1
|
He Y, Ju Y, Lei H, Dong J, Jin N, Lu J, Chen S, Wang X. MiR-135a-5p regulates window of implantation by suppressing pinopodes development and decidualization of endometrial stromal cells. J Assist Reprod Genet 2024; 41:1645-1659. [PMID: 38512656 PMCID: PMC11224217 DOI: 10.1007/s10815-024-03088-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE The window of implantation (WOI) is a brief period during which the endometrium is receptive to embryo implantation. This study investigated the relationship between miR-135a-5p and endometrial receptivity. METHODS Peripheral blood was collected on the day of ovulation and the 5th day after ovulation for high-throughput sequencing from women who achieved clinical pregnancy through natural cycle frozen embryo transfer. RT-qPCR assessed miR-135a-5p expression in the endometrium tissue or cells during the mouse implantation window or decidualization. Scanning electron microscopy was utilized to observe pinopode morphology and quantity in mice overexpressing miR-135a-5p during the WOI. Human endometrial stromal cells (HESC) and artificial induction of mouse uterine decidualization were used to explore whether miR-135a-5p overexpression inhibits decidualization by regulating HOXA10 and BMPR2. Furthermore, the impact of miR-135a-5p on HESC proliferation and HTR8/SVneo invasion was explored. RESULTS A total of 54 women were enrolled in the study. bioinformatics analysis and animal models demonstrated that miR-135a-5p was significantly downregulated during the WOI, and its high expression can lead to abnormal pregnancy outcomes. Overexpression of miR-135a-5p resulted in the absence of pinopode in mouse endometrial tissue during the WOI. High miR-135a-5p levels were found to potentially inhibit endometrial tissue decidualization by downregulating HOXA10 and BMPR2 expression. Finally, CEBPD was identified as a potential regulator of miR-135a-5p, which would explain the decreased miR-135a-5p expression during the WOI. CONCLUSION MiR-135a-5p expression is significantly downregulated during the WOI. High miR-135a-5p levels suppress pinopode development and endometrial tissue decidualization through HOXA10 and BMPR2, contributing to inadequate endometrial receptivity.
Collapse
Affiliation(s)
- Yunan He
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ying Ju
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hui Lei
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jie Dong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ni Jin
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jie Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Shuqiang Chen
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China.
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China.
| | - Xiaohong Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China.
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Guo H, Du M, Yang Y, Lin X, Wang Y, Li H, Ren J, Xu W, Yan J, Wang N. Sp1 Regulates the M1 Polarization of Microglia Through the HuR/NF-κB Axis after Spinal Cord Injury. Neuroscience 2024; 544:50-63. [PMID: 38387733 DOI: 10.1016/j.neuroscience.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The M1 polarization of microglia, followed by the production of pro-inflammatory mediators, hinders functional recovery after spinal cord injury (SCI). Our previous study has illuminated that specificity protein 1 (Sp1) expression is increased following SCI, whereas the function and regulatory mechanism of Sp1 during M1 polarization of microglia following SCI remain unknown. RNA binding protein, HuR, has been shown to be up-regulated in the injured spinal cord through analysis of the GEO database. Further investigation using Chip-Atlas data suggests a binding between Sp1 and HuR. Emerging evidence indicates that HuR plays a pivotal role in neuroinflammation after SCI. In this research, Sp1 and HuR levels in mice with SCI and BV2 cells treated with lipopolysaccharide (LPS) was determined by using quantitative real-time polymerase chain reaction and Western blotting techniques. A series of in vitro assays were performed to investigate the function of Sp1 during M1 polarization of microglia. The association between Sp1 and its target gene HuR was confirmed through gene transfection and luciferase reporter assay. Enhanced expression of HuR was observed in both SCI mice and LPS-treated BV2 cells, while Sp1 knockdown restrained M1 polarization of microglia and its associated inflammation by inhibiting the NF-κB signaling pathway. Silencing Sp1 also suppressed microglia activation and its mediated inflammatory response, which could be reversed by overexpression of HuR. In conclusion, silencing Sp1 restrains M1 polarization of microglia through the HuR/NF-κB axis, leading to neuroprotection, and thus promotes functional restoration following SCI.
Collapse
Affiliation(s)
- Hangyu Guo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Mingyu Du
- Department of Operating Room, First Affiliated Hospital of Harbin Medical University, Harbin, 150007, PR China
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Xin Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Yufu Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Helin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Jiyu Ren
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Wenbo Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Jinglong Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China.
| | - Nanxiang Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
3
|
Xu Q, Kong F, Zhao G, Jin J, Feng S, Li M. SP1 transcriptionally activates HTR2B to aggravate traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Orthop Surg Res 2024; 19:230. [PMID: 38589918 PMCID: PMC11000286 DOI: 10.1186/s13018-024-04678-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) can result in structural and functional damage to the spinal cord, which may lead to loss of limb movement and sensation, loss of bowel and bladder control, and other complications. Previous studies have revealed the critical influence of trans-acting transcription factor 1 (SP1) in neurological pathologies, however, its role and mechanism in SCI have not been fully studied. METHODS The study was performed using mouse microglia BV2 stimulated using lipopolysaccharide (LPS) and male adult mice subjected to spinal hitting. Western blotting was performed to detect protein expression of SP1, 5-hydroxytryptamine (serotonin) receptor 2B (HTR2B), BCL2-associated x protein (Bax), B-cell lymphoma-2 (Bcl-2), inducible nitric oxide synthase (iNOS), clusters of differentiation 86 (CD86), Arginase 1 (Arg-1) and clusters of differentiation 206 (CD206). Cell viability and apoptosis were analyzed by MTT assay and TUNEL assay. mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-4 (IL-4) and tumor necrosis factor-β (TNF-β) were quantified by quantitative real-time polymerase chain reaction. The association of SP1 and HTR2B was identified by chromatin immunoprecipitation assay and dual-luciferase reporter assay. HE staining assay was performed to analyze the pathological conditions of spinal cord tissues. RESULTS LPS treatment induced cell apoptosis and inhibited microglia polarization from M1 to M2 phenotype, accompanied by an increase of Bax protein expression and a decrease of Bcl-2 protein expression, however, these effects were relieved after SP1 silencing. Mechanism assays revealed that SP1 transcriptionally activated HTR2B in BV2 cells, and HTR2B knockdown rescued LPS-induced effects on BV2 cell apoptosis and microglial M1/M2 polarization. Moreover, SP1 absence inhibited BV2 cell apoptosis and promoted microglia polarization from M1 to M2 phenotype by decreasing HTR2B expression. SCI mouse model assay further showed that SP1 downregulation could attenuate spinal hitting-induced promoting effects on cell apoptosis of spinal cord tissues and microglial M1 polarization. CONCLUSION SP1 transcriptionally activated HTR2B to aggravate traumatic SCI by shifting microglial M1/M2 polarization.
Collapse
Affiliation(s)
- Qifei Xu
- Department of Orthopedics, The First People's Hospital of Pingdingshan, Pingdingshan, 467000, China
| | - Fanguo Kong
- Department of Orthopedics, Henan Provincial Orthopedic Hospital, No. 100, Yongping Road, Zhengdong New District, Zhengzhou, 450045, China.
| | - Guanghui Zhao
- Department of Orthopedics, The First People's Hospital of Pingdingshan, Pingdingshan, 467000, China
| | - Junwei Jin
- Department of Orthopedics, The First People's Hospital of Pingdingshan, Pingdingshan, 467000, China
| | - Shengkai Feng
- Department of Orthopedics, The First People's Hospital of Pingdingshan, Pingdingshan, 467000, China
| | - Ming Li
- Department of Orthopedics, The First People's Hospital of Pingdingshan, Pingdingshan, 467000, China
| |
Collapse
|
4
|
Finotti A, Gasparello J, Zuccato C, Cosenza LC, Fabbri E, Bianchi N, Gambari R. Effects of Mithramycin on BCL11A Gene Expression and on the Interaction of the BCL11A Transcriptional Complex to γ-Globin Gene Promoter Sequences. Genes (Basel) 2023; 14:1927. [PMID: 37895276 PMCID: PMC10606601 DOI: 10.3390/genes14101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The anticancer drug mithramycin (MTH), has been proposed for drug repurposing after the finding that it is a potent inducer of fetal hemoglobin (HbF) production in erythroid precursor cells (ErPCs) from β-thalassemia patients. In this respect, previously published studies indicate that MTH is very active in inducing increased expression of γ-globin genes in erythroid cells. This is clinically relevant, as it is firmly established that HbF induction is a valuable approach for the therapy of β-thalassemia and for ameliorating the clinical parameters of sickle-cell disease (SCD). Therefore, the identification of MTH biochemical/molecular targets is of great interest. This study is inspired by recent robust evidence indicating that the expression of γ-globin genes is controlled in adult erythroid cells by different transcriptional repressors, including Oct4, MYB, BCL11A, Sp1, KLF3 and others. Among these, BCL11A is very important. In the present paper we report evidence indicating that alterations of BCL11A gene expression and biological functions occur during MTH-mediated erythroid differentiation. Our study demonstrates that one of the mechanisms of action of MTH is a down-regulation of the transcription of the BCL11A gene, while a second mechanism of action is the inhibition of the molecular interactions between the BCL11A complex and specific sequences of the γ-globin gene promoter.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
- Department of Translational Medicine and for Romagna, Ferrara University, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|