1
|
Pandya V, Husari KS. The Use of Perampanel in the Treatment of Lance-Adams Syndrome. J Epilepsy Res 2024; 14:97-101. [PMID: 39720197 PMCID: PMC11664050 DOI: 10.14581/jer.24016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/14/2024] [Accepted: 08/06/2024] [Indexed: 12/26/2024] Open
Abstract
Lance Adams syndrome (LAS) is characterized by chronic action or intention myoclonus resulting from cerebral hypoxia. Perampanel, a non-competitive antagonist of aamino-3-hydroxy-5methyl-4 isooxazoleproprionic acid glutamate receptor, has demonstrated some efficacy in myoclonic epilepsy and other types of myoclonus. We report significant benefit in a patient with LAS treated with add on perampanel and provide a review of the relevant literature. In our case, a male patient in his 30s was found pulseless with unknown down time. The patient developed post anoxic myoclonus within 1 week from cardiac arrest. Patient continued to suffer from intractable myoclonus despite being treated with brivaracetam, valproic acid, and clonazepam. Perampanel was added to his medication regimen and up-titrated to 12 mg daily over 1-2 weeks. This resulted in significant improvement in frequency and severity of myoclonus for about 6 months. Growing evidence exists for perampanel as an adjunctive treatment in patients with post hypoxic myoclonus or LAS. A review of the available literature, comprised of case reports and case series, and suggests a potential role for perampanel in patients with LAS. Further study is warranted including controlled trials of perampanel use in post hypoxic myoclonus.
Collapse
Affiliation(s)
- Vishal Pandya
- Department of Neurology, Comprehensive Epilepsy Center, Medical College of Wisconsin, Milwaukee, WI,
USA
| | - Khalil S. Husari
- Department of Neurology, Comprehensive Epilepsy Center, Johns Hopkins University School of Medicine, Baltimore, MD,
USA
| |
Collapse
|
2
|
Latorre A, Rocchi L, Paparella G, Manzo N, Bhatia KP, Rothwell JC. Changes in cerebellar output abnormally modulate cortical myoclonus sensorimotor hyperexcitability. Brain 2024; 147:1412-1422. [PMID: 37956080 PMCID: PMC10994547 DOI: 10.1093/brain/awad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09042, Italy
| | - Giulia Paparella
- Department of Neurology, IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Nicoletta Manzo
- Department of Neurology, IRCCS San Camillo Hospital, Venice 30126, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
3
|
Suresh H, Mithani K, Brar K, Yan H, Strantzas S, Vandenberk M, Sharma R, Yau I, Go C, Pang E, Kerr E, Ochi A, Otsubo H, Jain P, Donner E, Snead OC, Ibrahim GM. Brainstem Associated Somatosensory Evoked Potentials and Response to Vagus Nerve Stimulation: An Investigation of the Vagus Afferent Network. Front Neurol 2022; 12:768539. [PMID: 35250790 PMCID: PMC8895499 DOI: 10.3389/fneur.2021.768539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/22/2021] [Indexed: 12/05/2022] Open
Abstract
Despite decades of clinical usage, selection of patients with drug resistant epilepsy who are most likely to benefit from vagus nerve stimulation (VNS) remains a challenge. The mechanism of action of VNS is dependent upon afferent brainstem circuitry, which comprises a critical component of the Vagus Afferent Network (VagAN). To evaluate the association between brainstem afferent circuitry and seizure response, we retrospectively collected intraoperative data from sub-cortical recordings of somatosensory evoked potentials (SSEP) in 7 children with focal drug resistant epilepsy who had failed epilepsy surgery and subsequently underwent VNS. Using multivariate linear regression, we demonstrate a robust negative association between SSEP amplitude (p < 0.01), and seizure reduction. There was no association between SSEP latency and seizure outcomes. Our findings provide novel insights into the mechanism of VNS and inform our understanding of the importance of brainstem afferent circuitry within the VagAN for seizure responsiveness following VNS.
Collapse
Affiliation(s)
- Hrishikesh Suresh
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Karim Mithani
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Karanbir Brar
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Han Yan
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Samuel Strantzas
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Vandenberk
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Roy Sharma
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ivanna Yau
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christina Go
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Pang
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Kerr
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ayako Ochi
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hiroshi Otsubo
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Puneet Jain
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Donner
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - O. Carter Snead
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - George M. Ibrahim
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- *Correspondence: George M. Ibrahim
| |
Collapse
|
4
|
Maudrich T, Hähner S, Kenville R, Ragert P. Somatosensory-Evoked Potentials as a Marker of Functional Neuroplasticity in Athletes: A Systematic Review. Front Physiol 2022; 12:821605. [PMID: 35111081 PMCID: PMC8801701 DOI: 10.3389/fphys.2021.821605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Somatosensory-evoked potentials (SEP) represent a non-invasive tool to assess neural responses elicited by somatosensory stimuli acquired via electrophysiological recordings. To date, there is no comprehensive evaluation of SEPs for the diagnostic investigation of exercise-induced functional neuroplasticity. This systematic review aims at highlighting the potential of SEP measurements as a diagnostic tool to investigate exercise-induced functional neuroplasticity of the sensorimotor system by reviewing studies comparing SEP parameters between athletes and healthy controls who are not involved in organized sports as well as between athlete cohorts of different sport disciplines. METHODS A systematic literature search was conducted across three electronic databases (PubMed, Web of Science, and SPORTDiscus) by two independent researchers. Three hundred and ninety-seven records were identified, of which 10 cross-sectional studies were considered eligible. RESULTS Differences in SEP amplitudes and latencies between athletes and healthy controls or between athletes of different cohorts as well as associations between SEP parameters and demographic/behavioral variables (years of training, hours of training per week & reaction time) were observed in seven out of 10 included studies. In particular, several studies highlight differences in short- and long-latency SEP parameters, as well as high-frequency oscillations (HFO) when comparing athletes and healthy controls. Neuroplastic differences in athletes appear to be modality-specific as well as dependent on training regimens and sport-specific requirements. This is exemplified by differences in SEP parameters of various athlete populations after stimulation of their primarily trained limb. CONCLUSION Taken together, the existing literature suggests that athletes show specific functional neuroplasticity in the somatosensory system. Therefore, this systematic review highlights the potential of SEP measurements as an easy-to-use and inexpensive diagnostic tool to investigate functional neuroplasticity in the sensorimotor system of athletes. However, there are limitations regarding the small sample sizes and inconsistent methodology of SEP measurements in the studies reviewed. Therefore, future intervention studies are needed to verify and extend the conclusions drawn here.
Collapse
Affiliation(s)
- Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Susanne Hähner
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
5
|
Abu-Hegazy M, Elmoungi A, Eltantawi E, Esmael A. Electrophysiological characteristics and anatomical differentiation of epileptic and non-epileptic myoclonus. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Electrophysiological techniques have been used for discriminating myoclonus from other hyperkinetic movement disorders and for classifying the myoclonus subtype. This study was carried out on patients with different subtypes of myoclonus to determine the electrophysiological characteristics and the anatomical classification of myoclonus of different etiologies. This study included 20 patients with different subtypes of myoclonus compared with 30 control participants. Electrophysiological study was carried out for all patients by somatosensory evoked potential (SSEP) and electroencephalography (EEG) while the control group underwent SSEP. SSEP was evaluated in patients and control groups by stimulation of right and left median nerves.
Results
This study included 50 cases with myoclonus of different causes with mean age of 39.3 ± 15.7 and consisted of 23 males and 27 females. Twenty-nine (58%) of the patients were epileptics, while 21 (42%) were non-epileptics. Cases were classified anatomically into ten cases with cortical myoclonus (20%), 12 cases with subcortical myoclonus (24%), and 28 cases with cortical–subcortical myoclonus (56%). There was a significant difference regarding the presence of EEG findings in epileptic myoclonic and non-epileptic myoclonic groups (P = 0.005). Also, there were significant differences regarding P24 amplitude, N33 amplitude, P24–N33 peak-to-peak complex amplitude regarding all types of myoclonus. Primary myoclonic epilepsy (PME) demonstrated significant giant response, juvenile myoclonic epilepsy (JME) demonstrated no enhancement compared to controls, while secondary myoclonus demonstrated lower giant response compared to PME.
Conclusion
Somatosensory evoked potential and electroencephalography are important for the diagnosis and anatomical sub-classification of myoclonus and so may help in decision-making regarding to the subsequent management.
Collapse
|
6
|
Hallett M, DelRosso LM, Elble R, Ferri R, Horak FB, Lehericy S, Mancini M, Matsuhashi M, Matsumoto R, Muthuraman M, Raethjen J, Shibasaki H. Evaluation of movement and brain activity. Clin Neurophysiol 2021; 132:2608-2638. [PMID: 34488012 PMCID: PMC8478902 DOI: 10.1016/j.clinph.2021.04.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/07/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
Clinical neurophysiology studies can contribute important information about the physiology of human movement and the pathophysiology and diagnosis of different movement disorders. Some techniques can be accomplished in a routine clinical neurophysiology laboratory and others require some special equipment. This review, initiating a series of articles on this topic, focuses on the methods and techniques. The methods reviewed include EMG, EEG, MEG, evoked potentials, coherence, accelerometry, posturography (balance), gait, and sleep studies. Functional MRI (fMRI) is also reviewed as a physiological method that can be used independently or together with other methods. A few applications to patients with movement disorders are discussed as examples, but the detailed applications will be the subject of other articles.
Collapse
Affiliation(s)
- Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | | | - Rodger Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Stephan Lehericy
- Paris Brain Institute (ICM), Centre de NeuroImagerie de Recherche (CENIR), Team "Movement, Investigations and Therapeutics" (MOV'IT), INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate, School of Medicine, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Japan
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jan Raethjen
- Neurology Outpatient Clinic, Preusserstr. 1-9, 24105 Kiel, Germany
| | | |
Collapse
|