1
|
Fu Y, Yao L, Wang W, Ou J, Yang X, Chen Q, Fan H, Lu F, Song J, Li Y, Subramaniam P, Singh DKA. Transcranial alternating current stimulation for older adults with cognitive impairment: A bibliometric and knowledge map analysis. Medicine (Baltimore) 2024; 103:e39304. [PMID: 39331872 PMCID: PMC11441954 DOI: 10.1097/md.0000000000039304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/25/2024] [Indexed: 09/29/2024] Open
Abstract
As the population ages, cognitive impairment leading to dementia and related disorders presents an increasingly significant societal burden. Transcranial alternating current stimulation emerges as a potential noninvasive treatment, yet remains an area of ongoing research. Using the Science Citation Index Expanded within the Web of Science Core Collection database, we identified 144 relevant articles spanning from 1965 to December 1st, 2023. Analyzing these papers with tools like 6.2.R5Citespace and 1.6.20VOS viewer revealed gamma frequency as the predominant stimulus (32), followed by theta (19), alpha (11), delta (2), beta (3), and others (32). This topic was relatively novel, showing an upward trend, albeit with gaps in some countries. Significant contributions were observed, particularly from authors in the USA, Germany, and Italy. Brain connectivity and oscillation stood out as the primary research subjects, with electroencephalography being the most widely used tool to detect underlying mechanisms. Our findings suggest promising applications of transcranial alternating current stimulation, particularly 40 Hz-gamma, in cognitive impairment among older adults, highlighting the need for further investigation using multimodal cognitive assessment tools and rigorous clinical research.
Collapse
Affiliation(s)
- Yutong Fu
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Liqing Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wenli Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jibing Ou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xue Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Qian Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong Fan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Fang Lu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jin Song
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yanmei Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Ponnusamy Subramaniam
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Devinder Kaur Ajit Singh
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Veldema J, Steingräber T, von Grönheim L, Wienecke J, Regel R, Schack T, Schütz C. Direct Current Stimulation over the Primary Motor Cortex, Cerebellum, and Spinal Cord to Modulate Balance Performance: A Randomized Placebo-Controlled Trial. Bioengineering (Basel) 2024; 11:353. [PMID: 38671775 PMCID: PMC11048454 DOI: 10.3390/bioengineering11040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVES Existing applications of non-invasive brain stimulation in the modulation of balance ability are focused on the primary motor cortex (M1). It is conceivable that other brain and spinal cord areas may be comparable or more promising targets in this regard. This study compares transcranial direct current stimulation (tDCS) over (i) the M1, (ii) the cerebellum, and (iii) trans-spinal direct current stimulation (tsDCS) in the modulation of balance ability. METHODS Forty-two sports students were randomized in this placebo-controlled study. Twenty minutes of anodal 1.5 mA t/tsDCS over (i) the M1, (ii) the cerebellum, and (iii) the spinal cord, as well as (iv) sham tDCS were applied to each subject. The Y Balance Test, Single Leg Landing Test, and Single Leg Squat Test were performed prior to and after each intervention. RESULTS The Y Balance Test showed significant improvement after real stimulation of each region compared to sham stimulation. While tsDCS supported the balance ability of both legs, M1 and cerebellar tDCS supported right leg stand only. No significant differences were found in the Single Leg Landing Test and the Single Leg Squat Test. CONCLUSIONS Our data encourage the application of DCS over the cerebellum and spinal cord (in addition to the M1 region) in supporting balance control. Future research should investigate and compare the effects of different stimulation protocols (anodal or cathodal direct current stimulation (DCS), alternating current stimulation (ACS), high-definition DCS/ACS, closed-loop ACS) over these regions in healthy people and examine the potential of these approaches in the neurorehabilitation.
Collapse
Affiliation(s)
- Jitka Veldema
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Teni Steingräber
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Leon von Grönheim
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Jana Wienecke
- Department of Exercise and Health, Paderborn University, 33098 Paderborn, Germany;
| | - Rieke Regel
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Thomas Schack
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Christoph Schütz
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| |
Collapse
|
3
|
Katagiri N, Saho T, Shibukawa S, Tanabe S, Yamaguchi T. Predicting interindividual response to theta burst stimulation in the lower limb motor cortex using machine learning. Front Neurosci 2024; 18:1363860. [PMID: 38572150 PMCID: PMC10987705 DOI: 10.3389/fnins.2024.1363860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Using theta burst stimulation (TBS) to induce neural plasticity has played an important role in improving the treatment of neurological disorders. However, the variability of TBS-induced synaptic plasticity in the primary motor cortex prevents its clinical application. Thus, factors associated with this variability should be explored to enable the creation of a predictive model. Statistical approaches, such as regression analysis, have been used to predict the effects of TBS. Machine learning may potentially uncover previously unexplored predictive factors due to its increased capacity for capturing nonlinear changes. In this study, we used our prior dataset (Katagiri et al., 2020) to determine the factors that predict variability in TBS-induced synaptic plasticity in the lower limb motor cortex for both intermittent (iTBS) and continuous (cTBS) TBS using machine learning. Validation of the created model showed an area under the curve (AUC) of 0.85 and 0.69 and positive predictive values of 77.7 and 70.0% for iTBS and cTBS, respectively; the negative predictive value was 75.5% for both patterns. Additionally, the accuracy was 0.76 and 0.72, precision was 0.82 and 0.67, recall was 0.82 and 0.67, and F1 scores were 0.82 and 0.67 for iTBS and cTBS, respectively. The most important predictor of iTBS was the motor evoked potential amplitude, whereas it was the intracortical facilitation for cTBS. Our results provide additional insights into the prediction of the effects of TBS variability according to baseline neurophysiological factors.
Collapse
Affiliation(s)
- Natsuki Katagiri
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Tatsunori Saho
- Department of Radiological Technology, Kokura Memorial Hospital, Fukuoka, Japan
| | - Shuhei Shibukawa
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, University of Tokyo, Tokyo, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| |
Collapse
|
4
|
Alcock L, Vitório R, Stuart S, Rochester L, Pantall A. Faster Walking Speeds Require Greater Activity from the Primary Motor Cortex in Older Adults Compared to Younger Adults. SENSORS (BASEL, SWITZERLAND) 2023; 23:6921. [PMID: 37571703 PMCID: PMC10422240 DOI: 10.3390/s23156921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Gait speed declines with age and slower walking speeds are associated with poor health outcomes. Understanding why we do not walk faster as we age, despite being able to, has implications for rehabilitation. Changes in regional oxygenated haemoglobin (HbO2) across the frontal lobe were monitored using functional near infrared spectroscopy in 17 young and 18 older adults while they walked on a treadmill for 5 min, alternating between 30 s of walking at a preferred and fast (120% preferred) speed. Gait was quantified using a triaxial accelerometer (lower back). Differences between task (preferred/fast) and group (young/old) and associations between regional HbO2 and gait were evaluated. Paired tests indicated increased HbO2 in the supplementary motor area (right) and primary motor cortex (left and right) in older adults when walking fast (p < 0.006). HbO2 did not significantly change in the young when walking fast, despite both groups modulating gait. When evaluating the effect of age (linear mixed effects model), greater increases in HbO2 were observed for older adults when walking fast (prefrontal cortex, premotor cortex, supplementary motor area and primary motor cortex) compared to young adults. In older adults, increased step length and reduced step length variability were associated with larger increases in HbO2 across multiple regions when walking fast. Walking fast required increased activation of motor regions in older adults, which may serve as a therapeutic target for rehabilitation. Widespread increases in HbO2 across the frontal cortex highlight that walking fast represents a resource-intensive task as we age.
Collapse
Affiliation(s)
- Lisa Alcock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (L.A.); (L.R.)
- National Institute for Health and Care Research (NIHR), Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Rodrigo Vitório
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (R.V.); (S.S.)
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (R.V.); (S.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lynn Rochester
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (L.A.); (L.R.)
- National Institute for Health and Care Research (NIHR), Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Annette Pantall
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|