1
|
Yang H, Huang G, Li X, Wu M, Zhou W, Yin X, Zhang M, Chen Z. High-resolution magnetic resonance vessel wall imaging provides new insights into Moyamoya disease. Front Neurosci 2024; 18:1375645. [PMID: 38665292 PMCID: PMC11043609 DOI: 10.3389/fnins.2024.1375645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Moyamoya disease (MMD) is a rare condition that affects the blood vessels of the central nervous system. This cerebrovascular disease is characterized by progressive narrowing and blockage of the internal carotid, middle cerebral, and anterior cerebral arteries, which results in the formation of a compensatory fragile vascular network. Currently, digital subtraction angiography (DSA) is considered the gold standard in diagnosing MMD. However, this diagnostic technique is invasive and may not be suitable for all patients. Hence, non-invasive imaging methods such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are often used. However, these methods may have less reliable diagnostic results. Therefore, High-Resolution Magnetic Resonance Vessel Wall Imaging (HR-VWI) has emerged as the most accurate method for observing and analyzing arterial wall structure. It enhances the resolution of arterial walls and enables quantitative and qualitative analysis of plaque, facilitating the identification of atherosclerotic lesions, vascular entrapment, myofibrillar dysplasia, moyamoya vasculopathy, and other related conditions. Consequently, HR-VWI provides a new and more reliable evaluation criterion for diagnosing vascular lesions in patients with Moyamoya disease.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Guilan Huang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Xi Li
- Department of Neurology, University of California Irvine Medical Center, Irvine, CA, United States
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| |
Collapse
|
2
|
Wu J, Xin J, Yang X, Matkovic LA, Zhao X, Zheng N, Li R. Segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black blood magnetic resonance imaging with multi-task learning. Med Phys 2024; 51:1775-1797. [PMID: 37681965 DOI: 10.1002/mp.16728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Early detection of carotid atherosclerosis can prevent the progression of cardiovascular disease. Many (semi-) automatic methods have been designed for the segmentation of carotid vessel wall and the diagnosis of carotid atherosclerosis (i.e., the lumen segmentation, the outer wall segmentation, and the carotid atherosclerosis diagnosis) on black blood magnetic resonance imaging (BB-MRI). However, most of these methods ignore the intrinsic correlation among different tasks on BB-MRI, leading to limited performance. PURPOSE Thus, we model the intrinsic correlation among the lumen segmentation, the outer wall segmentation, and the carotid atherosclerosis diagnosis tasks on BB-MRI by using the multi-task learning technique and propose a gated multi-task network (GMT-Net) to perform three related tasks in a neural network (i.e., carotid artery lumen segmentation, outer wall segmentation, and carotid atherosclerosis diagnosis). METHODS In the proposed method, the GMT-Net is composed of three modules, including the sharing module, the segmentation module, and the diagnosis module, which interact with each other to achieve better learning performance. At the same time, two new adaptive layers, namely, the gated exchange layer and the gated fusion layer, are presented to exchange and merge branch features. RESULTS The proposed method is applied to the CAREII dataset (i.e., 1057 scans) for the lumen segmentation, the outer wall segmentation, and the carotid atherosclerosis diagnosis. The proposed method can achieve promising segmentation performances (0.9677 Dice for the lumen and 0.9669 Dice for the outer wall) and better diagnosis accuracy of carotid atherosclerosis (0.9516 AUC and 0.9024 Accuracy) in the "CAREII test" dataset (i.e., 106 scans). The results show that the proposed method has statistically significant accuracy and efficiency. CONCLUSIONS Even without the intervention of reviewers required for the previous works, the proposed method automatically segments the lumen and outer wall together and diagnoses carotid atherosclerosis with high performance. The proposed method can be used in clinical trials to help radiologists get rid of tedious reading tasks, such as screening review to separate normal carotid arteries from atherosclerotic arteries and to outline vessel wall contours.
Collapse
Affiliation(s)
- Jiayi Wu
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University
| | - Jingmin Xin
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Luke A Matkovic
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Nanning Zheng
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Bomben MA, Moody AR, Drake JM, Matsuura N. Fabrication of Customizable Intraplaque Hemorrhage Phantoms for Magnetic Resonance Imaging. Mol Imaging Biol 2022; 24:732-739. [PMID: 35486294 PMCID: PMC9581813 DOI: 10.1007/s11307-022-01722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Magnetic resonance (MR) imaging detection of methemoglobin, a molecular marker of intraplaque hemorrhage (IPH), in atherosclerotic plaque is a promising method of assessing stroke risk. However, the multicenter imaging studies required to further validate this technique necessitate the development of IPH phantoms to standardize images acquired across different scanners. This study developed a set of phantoms that modeled methemoglobin-laden IPH for use in MR image standardization. PROCEDURES A time-stable material mimicking the MR properties of methemoglobin in IPH was created by doping agarose hydrogel with gadolinium and sodium alginate. This material was used to create a phantom that consisted of 9 cylindrical IPH sites (with sizes from 1 to 8 mm). Anatomical replicas of IPH-positive atherosclerosis were also created using 3D printed molds. These plaque replicas also modeled other common plaque components including a lipid core and atheroma cap. T1 mapping and a magnetization-prepared rapid acquisition gradient echo (MPRAGE) carotid imaging protocol were used to assess phantom realism and long-term stability. RESULTS Cylindrical phantom IPH sites possessed a T1 time of 335 ± 51 ms and exhibited little change in size or MPRAGE signal intensity over 31 days; the mean (SD) magnitude of changes in size and signal were 6.4 % (2.7 %) and 7.3 % (6.7 %), respectively. IPH sites incorporated into complex anatomical plaque phantoms exhibited contrast comparable to clinical images. CONCLUSIONS The cylindrical IPH phantom accurately modeled the short T1 time characteristic of methemoglobin-laden IPH, with the IPH sites exhibiting little variation in imaging properties over 31 days. Furthermore, MPRAGE images of the anatomical atherosclerosis replicas closely matched those of clinical plaques. In combination, these phantoms will allow for IPH imaging protocol standardization and thus facilitate future multicenter IPH imaging.
Collapse
Affiliation(s)
- Matteo A Bomben
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- The Wilfred and Joyce Posluns Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan R Moody
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Sunnybrook Hospital, Toronto, ON, Canada
| | - James M Drake
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- The Wilfred and Joyce Posluns Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, 184 College Street, Room 140, Toronto, ON, M5S 3E4, Canada
| | - Naomi Matsuura
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, 184 College Street, Room 140, Toronto, ON, M5S 3E4, Canada.
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Lu M, Zhang L, Yuan F, Peng P, Zhang H, Liu S, He Y, Cai J, Zhao X. Comparison of carotid atherosclerotic plaque characteristics between symptomatic patients with transient ischemic attack and stroke using high-resolution magnetic resonance imaging. BMC Cardiovasc Disord 2022; 22:190. [PMID: 35448952 PMCID: PMC9026690 DOI: 10.1186/s12872-022-02624-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background This study aimed to compare the characteristics of carotid plaques between patients with transient ischemic attack (TIA) and ischemic stroke using magnetic resonance (MR) imaging. Methods Patients with a recent ischemic stroke or TIA who exhibited atherosclerotic plaques of carotid arteries in the symptomatic sides determined by MR vessel wall imaging were recruited. The plaque morphology and compositions including intraplaque hemorrhage (IPH), lipid-rich necrotic-core (LRNC) and calcification were compared between TIA and stroke patients. Logistic regression was performed to relate the plaque characteristics to the types of ischemic events. Results A total of 270 patients with TIA or ischemic stroke were recruited. Stroke patients had a significantly higher prevalence of diabetes (42.2% vs. 28.2%, p = 0.021), greater mean wall area (35.1 ± 10.1 mm2 vs. 32.0 ± 7.7 mm2, p = 0.004), mean wall thickness (1.3 ± 0.2 mm vs. 1.2 ± 0.2 mm, p = 0.001), maximum normalized wall index (NWI)(63.9% ± 6.0% vs. 62.2% ± 5.9%, p = 0.023) and %volume of LRNC (9.7% ± 8.2% vs. 7.4% ± 7.9%, p = 0.025) in the carotid arteries compared to those with TIA. After adjustment for clinical factors, above characteristics of carotid arteries were significantly associated with the type of ischemic events. After further adjustment for maximum NWI, this association remained statistically significant (OR, 1.41; CI, 1.01–1.96; p = 0.041). Conclusions Ischemic stroke patients had larger plaque burden and greater proportion of LRNC in carotid plaques compared to those with TIA. This study suggests that ischemic stroke patients had more vulnerable plaques compared to those with TIA.
Collapse
Affiliation(s)
- Mingming Lu
- Institute of Geriatrics, State Key Laboratory of Kidney Disease, Beijing Key Laboratory of Aging and Geriatrics, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Radiology, Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Lichen Zhang
- Department of Radiology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fei Yuan
- Department of Radiology, Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Peng Peng
- Department of Radiology, Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Hongtao Zhang
- Department of Radiology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shitong Liu
- Department of Radiology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yao He
- Institute of Geriatrics, State Key Laboratory of Kidney Disease, Beijing Key Laboratory of Aging and Geriatrics, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jianming Cai
- Department of Radiology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
5
|
Edelman RR, Leloudas N, Pang J, Koktzoglou I. Dark blood cardiovascular magnetic resonance of the heart, great vessels, and lungs using electrocardiographic-gated three-dimensional unbalanced steady-state free precession. J Cardiovasc Magn Reson 2021; 23:127. [PMID: 34724939 PMCID: PMC8559409 DOI: 10.1186/s12968-021-00808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, we reported a novel neuroimaging technique, unbalanced T1 Relaxation-Enhanced Steady-State (uT1RESS), which uses a tailored 3D unbalanced steady-state free precession (3D uSSFP) acquisition to suppress the blood pool signal while minimizing bulk motion sensitivity. In the present work, we hypothesized that 3D uSSFP might also be useful for dark blood imaging of the chest. To test the feasibility of this approach, we performed a pilot study in healthy subjects and patients undergoing cardiovascular magnetic resonance (CMR). MAIN BODY The study was approved by the hospital institutional review board. Thirty-one adult subjects were imaged at 1.5 T, including 5 healthy adult subjects and 26 patients (44 to 86 years, 10 female) undergoing a clinically indicated CMR. Breath-holding was used in 29 subjects and navigator gating in 2 subjects. For breath-hold acquisitions, the 3D uSSFP pulse sequence used a high sampling bandwidth, asymmetric readout, and single-shot along the phase-encoding direction, while 3 shots were acquired for navigator-gated scans. To minimize signal dephasing from bulk motion, electrocardiographic (ECG) gating was used to synchronize the data acquisition to the diastolic phase of the cardiac cycle. To further reduce motion sensitivity, the moment of the dephasing gradient was set to one-fifth of the moment of the readout gradient. Image quality using 3D uSSFP was good-to-excellent in all subjects. The blood pool signal in the thoracic aorta was uniformly suppressed with sharp delineation of the aortic wall including two cases of ascending aortic aneurysm and two cases of aortic dissection. Compared with variable flip angle 3D turbo spin-echo, 3D uSSFP showed improved aortic wall sharpness. It was also more efficient, permitting the acquisition of 24 slices in each breath-hold versus 16 slices with 3D turbo spin-echo and a single slice with dual inversion 2D turbo spin-echo. In addition, lung and mediastinal lesions appeared highly conspicuous compared with the low blood pool signals within the heart and blood vessels. In two subjects, navigator-gated 3D uSSFP provided excellent delineation of cardiac morphology in double oblique multiplanar reformations. CONCLUSION In this pilot study, we have demonstrated the feasibility of using ECG-gated 3D uSSFP for dark blood imaging of the heart, great vessels, and lungs. Further study will be required to fully optimize the technique and to assess clinical utility.
Collapse
Affiliation(s)
- Robert R. Edelman
- Department of Radiology, Northshore University HealthSystem, Evanston, IL USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Walgreen Building, G534, 2650 Ridge Avenue, Evanston, IL 60201 USA
| | - Nondas Leloudas
- Department of Radiology, Northshore University HealthSystem, Evanston, IL USA
| | - Jianing Pang
- Siemens Medical Solutions USA Inc., Chicago, IL USA
| | - Ioannis Koktzoglou
- Department of Radiology, Northshore University HealthSystem, Evanston, IL USA
- Radiology, Pritzker School of Medicine, University of Chicago, Chicago, IL USA
| |
Collapse
|
6
|
Benson JC, Savastano L, Nardi V, Lanzino G, Lerman A, Brinjikji W. Intraplaque CTA characteristics as predictors of symptomatology: a semiautomated volumetric analysis. Emerg Radiol 2021; 29:75-80. [PMID: 34613574 DOI: 10.1007/s10140-021-01941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prior studies comparing CT characteristics of carotid plaques to symptomatology have relied on gross morphologic imaging features. This study sought to determine if volumetric measurements of carotid plaque components are associated with ipsilateral neurologic symptoms. MATERIALS AND METHODS CTA images of consecutive patients that underwent a carotid endarterectomy were reviewed with a semiautomated software package. Intraplaque volumes of intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), and matrix were computed, as was the degree of arterial stenosis. Statistics were analyzed on a per cerebral hemisphere basis, and dichotomized into symptomatic and asymptomatic. Clinical and radiological endpoints included transient ischemic attack (TIA), ischemic stroke diagnosed on imaging studies, ophthalmologically diagnosed central or branch retinal artery occlusion (RAO), or amaurosis fugax. RESULTS One hundred sixty-eight carotid plaques were reviewed. The average age is 70.8 years (SD = 8.8); 32/87 (36.8%) were female. Sixty-seven of eighty-seven (77.0%) patients were symptomatic. Sixty-six of one hundred sixty-eight (39.3%) plaques were ipsilateral to the patient's symptoms, while 102/168 (60.7%) were ipsilateral to an asymptomatic hemisphere. Greater intraplaque volumes of IPH (p = 0.03), LRNC (p = 0.008), and matrix (p = 0.0008) were associated with symptoms, as was greater proportion of LRNC in regard to plaque volume (p = 0.04). All but proportion of LRNC remained statistically significant after adjustment for plaque size. More severe luminal stenosis was also associated with ipsilateral neurologic symptoms, both when calculated by smallest diameter or by area (p < 0.0001 for both). CONCLUSION Higher volumes of intraplaque IPH, LRNC, matrix, and degree of arterial stenosis are associated with ipsilateral neurologic symptoms. Greater intraplaque proportions of LRNC are also associated with ipsilateral ischemic manifestations, suggesting that larger relative composition of lipids may be particularly predictive of symptomatology.
Collapse
|
7
|
Baylam Geleri D, Watase H, Chu B, Chen L, Zhao H, Zhao X, Hatsukami TS, Yuan C. Detection of Advanced Lesions of Atherosclerosis in Carotid Arteries Using 3-Dimensional Motion-Sensitized Driven-Equilibrium Prepared Rapid Gradient Echo (3D-MERGE) Magnetic Resonance Imaging as a Screening Tool. Stroke 2021; 53:194-200. [PMID: 34587796 DOI: 10.1161/strokeaha.120.032505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Two-dimensional high-resolution multicontrast magnetic resonance imaging (2D-MC MRI) is currently the most reliable and reproducible noninvasive carotid vessel wall imaging technique. However, the long scan time required for 2D-MC MRI restricts its practical clinical application. Alternatively, 3-dimensional motion-sensitized driven-equilibrium prepared rapid gradient echo (3D-MERGE) vessel wall MRI can provide high isotropic resolution with extensive coverage in two minutes. In this study, we sought to prove that 3D-MERGE alone can serve as a screening tool to identify advanced carotid lesions. METHODS Two hundred twenty-seven subjects suspected of recent ischemic stroke or transient ischemic attack were imaged using 2D-MC MRI with an imaging time of 30 minutes, then with 3D-MERGE with an imaging time of 2 minutes, on 3T-MRI scanners. Two experienced reviewers interpreted plaque components using 2D-MC MRI as the reference standard and categorized plaques using a modified American Heart Association lesion classification for MRI. Plaques of American Heart Association type IV and above were classified as advanced. Arteries of American Heart Association types I to II and III were categorized as normal or with early lesions, respectively. One radiologist independently reviewed only 3D-MERGE and labeled the plaques as advanced if they had a wall thickness of >2 mm with high or low signal intensity compared with the adjacent sternocleidomastoid muscle. Sensitivity, specificity, and accuracy for 3D-MERGE were calculated. RESULTS Four hundred forty-nine arteries from 227 participants (mean age 61.2 years old, 64% male) were included in the analysis. Sensitivity, specificity, and accuracy for identification of advanced lesions on 3D-MERGE were 95.0% (95% CI, 91.8-97.2), 86.9% (95% CI, 81.4-92.0), 93.8% (95% CI, 91.1-95.8), respectively. CONCLUSIONS 3D-MERGE can accurately identify advanced carotid atherosclerotic plaques in patients suspected of stroke or transient ischemic attack. It has a more extensive coverage and higher sensitivity and specificity for advanced plaque detection with a much shorter acquisition time than 2D-MC MRI. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT02017756.
Collapse
Affiliation(s)
- Duygu Baylam Geleri
- Department of Radiology, University of Washington, Seattle, WA. (D.B.G, B.C., C.Y.)
| | - Hiroko Watase
- Department of Surgery, University of Washington, Seattle, WA. (H.W., T.S.H.)
| | - Baocheng Chu
- Department of Radiology, University of Washington, Seattle, WA. (D.B.G, B.C., C.Y.).,BioMolecular Imaging Center, University of Washington, Seattle, WA. (B.C., C.Y.)
| | - Li Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA. (L.C.)
| | - Huilin Zhao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University Shanghai, China (H.Z.)
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China (X.Z.)
| | - Thomas S Hatsukami
- Department of Surgery, University of Washington, Seattle, WA. (H.W., T.S.H.)
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA. (D.B.G, B.C., C.Y.).,BioMolecular Imaging Center, University of Washington, Seattle, WA. (B.C., C.Y.)
| | | |
Collapse
|
8
|
Vranic JE, Hartman JB, Mossa-Basha M. High-Resolution Magnetic Resonance Vessel Wall Imaging for the Evaluation of Intracranial Vascular Pathology. Neuroimaging Clin N Am 2021; 31:223-233. [PMID: 33902876 DOI: 10.1016/j.nic.2021.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intracranial vessel wall imaging (IVWI) is an advanced MR imaging technique that allows for direct visualization of the walls of intracranial blood vessels and detection of subtle pathologic vessel wall changes before they become apparent on conventional luminal imaging. When performed correctly, IVWI can increase diagnostic confidence, aid in the differentiation of intracranial vasculopathies, and assist in patient risk stratification and prognostication. This review covers the essential technical underpinnings of IVWI and presents emerging clinical research highlighting its utility for the evaluation of multiple intracranial vascular pathologies.
Collapse
Affiliation(s)
- Justin E Vranic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Gray 2, Room 273A, 55 Fruit Street, Boston, MA 02114, USA.
| | - Jason B Hartman
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, Box 357115, Seattle, WA 98195, USA
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, Box 357115, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Cervical Carotid Plaque MRI : Review of Atherosclerosis Imaging Features and their Histologic Underpinnings. Clin Neuroradiol 2021; 31:295-306. [PMID: 33398451 DOI: 10.1007/s00062-020-00987-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Magnetic resonance (MR) imaging is considered the gold standard for non-invasive evaluation of carotid artery plaque morphology and composition. A number of studies have demonstrated the clinical utility of MR plaque imaging in the risk stratification of carotid atherosclerotic disease, determination of stroke etiology, and identification of surgical and endovascular candidates for carotid revascularization procedures. The MR plaque imaging also provides researchers and clinicians with valuable insights into the pathogenesis, natural history and composition of carotid atherosclerotic disease. Nevertheless, the field of MR plaque imaging is complex, and requires a thorough knowledge of the histologic basis for how various plaque features appear on imaging. This article details the pathogenesis and histology of atherosclerosis, reviews the expected appearance of different plaque components, and describes how MR imaging features may be related to symptomatology or predict future ischemic events.
Collapse
|
10
|
Chen L, Sun J, Canton G, Balu N, Hippe DS, Zhao X, Li R, Hatsukami TS, Hwang JN, Yuan C. Automated Artery Localization and Vessel Wall Segmentation using Tracklet Refinement and Polar Conversion. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:217603-217614. [PMID: 33777593 PMCID: PMC7996631 DOI: 10.1109/access.2020.3040616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quantitative analysis of blood vessel wall structures is important to study atherosclerotic diseases and assess cardiovascular event risks. To achieve this, accurate identification of vessel luminal and outer wall contours is needed. Computer-assisted tools exist, but manual preprocessing steps, such as region of interest identification and/or boundary initialization, are still needed. In addition, prior knowledge of the ring shape of vessel walls has not been fully explored in designing segmentation methods. In this work, a fully automated artery localization and vessel wall segmentation system is proposed. A tracklet refinement algorithm was adapted to robustly identify the artery of interest from a neural network-based artery centerline identification architecture. Image patches were extracted from the centerlines and converted in a polar coordinate system for vessel wall segmentation. The segmentation method used 3D polar information and overcame problems such as contour discontinuity, complex vessel geometry, and interference from neighboring vessels. Verified by a large (>32000 images) carotid artery dataset collected from multiple sites, the proposed system was shown to better automatically segment the vessel wall than traditional vessel wall segmentation methods or standard convolutional neural network approaches. In addition, a segmentation uncertainty score was estimated to effectively identify slices likely to have errors and prompt manual confirmation of the segmentation. This robust vessel wall segmentation system has applications in different vascular beds and will facilitate vessel wall feature extraction and cardiovascular risk assessment.
Collapse
Affiliation(s)
- Li Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Gador Canton
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Daniel S. Hippe
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Xihai Zhao
- Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Rui Li
- Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | | | - Jenq-Neng Hwang
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Leiner T, Bogaert J, Friedrich MG, Mohiaddin R, Muthurangu V, Myerson S, Powell AJ, Raman SV, Pennell DJ. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22:76. [PMID: 33161900 PMCID: PMC7649060 DOI: 10.1186/s12968-020-00682-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
The Society for Cardiovascular Magnetic Resonance (SCMR) last published its comprehensive expert panel report of clinical indications for CMR in 2004. This new Consensus Panel report brings those indications up to date for 2020 and includes the very substantial increase in scanning techniques, clinical applicability and adoption of CMR worldwide. We have used a nearly identical grading system for indications as in 2004 to ensure comparability with the previous report but have added the presence of randomized controlled trials as evidence for level 1 indications. In addition to the text, tables of the consensus indication levels are included for rapid assimilation and illustrative figures of some key techniques are provided.
Collapse
Affiliation(s)
- Tim Leiner
- Department of Radiology, E.01.132, Utrecht University Medical Center, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.
| | - Jan Bogaert
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Matthias G Friedrich
- Departments of Medicine and Diagnostic Radiology, McGill University, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada
| | - Raad Mohiaddin
- Department of Radiology, Royal Brompton Hospital, Sydney Street, Chelsea, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Vivek Muthurangu
- Centre for Cardiovascular Imaging, Science & Great Ormond Street Hospital for Children, UCL Institute of Cardiovascular, Great Ormond Street, London, WC1N 3JH, UK
| | - Saul Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Farley, 2nd Floor, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Farley, 2nd Floor, Boston, MA, 02115, USA
| | - Subha V Raman
- Krannert Institute of Cardiology, Indiana University School of Medicine, 340 West 10th Street, Fairbanks Hall, Suite 6200, Indianapolis, IN, 46202-3082, USA
| | - Dudley J Pennell
- Royal Brompton Hospital, Sydney Street, Chelsea, London, SW3 6NP, UK
- Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
12
|
Kassem M, Florea A, Mottaghy FM, van Oostenbrugge R, Kooi ME. Magnetic resonance imaging of carotid plaques: current status and clinical perspectives. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1266. [PMID: 33178798 PMCID: PMC7607136 DOI: 10.21037/atm-2020-cass-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rupture of a vulnerable carotid plaque is one of the leading causes of stroke. Carotid magnetic resonance imaging (MRI) is able to visualize all the main hallmarks of plaque vulnerability. Various MRI sequences have been developed in the last two decades to quantify carotid plaque burden and composition. Often, a combination of multiple sequences is used. These MRI techniques have been extensively validated with histological analysis of carotid endarterectomy specimens. High agreement between the MRI and histological measures of plaque burden, intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous cap (FC) status, inflammation and neovascularization has been demonstrated. Novel MRI sequences allow to generate three-dimensional isotropic images with a large longitudinal coverage. Other new sequences can acquire multiple contrasts using a single sequence leading to a tremendous reduction in scan time. IPH can be easily identified as a hyperintense signal in the bulk of the plaque on strongly T1-weighted images, such as magnetization-prepared rapid acquisition gradient echo images, acquired within a few minutes with a standard neurovascular coil. Carotid MRI can also be used to evaluate treatment effects. Several meta-analyses have demonstrated a strong predictive value of IPH, LRNC, thinning or rupture of the FC for ischemic cerebrovascular events. Recently, in a large meta-analysis based on individual patient data of asymptomatic and symptomatic individuals with carotid artery stenosis, it was shown that IPH on MRI is an independent risk predictor for stroke, stronger than any known clinical risk parameter. Expert recommendations on carotid plaque MRI protocols have recently been described in a white paper. The present review provides an overview of the current status and applications of carotid plaque MR imaging and its future potential in daily clinical practice.
Collapse
Affiliation(s)
- Mohamed Kassem
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Alexandru Florea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Robert van Oostenbrugge
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, MUMC+, Maastricht, The Netherlands
| | - M Eline Kooi
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
13
|
Imaging Features of Vulnerable Carotid Atherosclerotic Plaque and the Associated Clinical Implications. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2020. [DOI: 10.1007/s11936-020-00821-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Zhang J, Ding S, Zhao H, Sun B, Li X, Zhou Y, Wan J, Degnan AJ, Xu J, Zhu C. Evaluation of chronic carotid artery occlusion by non-contrast 3D-MERGE MR vessel wall imaging: comparison with 3D-TOF-MRA, contrast-enhanced MRA, and DSA. Eur Radiol 2020; 30:5805-5814. [PMID: 32529567 DOI: 10.1007/s00330-020-06989-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To analyze the accuracy of a non-contrast MR vessel wall imaging technique, three-dimensional motion-sensitized driven equilibrium prepared rapid gradient echo (3D-MERGE) for diagnosing chronic carotid artery occlusion (CCAO) characteristics compared with 3D time-of-flight (TOF) MRA, and contrast-enhanced MRA (CE-MRA), using digital subtraction angiography (DSA) as a reference standard. METHODS Subjects diagnosed with possible CCAO by ultrasound were retrospectively analyzed. Patients underwent 3.0-T MR imaging with 3D-MERGE, 3D-TOF-MRA, and CE-MRA followed by DSA within 1 week. Diagnostic accuracy of occlusion, occlusion site, and proximal stump condition were assessed independently on 3 MRI sequences and DSA. Agreement of the above indicators was evaluated in reference to DSA. RESULTS One hundred twenty-four patients with 129 suspected CCAO (5 with bilateral occlusions) met the inclusion criteria for our study. 3D-MERGE demonstrated a sensitivity, specificity, and accuracy of 97.0%, 86.7%, and 94.6%, respectively, with excellent agreement (Cohen's κ = 0.85; 95% CI, 0.71, 0.94) for diagnosing CCAO in reference to DSA. 3D-MERGE was superior in diagnosing CCAO compared with 3D-TOF-MRA (Cohen's κ = 0.61; 95% CI, 0.42, 0.77) and similar to CE-MRA (Cohen's κ = 0.93; 95% CI, 0.86, 1.00). 3D-MERGE also had excellent agreement compared with DSA for assessing occlusion sites (Cohen's κ = 0.85; 95% CI, 0.71, 0.97) and stump condition (Cohen's κ = 0.83; 95% CI, 0.71, 0.94). Moreover, 3D-MERGE provided additional information regarding the occluded segment, such as distal lumen collapse and vessel wall lesion components. CONCLUSION 3D-MERGE can reliably assess chronic carotid occlusive characteristics and has the ability to identify other vessel wall features of the occluded segment. This non-contrast MR vessel wall imaging technique is promising for assessment of CCAO. KEY POINTS • Excellent agreement was found between 3D-MERGE and DSA for assessing chronic carotid artery occlusion, occlusion site, and proximal stump condition. • 3D-MERGE was shown to be a more accurate and efficient tool than 3D-TOF-MRA to detect the characteristics of the occluded segment. • 3D-MERGE provides not only luminal images for characterizing the proximal characteristics of occlusion but also vessel wall images for assessing the distal lumen and morphology of occlusion segment, which might help clinicians to optimize the treatment strategy for patients with chronic carotid artery occlusion.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shenghao Ding
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huilin Zhao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Beibei Sun
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiao Li
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jieqing Wan
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Andrew J Degnan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,American Institute for Radiologic Pathology, Silver Spring, MD, USA.,Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jianrong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Segment-specific progression of carotid artery atherosclerosis: a magnetic resonance vessel wall imaging study. Neuroradiology 2019; 62:211-220. [PMID: 31720758 DOI: 10.1007/s00234-019-02316-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE This study aimed to investigate the segment-specific progression of atherosclerotic carotid plaques using serial multi-contrast magnetic resonance (MR) imaging. METHODS Symptomatic patients with carotid 30-70% stenosis were recruited and underwent carotid MR vessel wall imaging at baseline and follow-up time point (≥ 6 months after baseline). The location of plaques was determined according to the maximum wall thickness located above or below carotid bifurcation. The baseline and changing characteristics of carotid plaques were compared between plaques above and below carotid bifurcation, and the risk factors for segment-specific plaque progression were analyzed with logistic regression. RESULTS Ninety-six carotid plaques from 73 patients (mean age 66.5 ± 11.4 years old) were eligible for statistical analysis. Compared with plaques located below carotid bifurcation, those above bifurcation had significantly greater stenosis at baseline (57.2 ± 13.0% vs. 50.4 ± 13.5%, p = 0.016, adjusted p = 0.005) and greater progression rate of carotid wall volume (35.2 ± 68.8 mm3/year vs. 4.2 ± 65.0 mm3/year, p = 0.026, adjusted p = 0.005) before and after adjusting for all clinical risk factors and baseline stenosis and wall volume of carotid arteries. Logistic regression showed that the related risk factors were age, hypertension, and smoke for the progression of plaques located above the bifurcation and age for plaques below the bifurcation, respectively. CONCLUSION Plaques located above the bifurcation of carotid arteries had greater annual progression and correlated with more cardiovascular risk factors compared with those located below the bifurcation.
Collapse
|
16
|
Singh N, Moody AR, Zhang B, Kaminski I, Kapur K, Chiu S, Tyrrell PN. Age-Specific Sex Differences in Magnetic Resonance Imaging-Depicted Carotid Intraplaque Hemorrhage. Stroke 2017; 48:2129-2135. [PMID: 28706117 DOI: 10.1161/strokeaha.117.017877] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/29/2017] [Accepted: 06/12/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE Stroke rates are higher in men compared with women in the fourth through seventh decades of life, and higher rates may result from differences in carotid intraplaque hemorrhage (IPH), an unstable atherosclerotic plaque component. We report age-specific sex differences in the presence of magnetic resonance imaging-depicted carotid IPH. METHODS Patients (n=1115) underwent magnetic resonance imaging for carotid IPH between 2005 and 2014. Low-grade carotid stenosis patients (n=906) without prior endarterectomy were eligible for this cross-sectional study. RESULTS Of the 906 patients included (mean age±SD in years, 66.98±15.15), 63 (6.95%) had carotid IPH. In men and women, carotid IPH was present in 11.43% (48 of 420) and 3.09% (15 of 486), respectively (P<0.0001). Multivariable logistic regression analysis confirmed greater odds of carotid IPH in men for all ages: 45 to 54 (odds ratio=45.45; 95% confidence interval, 3.43-500), 55 to 64 years (odds ratio=21.74; 95% confidence interval, 3.21-142.86), 65 to 74 years (odds ratio=10.42; 95% confidence interval, 2.91-37.04), and ≥75 years (odds ratio=5.00; 95% confidence interval, 2.31-10.75). Male sex modified the effect of age on the presence of carotid IPH (β=0.074; SE=0.036; P=0.0411). CONCLUSIONS Men have greater age-specific odds of magnetic resonance imaging-depicted carotid IPH compared with women. With increasing age post-menopause, the odds of carotid IPH in women becomes closer to that of men. Delayed onset of carotid IPH in women, an unstable plaque component, may partly explain differential stroke rates between sexes, and further studies are warranted.
Collapse
Affiliation(s)
- Navneet Singh
- From the Department of Medical Imaging, Faculty of Medicine (N.S., A.R.M., B.Z., I.K., S.C., P.N.T.) and Department of Statistical Sciences (P.N.T.), University of Toronto, Ontario, Canada; and Department of Neurology, Boston Children's Hospital, Harvard Medical School, MA (K.K.)
| | - Alan R Moody
- From the Department of Medical Imaging, Faculty of Medicine (N.S., A.R.M., B.Z., I.K., S.C., P.N.T.) and Department of Statistical Sciences (P.N.T.), University of Toronto, Ontario, Canada; and Department of Neurology, Boston Children's Hospital, Harvard Medical School, MA (K.K.).
| | - Bowen Zhang
- From the Department of Medical Imaging, Faculty of Medicine (N.S., A.R.M., B.Z., I.K., S.C., P.N.T.) and Department of Statistical Sciences (P.N.T.), University of Toronto, Ontario, Canada; and Department of Neurology, Boston Children's Hospital, Harvard Medical School, MA (K.K.)
| | - Isabella Kaminski
- From the Department of Medical Imaging, Faculty of Medicine (N.S., A.R.M., B.Z., I.K., S.C., P.N.T.) and Department of Statistical Sciences (P.N.T.), University of Toronto, Ontario, Canada; and Department of Neurology, Boston Children's Hospital, Harvard Medical School, MA (K.K.)
| | - Kush Kapur
- From the Department of Medical Imaging, Faculty of Medicine (N.S., A.R.M., B.Z., I.K., S.C., P.N.T.) and Department of Statistical Sciences (P.N.T.), University of Toronto, Ontario, Canada; and Department of Neurology, Boston Children's Hospital, Harvard Medical School, MA (K.K.)
| | - Stephanie Chiu
- From the Department of Medical Imaging, Faculty of Medicine (N.S., A.R.M., B.Z., I.K., S.C., P.N.T.) and Department of Statistical Sciences (P.N.T.), University of Toronto, Ontario, Canada; and Department of Neurology, Boston Children's Hospital, Harvard Medical School, MA (K.K.)
| | - Pascal N Tyrrell
- From the Department of Medical Imaging, Faculty of Medicine (N.S., A.R.M., B.Z., I.K., S.C., P.N.T.) and Department of Statistical Sciences (P.N.T.), University of Toronto, Ontario, Canada; and Department of Neurology, Boston Children's Hospital, Harvard Medical School, MA (K.K.)
| |
Collapse
|
17
|
Beck MJ, Parker DL, Bolster BD, Kim SE, McNally JS, Treiman GS, Hadley JR. Interchangeable neck shape-specific coils for a clinically realizable anterior neck phased array system. Magn Reson Med 2017; 78:2460-2468. [PMID: 28185303 DOI: 10.1002/mrm.26632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE To demonstrate the interchangeable neck shape-specific (NSS) coil concept that supplements standard commercial spine and head/neck coils to provide simultaneous high-resolution (hi-res) head/neck imaging with high signal-to-noise ratio (SNR). METHODS Two NSS coils were constructed on formers designed to fit two different neck shapes. A 7-channel (7ch) ladder array was constructed on a medium neck former, and a 9-channel (9ch) ladder array was constructed on large neck former. Both coils were interchangeable with the same preamp housing. RESULTS The 7ch and 9ch coils demonstrate SNR gains of approximately 4 times and 3 times over the Siemens 20-channel head/neck coil in the carotid arteries of our volunteers, respectively. Coupling between the Siemens 32-channel spine coil, Siemens 20-channel head/neck coil, and the NSS coils was negligible, allowing for simultaneous hi-res head/neck imaging with high SNR. CONCLUSIONS This study demonstrates that supplementing existing commercial spine and head/neck coils with an NSS coil allows uniform simultaneous hi-res imaging with high SNR in the anterior neck, while maintaining SNR of the commercial coil in the head and posterior neck. Magn Reson Med 78:2460-2468, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Michael J Beck
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Seong-Eun Kim
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - J Scott McNally
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Gerald S Treiman
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.,Department of Surgery, University of Utah, Salt Lake City, Utah, USA.,Veterans Affairs Department of Surgery (VASLCHCS), Salt Lake City, Utah, USA
| | - J Rock Hadley
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Lee DH, Park JH. Diagnostic and Therapeutic Approach of Carotid and Cerebrovascular Plaque on the Basis of Vessel Imaging. J Lipid Atheroscler 2017. [DOI: 10.12997/jla.2017.6.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Dong Hyun Lee
- Department of Stroke Neurology, Seonam University Myongji Hospital, Goyang-si, Korea
| | - Jong-Ho Park
- Department of Stroke Neurology, Seonam University Myongji Hospital, Goyang-si, Korea
| |
Collapse
|