB) was significantly reduced in the pterostilbene-treated group. These findings suggest that pterostilbene offers protective effects on the retina by diminishing oxidative stress, inflammation, and apoptosis, thus preserving retinal function and structure following I/R injury. This study underscores pterostilbene's potential as a neuroprotective therapeutic agent for treating retinal ischemic injury and related disorders.
Collapse
Affiliation(s)
- Beáta Pelles-Taskó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (B.P.-T.); (R.S.); (B.T.); (A.S.); (M.B.); (D.P.); (B.V.); (R.G.); (Z.S.)
| | - Réka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (B.P.-T.); (R.S.); (B.T.); (A.S.); (M.B.); (D.P.); (B.V.); (R.G.); (Z.S.)
| | - Barbara Takács
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (B.P.-T.); (R.S.); (B.T.); (A.S.); (M.B.); (D.P.); (B.V.); (R.G.); (Z.S.)
| | - Anna Szilágyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (B.P.-T.); (R.S.); (B.T.); (A.S.); (M.B.); (D.P.); (B.V.); (R.G.); (Z.S.)
| | - Dóra Ujvárosy
- Department of Emergency Medicine, University of Debrecen Clinical Centre, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (D.U.); (Z.S.)
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (B.P.-T.); (R.S.); (B.T.); (A.S.); (M.B.); (D.P.); (B.V.); (R.G.); (Z.S.)
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (B.P.-T.); (R.S.); (B.T.); (A.S.); (M.B.); (D.P.); (B.V.); (R.G.); (Z.S.)
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (B.P.-T.); (R.S.); (B.T.); (A.S.); (M.B.); (D.P.); (B.V.); (R.G.); (Z.S.)
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (B.P.-T.); (R.S.); (B.T.); (A.S.); (M.B.); (D.P.); (B.V.); (R.G.); (Z.S.)
| | - Zoltán Szabó
- Department of Emergency Medicine, University of Debrecen Clinical Centre, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (D.U.); (Z.S.)
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (B.P.-T.); (R.S.); (B.T.); (A.S.); (M.B.); (D.P.); (B.V.); (R.G.); (Z.S.)
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (B.P.-T.); (R.S.); (B.T.); (A.S.); (M.B.); (D.P.); (B.V.); (R.G.); (Z.S.)
- Department of Emergency Medicine, University of Debrecen Clinical Centre, Nagyerdei St. 98., H-4032 Debrecen, Hungary; (D.U.); (Z.S.)
| |
Collapse
|
2
|
Freeberg KA, Udovich CC, Martens CR, Seals DR, Craighead DH. Dietary Supplementation With NAD+-Boosting Compounds in Humans: Current Knowledge and Future Directions. J Gerontol A Biol Sci Med Sci 2023; 78:2435-2448. [PMID: 37068054 PMCID: PMC10692436 DOI: 10.1093/gerona/glad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 04/18/2023] Open
Abstract
Advancing age and many disease states are associated with declines in nicotinamide adenine dinucleotide (NAD+) levels. Preclinical studies suggest that boosting NAD+ abundance with precursor compounds, such as nicotinamide riboside or nicotinamide mononucleotide, has profound effects on physiological function in models of aging and disease. Translation of these compounds for oral supplementation in humans has been increasingly studied within the last 10 years; however, the clinical evidence that raising NAD+ concentrations can improve physiological function is unclear. The goal of this review was to synthesize the published literature on the effects of chronic oral supplementation with NAD+ precursors on healthy aging and age-related chronic diseases. We identified nicotinamide riboside, nicotinamide riboside co-administered with pterostilbene, and nicotinamide mononucleotide as the most common candidates in investigations of NAD+-boosting compounds for improving physiological function in humans. Studies have been performed in generally healthy midlife and older adults, adults with cardiometabolic disease risk factors such as overweight and obesity, and numerous patient populations. Supplementation with these compounds is safe, tolerable, and can increase the abundance of NAD+ and related metabolites in multiple tissues. Dosing regimens and study durations vary greatly across interventions, and small sample sizes limit data interpretation of physiological outcomes. Limitations are identified and future research directions are suggested to further our understanding of the potential efficacy of NAD+-boosting compounds for improving physiological function and extending human health span.
Collapse
Affiliation(s)
- Kaitlin A Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - CeAnn C Udovich
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
3
|
Qu X, Zhang L, Wang L. Pterostilbene as a Therapeutic Alternative for Central Nervous System Disorders: A Review of the Current Status and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14432-14457. [PMID: 37786984 DOI: 10.1021/acs.jafc.3c06238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurological disorders are diverse, have complex causes, and often result in disability; yet, effective treatments remain scarce. The resveratrol derivative pterostilbene possesses numerous physiological activities that hold promise as a novel therapy for the central nervous system (CNS) disorders. This review aimed to summarize the protective mechanisms of pterostilbene in in vitro and in vivo models of CNS disorders and the pharmacokinetics and safety to assess its possible effects on CNS disorders. Available evidence supports the protective effects of pterostilbene in CNS disorders involving mechanisms such as antioxidant and anti-inflammatory activity, regulation of lipid metabolism and vascular smooth muscle cell proliferation, improvement of synaptic function and neurogenesis, induction of glioma cell cycle arrest, and inhibition of glioma cell migration and invasion. Studies have identified possible molecular targets and pathways for the protective actions of pterostilbene in CNS disorders including the AMPK/STAT3, Akt, NF-κB, MAPK, and ERK signaling pathways. The possible pharmacological effects and molecular pathways of pterostilbene in CNS disorders are critically discussed in this review. Future studies should aim to increase our understanding of pterostilbene in animal models and humans to further evaluate its role in CNS disorders and the detailed mechanisms.
Collapse
Affiliation(s)
- Xin Qu
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, P.R. China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| |
Collapse
|
4
|
Cui YR, Bu ZQ, Yu HY, Yan LL, Feng J. Emodin attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis. Neural Regen Res 2023; 18:1535-1541. [PMID: 36571359 PMCID: PMC10075100 DOI: 10.4103/1673-5374.358612] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Emodin, a substance extracted from herbs such as rhubarb, has a protective effect on the central nervous system. However, the potential therapeutic effect of emodin in the context of multiple sclerosis remains unknown. In this study, a rat model of experimental autoimmune encephalomyelitis was established by immune induction to simulate multiple sclerosis, and the rats were intraperitoneally injected with emodin (20 mg/kg/d) from the day of immune induction until they were sacrificed. In this model, the nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and the microglia exacerbated neuroinflammation, playing an important role in the development of multiple sclerosis. In addition, silent information regulator of transcription 1 (SIRT1)/peroxisome proliferator-activated receptor-alpha coactivator (PGC-1α) was found to inhibit activation of the NLRP3 inflammasome, and SIRT1 activation reduced disease severity in experimental autoimmune encephalomyelitis. Furthermore, treatment with emodin decreased body weight loss and neurobehavioral deficits, alleviated inflammatory cell infiltration and demyelination, reduced the expression of inflammatory cytokines, inhibited microglial aggregation and activation, decreased the levels of NLRP3 signaling pathway molecules, and increased the expression of SIRT1 and PGC-1α. These findings suggest that emodin improves the symptoms of experimental autoimmune encephalomyelitis, possibly through regulating the SIRT1/PGC-1α/NLRP3 signaling pathway and inhibiting microglial inflammation. These findings provide experimental evidence for treatment of multiple sclerosis with emodin, enlarging the scope of clinical application for emodin.
Collapse
Affiliation(s)
- Yue-Ran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhong-Qi Bu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hai-Yang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Li-Li Yan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
5
|
Kubiliute A, Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Bruzaite A, Zaliuniene D, Liutkeviciene R. The role of SIRT1 level and SIRT1 gene polymorphisms in optic neuritis patients with multiple sclerosis. Orphanet J Rare Dis 2023; 18:64. [PMID: 36949521 PMCID: PMC10031967 DOI: 10.1186/s13023-023-02665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/11/2023] [Indexed: 03/24/2023] Open
Abstract
THE AIM To investigate the role of Sirtuin 1 (SIRT1) level and SIRT1 (rs3818292, rs3758391, rs7895833) gene polymorphisms in patients with optic neuritis (ON) and multiple sclerosis (MS). METHODS 79 patients with ON and 225 healthy subjects were included in the study. ON patients were divided into 2 subgroups: patients with MS (n = 30) and patients without MS (n = 43). 6 ON patients did not have sufficient data for MS diagnosis and were excluded from the subgroup analysis. DNA was extracted from peripheral blood leukocytes and genotyped by real-time polymerase chain reaction. Results were analysed using the program "IBM SPSS Statistics 27.0". RESULTS We discovered that SIRT1 rs3758391 was associated with a twofold increased odds of developing ON under the codominant (p = 0.007), dominant (p = 0.011), and over-dominant (p = 0.008) models. Also, it was associated with a threefold increased odds ofON with MS development under the dominant (p = 0.010), twofold increased odds under the over-dominant (p = 0.032) models and a 1.2-fold increased odds of ON with MS development (p = 0.015) under the additive model. We also discovered that the SIRT1 rs7895833 was significantly associated with a 2.5-fold increased odds of ON development under the codominant (p = 0.001), dominant (p = 0.006), and over-dominant (p < 0.001) models, and a fourfold increased odds of ON with MS development under the codominant (p < 0.001), dominant (p = 0.001), over-dominant (p < 0.001) models and with a twofold increased odds of ON with MS development (p = 0.013) under the additive genetic model. There was no association between SIRT1 levels and ON with/without MS development. CONCLUSIONS SIRT1 rs3758391 and rs7895833 polymorphisms are associated with ON and ON with MS development.
Collapse
Affiliation(s)
- Aleksandra Kubiliute
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania.
| | - Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Akvile Bruzaite
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Dalia Zaliuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2 Str, 50161, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2 Str, 50161, Kaunas, Lithuania
| |
Collapse
|
6
|
Treatment with MDL 72527 Ameliorated Clinical Symptoms, Retinal Ganglion Cell Loss, Optic Nerve Inflammation, and Improved Visual Acuity in an Experimental Model of Multiple Sclerosis. Cells 2022; 11:cells11244100. [PMID: 36552864 PMCID: PMC9776605 DOI: 10.3390/cells11244100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple Sclerosis (MS) is a highly disabling neurological disease characterized by inflammation, neuronal damage, and demyelination. Vision impairment is one of the major clinical features of MS. Previous studies from our lab have shown that MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX), is protective against neurodegeneration and inflammation in the models of diabetic retinopathy and excitotoxicity. In the present study, utilizing the experimental autoimmune encephalomyelitis (EAE) model of MS, we determined the impact of SMOX blockade on retinal neurodegeneration and optic nerve inflammation. The increased expression of SMOX observed in EAE retinas was associated with a significant loss of retinal ganglion cells, degeneration of synaptic contacts, and reduced visual acuity. MDL 72527-treated mice exhibited markedly reduced motor deficits, improved neuronal survival, the preservation of synapses, and improved visual acuity compared to the vehicle-treated group. The EAE-induced increase in macrophage/microglia was markedly reduced by SMOX inhibition. Upregulated acrolein conjugates in the EAE retina were decreased through MDL 72527 treatment. Mechanistically, the EAE-induced ERK-STAT3 signaling was blunted by SMOX inhibition. In conclusion, our studies demonstrate the potential benefits of targeting SMOX to treat MS-mediated neuroinflammation and vision loss.
Collapse
|
7
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
8
|
Piacente F, Bottero M, Benzi A, Vigo T, Uccelli A, Bruzzone S, Ferrara G. Neuroprotective Potential of Dendritic Cells and Sirtuins in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23084352. [PMID: 35457169 PMCID: PMC9025744 DOI: 10.3390/ijms23084352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Myeloid cells, including parenchymal microglia, perivascular and meningeal macrophages, and dendritic cells (DCs), are present in the central nervous system (CNS) and establish an intricate relationship with other cells, playing a crucial role both in health and in neurological diseases. In this context, DCs are critical to orchestrating the immune response linking the innate and adaptive immune systems. Under steady-state conditions, DCs patrol the CNS, sampling their local environment and acting as sentinels. During neuroinflammation, the resulting activation of DCs is a critical step that drives the inflammatory response or the resolution of inflammation with the participation of different cell types of the immune system (macrophages, mast cells, T and B lymphocytes), resident cells of the CNS and soluble factors. Although the importance of DCs is clearly recognized, their exact function in CNS disease is still debated. In this review, we will discuss modern concepts of DC biology in steady-state and during autoimmune neuroinflammation. Here, we will also address some key aspects involving DCs in CNS patrolling, highlighting the neuroprotective nature of DCs and emphasizing their therapeutic potential for the treatment of neurological conditions. Recently, inhibition of the NAD+-dependent deac(et)ylase sirtuin 6 was demonstrated to delay the onset of experimental autoimmune encephalomyelitis, by dampening DC trafficking towards inflamed LNs. Thus, a special focus will be dedicated to sirtuins’ role in DCs functions.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Andrea Benzi
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Santina Bruzzone
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
- Correspondence: ; Tel.: +39-(0)10-353-8150
| | - Giovanni Ferrara
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| |
Collapse
|