1
|
Engeln M, Ahmed SH. Remission from addiction: erasing the wrong circuits or making new ones? Nat Rev Neurosci 2025; 26:115-130. [PMID: 39663409 DOI: 10.1038/s41583-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Chronic relapse is a hallmark of substance-use disorders (SUDs), but many people with SUDs do recover and eventually enter remission. Many preclinical studies in this field aim to identify interventions that can precipitate recovery by reversing or erasing the neuronal circuit changes caused by chronic drug use. A better understanding of remission from SUDs can also come from preclinical studies that model factors known to influence recovery in humans, such as the negative consequences of drug use and positive environmental influences. In this Perspective we discuss human neuroimaging studies that have provided information about recovery from SUDs and highlight mechanisms identified in preclinical studies - such as the reconfiguration of neuronal circuits - that could contribute to remission. We also analyse how studies of memory and forgetting can provide insights into the mechanisms of remission. Overall, we propose that remission can be driven by the introduction of new neuronal changes (which outcompete those induced by drugs) as well as by the erasure of drug-induced changes.
Collapse
Affiliation(s)
- Michel Engeln
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France.
| | - Serge H Ahmed
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
2
|
Li H, Ying L, Wan F, Shiqiao K, Yijie F, Chuli X, Xudong Y, Xinhong Y, Zhiyong X. Esketamine enhances memory reconsolidation in the novel object recognition task. Physiol Behav 2024; 277:114461. [PMID: 38215863 DOI: 10.1016/j.physbeh.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Esketamine, the right-handed optical isomer of racemic ketamine, is a rapidly acting antidepressant approved by the FDA for treatment-resistant depression in 2019. However, few studies have investigated esketamine's role in learning and memory, particularly in the context of memory reconsolidation. Herein, we evaluated esketamine's role in memory reconsolidation in 7-week-old male Institute of Cancer Research mice subjected to the novel object recognition (NOR) memory task. The NOR reconsolidation procedure comprised three phases: sampling, reactivation, and testing. Esketamine-enhanced NOR memory performance when injected into mice 0 h after reactivation rather than following a 6 h delay. Conversely, administering esketamine 24 h after sampling without reactivation did not enhance NOR memory performance. Notably, esketamine exhibited no discernible effects on nonspecific responses, such as locomotor activity and exploratory behavior. Furthermore, the α-amino-3‑hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptor antagonist NBQX effectively blocked the esketamine-induced enhancement of memory reconsolidation. In conclusion, esketamine treatment markedly improves memory reconsolidation in NOR tasks, and this effect is linked to AMPA receptor activity.
Collapse
Affiliation(s)
- Huang Li
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, 422000, Shaoyang, China
| | - Lu Ying
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, 422000, Shaoyang, China
| | - Fu Wan
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Kang Shiqiao
- The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Fang Yijie
- School of Nursing, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Xiao Chuli
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, 422000, Shaoyang, China
| | - Yu Xudong
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, 422000, Shaoyang, China.
| | - Yin Xinhong
- School of Nursing, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| | - Xiao Zhiyong
- The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Custodio J, Justel N. Stress and Novelty: Two interventions to modulate emotional memory in adolescents. JOURNAL OF COGNITIVE ENHANCEMENT 2023. [DOI: 10.1007/s41465-023-00258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|