1
|
Said M, Jing J, Montigon O, Collomb N, Vossier F, Chovelon B, El Amine B, Jeacomine I, Lemasson B, Barbier EL, Detante O, Rome C, Auzély-Velty R. A T1 MRI detectable hyaluronic acid hydrogel for in vivo tracking after intracerebral injection in stroke. J Mater Chem B 2025; 13:4103-4117. [PMID: 40042261 DOI: 10.1039/d4tb02722a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Injectable hydrogels have emerged as a promising strategy for treating stroke and neurodegenerative diseases, but their effectiveness depends on precise injection, defect filling, and long-term retention at the target site. While MRI can help visualize hydrogels, distinguishing them from fluid-filled spaces, like a post-stroke cavity at a chronic stage, is challenging owing to their high water content and similar MR properties. In this study, a T1 MRI detectable hyaluronic acid (HA) hydrogel that is injectable and self-healing was developed for in vivo tracking after intracerebral injection in stroke. This HA hydrogel was functionalized with a thermodynamically stable and kinetically inert gadolinium(III) complex for monitoring its long-term fate in the brain with T1-contrast enhanced MRI. The dynamic covalent cross-links based on boronate ester bonds in the hydrogel network ensured precise injection and instantaneous self-healing. The HA network did not induce adverse tissue response and was biocompatible with therapeutic cells (human adipose stromal/stem cells). Furthermore, this labeling strategy enabled accurate tracking of hydrogel distribution and degradation in stroke condition, allowing a better assessment of efficacy and safety. This MRI-visible hydrogel has significant potential as a scaffold for stem cells, growth factors, and/or drugs, paving the way for more effective treatments for brain disorders.
Collapse
Affiliation(s)
- Moustoifa Said
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France.
| | - Jing Jing
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France.
| | - Olivier Montigon
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- Univ. Grenoble Alpes, IRMaGe, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Nora Collomb
- Univ. Grenoble Alpes, IRMaGe, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Frédérique Vossier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Benoît Chovelon
- Univ. Grenoble-Alpes, Département de Pharmacochimie Moléculaire UMR 5063, 38400 Grenoble, France
- CHU de Grenoble-Alpes, Institut de Biologie et Pathologie, 38700 La Tronche, France
| | - Bayan El Amine
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Isabelle Jeacomine
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France.
| | - Benjamin Lemasson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Emmanuel Luc Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- Univ. Grenoble Alpes, IRMaGe, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Olivier Detante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- CHU Grenoble Alpes, Stroke Unit, Department of Neurology, 38043 Grenoble, France
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France.
| |
Collapse
|
2
|
Yadav VK, Gupta R, Assiri AA, Uddin J, Ishaqui AA, Kumar P, Orayj KM, Tahira S, Patel A, Choudhary N. Role of Nanotechnology in Ischemic Stroke: Advancements in Targeted Therapies and Diagnostics for Enhanced Clinical Outcomes. J Funct Biomater 2025; 16:8. [PMID: 39852564 PMCID: PMC11766075 DOI: 10.3390/jfb16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Each year, the number of cases of strokes and deaths due to this is increasing around the world. This could be due to work stress, lifestyles, unhealthy food habits, and several other reasons. Currently, there are several traditional methods like thrombolysis and mechanical thrombectomy for managing strokes. The current approach has several limitations, like delayed diagnosis, limited therapeutic delivery, and risks of secondary injuries. So, there is a need for some effective and reliable methods for the management of strokes, which could help in early diagnosis followed by the treatment of strokes. Nanotechnology has played an immense role in managing strokes, and recently, it has emerged as a transformative solution offering innovative diagnostic tools and therapeutic strategies. Nanoparticles (NPs) belonging to several classes, including metallic (metallic and metal oxide), organic (lipids, liposome), and carbon, can cross the blood-brain barrier and may exhibit immense potential for managing various strokes. Moreover, these NPs have exhibited promise in improving imaging specificity and therapeutic delivery by precise drug delivery and real-time monitoring of treatment efficacy. Nanomaterials like cerium oxide (CeO2) and liposome-encapsulated agents have neuroprotective properties that reduce oxidative stress and promote neuroregeneration. In the present article, the authors have emphasized the significant advancements in the nanomedicine management of stroke, including NPs-based drug delivery systems, neuroprotective and neuroregenerative therapies, and multimodal imaging advancements.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Rachna Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382021, Gujarat, India;
| | - Abdullah A. Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Azfar A. Ishaqui
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India;
| | - Khalid M. Orayj
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Shazia Tahira
- Institute of Professional Psychology, Bahria University Karachi Campus, Karachi 75260, Pakistan;
- Department of Psychiatry, Jinnah Postgraduate Medical Centre, Karachi 75510, Pakistan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
- Department of Lifesciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| |
Collapse
|
3
|
Jerkic M, Rabani R. Special Issue "Mesenchymal Stromal Cells' Involvement in Human Diseases and Their Treatment". Int J Mol Sci 2024; 25:1269. [PMID: 38279269 PMCID: PMC10816837 DOI: 10.3390/ijms25021269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent, non-hematopoietic cells that have the ability to differentiate into several mature cell types, including adipocytes, chondrocytes, osteoblasts, and myoblasts [...].
Collapse
Affiliation(s)
- Mirjana Jerkic
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Razieh Rabani
- CReATe Fertilty Center, Toronto, ON M5G 1N8, Canada;
| |
Collapse
|