1
|
Zare Z, Zarbakhsh S, Mohammadi M. Perinatal thyroid hormone deficiency leads to oxidative stress-induced neuronal damage and activation of astrocytes in rat hippocampus: Neuroprotective effect of exercise. Neuroscience 2025; 576:96-104. [PMID: 40300692 DOI: 10.1016/j.neuroscience.2025.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/11/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025]
Abstract
Thyroid hormones play a crucial role in proper brain development. This study examined the effects of developmental thyroid hormone deficiency on neuronal survival, glial fibrillary acidic protein (GFAP)-positive cells, and oxidative stress biomarkers in the hippocampus of congenital hypothyroid rats. The effectiveness of treadmill exercise in attenuating oxidative stress-induced neuronal damage and astrocyte activation was also evaluated. Pregnant Wistar rats in the hypothyroid group received propylthiouracil in their drinking water from gestational day 6 until weaning, while control dams received only tap water. Then, male offspring from both groups were further divided into two sub-groups: with or without four weeks of treadmill exercise. After sacrifice, the right hemispheres were processed for cresyl violet staining and immunohistochemistry, while the left hippocampi were used for biochemical assays. Results showed a reduced number of neurons and an increased number of GFAP-positive cells in the CA1 region of hypothyroid rats, with no significant changes in the CA3 region. Additionally, congenital hypothyroidism was associated with increased malondialdehyde levels, decreased glutathione levels, and reduced superoxide dismutase and catalase activity in the hippocampus. Treadmill exercise reduced astrocyte activation and protected neurons by inhibiting oxidative stress. Collectively, our results indicate that congenital thyroid hormone deficiency triggers astrocyte activation and compromises neuronal survival in the CA1 region by inducing oxidative stress. Exercise may serve as a beneficial supplementary treatment for attenuating oxidative stress-induced neuronal damage in congenital hypothyroidism.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Zare Z, Shafia S, Mohammadi M. Thyroid hormone deficiency affects anxiety-related behaviors and expression of hippocampal glutamate transporters in male congenital hypothyroid rat offspring. Horm Behav 2024; 162:105548. [PMID: 38636205 DOI: 10.1016/j.yhbeh.2024.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sakineh Shafia
- Department of Physiology, Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
He W, Zhang S, Qi Z, Liu W. Unveiling the potential of estrogen: Exploring its role in neuropsychiatric disorders and exercise intervention. Pharmacol Res 2024; 204:107201. [PMID: 38704108 DOI: 10.1016/j.phrs.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like β-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.
Collapse
Affiliation(s)
- Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| |
Collapse
|
4
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
5
|
Kang Y, Yao J, Gao X, Zhong H, Song Y, Di X, Feng Z, Xie L, Zhang J. Exercise ameliorates anxious behavior and promotes neuroprotection through osteocalcin in VCD-induced menopausal mice. CNS Neurosci Ther 2023; 29:3980-3994. [PMID: 37402694 PMCID: PMC10651954 DOI: 10.1111/cns.14324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
AIMS As the ovaries age and women transition to menopause and postmenopause, reduced estradiol levels are associated with anxiety and depression. Exercise contributes to alleviate anxiety and depression and the bone-derived hormone osteocalcin has been reported to be necessary to prevent anxiety-like behaviors. The aim of this study was to investigate the effects of exercise on anxiety behaviors in climacteric mice and whether it was related to osteocalcin. METHODS Menopausal mouse model was induced by intraperitoneal injection of 4-vinylcyclohexene diepoxide (VCD). Open field, elevated plus maze, and light-dark tests were used to detect anxious behavior in mice. The content of serum osteocalcin was measured and its correlation with anxiety behavior was analyzed. BRDU and NEUN co-localization cells were detected with immunofluorescence. Western blot was applied to obtain apoptosis-related proteins. RESULTS The VCD mice showed obvious anxiety-like behaviors and 10 weeks of treadmill exercise significantly ameliorated the anxiety and increased circulating osteocalcin in VCD mice. Exercise increased the number of BRDU and NEUN co-localization cells in hippocampal dentate gyrus, reduced the number of impaired hippocampal neurons, inhibited the expression of BAX, cleaved Caspase3, and cleaved PARP, promoted the expression of BCL-2. Importantly, circulating osteocalcin levels were positively associated with the improvements of anxiety, the number of BRDU and NEUN co-localization cells in hippocampal dentate gyrus and negatively related to impaired hippocampal neurons. CONCLUSION Exercise ameliorates anxiety behavior, promotes hippocampal dentate gyrus neurogenesis, and inhibits hippocampal cell apoptosis in VCD-induced menopausal mice. They are related to circulating osteocalcin, which are increased by exercise.
Collapse
Affiliation(s)
- Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Jie Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- School of NursingShaanxi University of Chinese MedicineXianyangChina
| | - Xiaohang Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Hao Zhong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Yifei Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Xiaohui Di
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Zeguo Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Lin Xie
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
6
|
Liu Y, Guo W, Hong SL. Aerobic exercise mitigates hippocampal neuronal apoptosis by regulating DAPK1/CDKN2A/REDD1/FoXO1/FasL signaling pathway in D-galactose-induced aging mice. FASEB J 2023; 37:e23205. [PMID: 37768886 DOI: 10.1096/fj.202300847rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
Brain aging is the most important risk factor for neurodegenerative disorders, and abnormal apoptosis is linked to neuronal dysfunction. Specifically, studies have found that exercise effectively inhibits hippocampal neuronal apoptosis, while the molecular mechanism remains unclear. In the present study, we investigated the impact of aerobic exercise on hippocampal neuronal apoptosis in aging mice and the potential involvement of DAPK1 and its downstream pathways based on recent data that DAPK1 may be associated with neuronal death in neurodegenerative diseases. Senescent mice were subjected to 8 weeks of Aerobic training. Following behavioral testing, hippocampal samples were examined histologically and biochemically to detect pathological changes, neuronal apoptosis, and mRNA and protein levels. We found that the exercise intervention improved spatial memory and alleviated neuronal apoptosis in the brain. Notably, exercise down-regulated DAPK1 expression and inhibited Fas death receptor transactivation and the mitochondrial apoptotic pathway in the hippocampus. These results shed new light on the protective effect of regular exercise against brain aging though modulating the DAPK1 pathway.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Wen Guo
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Si-Lu Hong
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| |
Collapse
|