1
|
Hukema FW, Hetty S, Kagios C, Zelleroth S, Fanni G, Pereira MJ, Svensson MK, Sundbom M, Nilsson A, Andrén PE, Roman E, Eriksson JW. Abundance of dopamine and its receptors in the brain and adipose tissue following diet-induced obesity or caloric restriction. Transl Res 2025; 280:41-54. [PMID: 40345434 DOI: 10.1016/j.trsl.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
While obesity and type 2 diabetes (T2D) are associated with altered dopaminergic activity in the central nervous system and in adipose tissue (AT), the directions and underlying mechanisms remain inconclusive. Therefore, we characterized changes in the abundance of dopamine, its metabolites, and receptors DRD1 and DRD2 in the brain and AT upon dietary intervention or obesity. Male Wistar rats were fed either a standard pellet diet, a cafeteria diet inducing obesity and insulin resistance, or a calorie-restricted diet for 12 weeks. Abundance of dopamine and its receptors DRD1 and DRD2 were examined in brain regions relevant for feeding behavior and energy homeostasis. Furthermore, DRD1 and DRD2 protein levels were analyzed in rat inguinal and epidydimal AT and in human subcutaneous and omental AT from individuals with or without obesity. Rats with diet-induced obesity displayed higher dopamine levels, as well as DRD1 or DRD2 receptor levels in the caudate putamen and the nucleus accumbens core. Surprisingly, caloric restriction induced similar changes in DRD1 and DRD2, but not in dopamine levels, in the brain. Both diets reduced DRD1 abundance in inguinal and epidydimal AT, but upregulated DRD2 levels in inguinal AT. Furthermore, in human obesity, DRD1 protein levels were elevated only in omental AT, while DRD2 was upregulated in both omental and subcutaneous AT. These findings highlight dopaminergic responses to changes in energy balance, occurring both in the brain and AT. We propose that dopaminergic pathways are involved in tissue crosstalk during the development of obesity and T2D.
Collapse
Affiliation(s)
- Fleur W Hukema
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| | - Christakis Kagios
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| | - Sofia Zelleroth
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden.
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| | - Maria K Svensson
- Department of Medical Sciences, Renal Medicine, Uppsala University, 751 85, Uppsala, Sweden; Uppsala Clinical Research Center, Uppsala University, 751 85, Uppsala, Sweden.
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden.
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden.
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden.
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden; Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
2
|
Laaker CJ, Cantelon C, Davis AB, Lloyd KR, Agyeman N, Hiltz AR, Smith BL, Konsman JP, Reyes TM. Early life cancer and chemotherapy lead to cognitive deficits related to alterations in microglial-associated gene expression in prefrontal cortex. Brain Behav Immun 2023; 113:176-188. [PMID: 37468114 PMCID: PMC10529696 DOI: 10.1016/j.bbi.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/24/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Children that survive leukemia are at an increased risk for cognitive difficulties. A better understanding of the neurobiological changes in response to early life chemotherapy will help develop therapeutic strategies to improve quality of life for leukemia survivors. To that end, we used a translationally-relevant mouse model consisting of leukemic cell line (L1210) injection into postnatal day (P)19 mice followed by methotrexate, vincristine, and leucovorin chemotherapy. Beginning one week after the end of chemotherapy, social behavior, recognition memory and executive function (using the 5 choice serial reaction time task (5CSRTT)) were tested in male and female mice. Prefrontal cortex (PFC) and hippocampus (HPC) were collected at the conclusion of behavioral assays for gene expression analysis. Mice exposed to early life cancer + chemotherapy were slower to progress through increasingly difficult stages of the 5CSRTT and showed an increase in premature errors, indicating impulsive action. A cluster of microglial-related genes in the PFC were found to be associated with performance in the 5CSRTT and acquisition of the operant response, and long-term changes in gene expression were evident in both PFC and HPC. This work identifies gene expression changes in PFC and HPC that may underlie cognitive deficits in survivors of early life exposure to cancer + chemotherapy.
Collapse
Affiliation(s)
- Collin J Laaker
- University of Cincinnati, College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH, USA
| | - Claire Cantelon
- University of Cincinnati, College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH, USA
| | - Alyshia B Davis
- University of Cincinnati, College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH, USA
| | - Kelsey R Lloyd
- University of Cincinnati, College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH, USA
| | - Nana Agyeman
- University of Cincinnati, College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH, USA
| | - Adam R Hiltz
- University of Cincinnati, College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH, USA
| | - Brittany L Smith
- University of Cincinnati, College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH, USA
| | - Jan Pieter Konsman
- University of Cincinnati, College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH, USA
| | - Teresa M Reyes
- University of Cincinnati, College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH, USA.
| |
Collapse
|