1
|
Siegel DJ, Drulis C. An interpersonal neurobiology perspective on the mind and mental health: personal, public, and planetary well-being. Ann Gen Psychiatry 2023; 22:5. [PMID: 36737822 PMCID: PMC9897608 DOI: 10.1186/s12991-023-00434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
This article outlines an Interpersonal Neurobiology (IPNB) perspective on the fundamental components that comprise mental health and promote well-being. The central aim of this paper is to answer essential but often overlooked questions related to the field of mental health, such as: What is the mind? What is the basis of well-being? What is the self and how does it develop? We will offer scientific support for the IPNB position that the mind is relational and embodied and that integration is the basis of mental health. It will also describe how the self extends beyond the individual, arising from and inextricably connected to the social, cultural and planetary systems in which we exist. IPNB is not a form of therapy; rather, it is a framework that focuses on deepening our understanding of the mind and human development across the lifespan. Drawing from interdisciplinary principles from a range of fields including physics, mathematics, neuroscience, and psychology, we will provide a practical view of the underlying basis of mental suffering and the scientific mechanisms of change to improve mental well-being. These core principles are building blocks of clinical evaluation and treatment that can be applied across multiple theoretical orientations and client populations. The special emphasis in this article is on the issue of psychache as an underlying cause of suicide and its relationship to personal, public and planetary health.
Collapse
|
2
|
Szeszko PR, Bierer LM, Bader HN, Chu KW, Tang CY, Murphy KM, Hazlett EA, Flory JD, Yehuda R. Cingulate and hippocampal subregion abnormalities in combat-exposed veterans with PTSD. J Affect Disord 2022; 311:432-439. [PMID: 35598747 DOI: 10.1016/j.jad.2022.05.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The hippocampus and cingulate gyrus are strongly interconnected brain regions that have been implicated in the neurobiology of post-traumatic stress disorder (PTSD). These brain structures are comprised of functionally distinct subregions that may contribute to the expression of PTSD symptoms or associated cardio-metabolic markers, but have not been well investigated in prior studies. METHODS Two divisions of the cingulate cortex (i.e., rostral and caudal) and 11 hippocampal subregions were investigated in 22 male combat-exposed veterans with PTSD and 22 male trauma-exposed veteran controls (TC). Cardio-metabolic measures included cholesterol, body mass index, and mean arterial pressure. RESULTS Individuals with PTSD had less caudal cingulate area compared to TC even after controlling for caudal cingulate thickness. Total hippocampus volume was lower in PTSD compared to TC, accounted for by differences in CA1-CA4, granule cell layer of the dentate gyrus, molecular layer, and subiculum. Individuals with PTSD had higher mean arterial pressure compared to TC, which correlated with hippocampus volume only in the PTSD group. LIMITATIONS Sample size, cross-sectional analysis, no control for medications and findings limited to males. CONCLUSIONS These data demonstrate preferential involvement of caudal cingulate area (vs. thickness) and hippocampus subregions in PTSD. The inverse association between hippocampus volume and mean arterial pressure may contribute to accelerated aging known to be associated with PTSD.
Collapse
Affiliation(s)
- Philip R Szeszko
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Linda M Bierer
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather N Bader
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - King-Wai Chu
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Cheuk Y Tang
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katharine M Murphy
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Janine D Flory
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Tymofiyeva O, Henje E, Yuan JP, Huang CY, Connolly CG, Ho TC, Bhandari S, Parks KC, Sipes BS, Yang TT, Xu D. Reduced anxiety and changes in amygdala network properties in adolescents with training for awareness, resilience, and action (TARA). Neuroimage Clin 2020; 29:102521. [PMID: 33316764 PMCID: PMC7735968 DOI: 10.1016/j.nicl.2020.102521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Mindfulness-based approaches show promise to improve emotional health in youth and may help treat and prevent adolescent depression and anxiety. However, there is a fundamental gap in understanding the neural reorganization that takes place as a result of such interventions. The Training for Awareness, Resilience, and Action (TARA) program, initially developed for depressed adolescents, uses a framework drawn from neuroscience, mindfulness, yoga, and modern psychotherapeutic techniques to promote emotional health. The goal of this study was to assess the effects of the TARA training on emotional health and structural white matter brain networks in healthy youth. We analyzed data from 23 adolescents who underwent the 12-week TARA training in a controlled within-subject study design and whose brain networks were assessed using diffusion MRI connectomics. Compared to the control time period, adolescents showed a significant decrease in anxiety symptoms with TARA (Cohen's d = -0.961, p = 0.006); moreover, the node strength of the Right Amygdala decreased significantly after TARA (Cohen's d = -1.026, p = 0.004). Post-hoc analyses indicated that anxiety at baseline before TARA was positively correlated with Right Amygdala node strength (r = 0.672, p = 0.001). While change in Right Amygdala node strength with TARA was not correlated with change in anxiety (r = 0.146, p = 0.51), it was associated with change in depression subscale of Anhedonia / Negative Affect (r = 0.575, p = 0.004, exploratory analysis), possibly due to overlapping constructs captured in our anxiety and depression scales. Our results suggest that increased structural connectivity of Right Amygdala may underlie increased anxiety in adolescents and be lowered through anxiety-reducing training such as TARA. The results of this study contribute to our understanding of the neural mechanisms of TARA and may facilitate neuroscience-based prevention and treatment of adolescent anxiety and depression.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, 1700 4th Street, BH102, San Francisco, CA 94143, USA.
| | - Eva Henje
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Clinical Science/Child- and Adolescent Psychiatry, Umeå University, SE-901 87 Umeå, Sweden
| | - Justin P Yuan
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, 1700 4th Street, BH102, San Francisco, CA 94143, USA; Department of Psychology, Stanford University, 450 Jane Stanford Way, Bldg 420, Jordan Hall, Stanford, CA 94305-2130, USA
| | - Chiung-Yu Huang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, San Francisco, CA 94143, USA
| | - Colm G Connolly
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Tiffany C Ho
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Sarina Bhandari
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, 1700 4th Street, BH102, San Francisco, CA 94143, USA
| | - Kendall C Parks
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, 1700 4th Street, BH102, San Francisco, CA 94143, USA
| | - Benjamin S Sipes
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, 1700 4th Street, BH102, San Francisco, CA 94143, USA
| | - Tony T Yang
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, 1700 4th Street, BH102, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Tymofiyeva O, Zhou VX, Lee CM, Xu D, Hess CP, Yang TT. MRI Insights Into Adolescent Neurocircuitry-A Vision for the Future. Front Hum Neurosci 2020; 14:237. [PMID: 32733218 PMCID: PMC7359264 DOI: 10.3389/fnhum.2020.00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
Adolescence is the time of onset of many psychiatric disorders. Half of pediatric patients present with comorbid psychiatric disorders that complicate both their medical and psychiatric care. Currently, diagnosis and treatment decisions are based on symptoms. The field urgently needs brain-based diagnosis and personalized care. Neuroimaging can shed light on how aberrations in brain circuits might underlie psychiatric disorders and their development in adolescents. In this perspective article, we summarize recent MRI literature that provides insights into development of psychiatric disorders in adolescents. We specifically focus on studies of brain structural and functional connectivity. Ninety-six included studies demonstrate the potential of MRI to assess psychiatrically relevant constructs, diagnose psychiatric disorders, predict their development or predict response to treatment. Limitations of the included studies are discussed, and recommendations for future research are offered. We also present a vision for the role that neuroimaging may play in pediatrics and primary care in the future: a routine neuropsychological and neuropsychiatric imaging (NPPI) protocol for adolescent patients, which would include a 30-min brain scan, a quality control and safety read of the scan, followed by computer-based calculation of the structural and functional brain network metrics that can be compared to the normative data by the pediatrician. We also perform a cost-benefit analysis to support this vision and provide a roadmap of the steps required for this vision to be implemented.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Vivian X Zhou
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Chuan-Mei Lee
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Clinical Excellence Research Center, Stanford University, Stanford, CA, United States
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Tony T Yang
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Franz CE, Hatton SN, Hauger RL, Kredlow MA, Dale AM, Eyler L, McEvoy LK, Fennema-Notestine C, Hagler D, Jacobson KC, McKenzie RE, Panizzon MS, Gustavson DE, Xian H, Toomey R, Beck A, Stevens S, Tu X, Lyons MJ, Kremen WS. Posttraumatic stress symptom persistence across 24 years: association with brain structures. Brain Imaging Behav 2020; 14:1208-1220. [PMID: 30830577 PMCID: PMC6722032 DOI: 10.1007/s11682-019-00059-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Posttraumatic stress disorder (PTSD) is known to persist, eliciting early medical co-morbidity, and accelerated aging. Although PTSD diagnosis has been found to be associated with smaller volume in multiple brain regions, posttraumatic stress (PTS) symptoms and their associations with brain morphometry are rarely assessed over long periods of time. We predicted that persistent PTS symptoms across ~24 years would be inversely associated with hippocampal, amygdala, anterior cingulate volumes, and hippocampal occupancy (HOC = hippocampal volume/[hippocampal volume + inferior lateral ventricle volume]) in late middle age. Exploratory analyses examined prefrontal regions. We assessed PTS symptoms in 247 men at average ages 38 (time 1) and 62 (time 2). All were trauma-exposed prior to time 1. Brain volumes were assessed at time 2 using 3 T structural magnetic resonance imaging. Symptoms were correlated over time (r = 0.46 p < .0001). Higher PTS symptoms averaged over time and symptoms at time 1 were both associated with lower hippocampal, amygdala, rostral middle frontal gyrus (MFG), and medial orbitofrontal cortex (OFC) volumes, and a lower HOC ratio at time 2. Increased PTS symptomatology from time 1 to time 2 was associated with smaller hippocampal volume. Results for hippocampal, rostral MFG and medial OFC remained significant after omitting individuals above the threshold for PTSD diagnosis. Even at sub-diagnostic threshold levels, PTS symptoms were present decades after trauma exposure in parallel with highly correlated structural deficits in brain regions regulating stress responsivity and adaptation.
Collapse
Affiliation(s)
- Carol E Franz
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Sean N Hatton
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard L Hauger
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92093, USA
| | - M Alexandra Kredlow
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lisa Eyler
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Linda K McEvoy
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donald Hagler
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kristen C Jacobson
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Ruth E McKenzie
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Matthew S Panizzon
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel E Gustavson
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hong Xian
- Department of Epidemiology and Biostatistics, St Louis University, St Louis, MO, 60134, USA
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Asad Beck
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA
| | - Samantha Stevens
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin Tu
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - William S Kremen
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Tymofiyeva O, Yuan JP, Huang CY, Connolly CG, Henje Blom E, Xu D, Yang TT. Application of machine learning to structural connectome to predict symptom reduction in depressed adolescents with cognitive behavioral therapy (CBT). NEUROIMAGE-CLINICAL 2019; 23:101914. [PMID: 31491813 PMCID: PMC6627980 DOI: 10.1016/j.nicl.2019.101914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 12/29/2022]
Abstract
Purpose Adolescent major depressive disorder (MDD) is a highly prevalent, incapacitating and costly illness. Many depressed teens do not improve with cognitive behavioral therapy (CBT), a first-line treatment for adolescent MDD, and face devastating consequences of increased risk of suicide and many negative health outcomes. “Who will improve with CBT?” is a crucial question that remains unanswered, and treatment planning for adolescent depression remains biologically unguided. The purpose of this study was to utilize machine learning applied to patients' brain imaging data in order to help predict depressive symptom reduction with CBT. Methods We applied supervised machine learning to diffusion MRI-based structural connectome data in order to predict symptom reduction in 30 depressed adolescents after three months of CBT. A set of 21 attributes was chosen, including the baseline depression score, age, gender, two global network properties, and node strengths of brain regions previously implicated in depression. The practical and robust J48 pruned tree classifier was utilized with a 10-fold cross-validation. Results The classification resulted in an 83% accuracy of predicting depressive symptom reduction. The resulting tree of size seven with only three attributes highlights the role of the right thalamus in predicting depressive symptom reduction with CBT. Additional analysis showed a significant negative correlation between the change in the depressive symptoms and the node strength of the right thalamus. Conclusions Our results demonstrate that a machine learning algorithm that exclusively uses structural connectome data and the baseline depression score can predict with a high accuracy depressive symptom reduction in adolescent MDD with CBT. This knowledge can help improve treatment planning for adolescent depression. Machine learning predicted symptom reduction in depressed teens with 83% accuracy. Resulting prunned classification tree size was 7, with only 3 attributes. Change in depression symptoms correlated with node strength of the right thalamus.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, 1700 4th Street, BH102, San Francisco, CA 94143, USA.
| | - Justin P Yuan
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, 1700 4th Street, BH102, San Francisco, CA 94143, USA
| | - Chiung-Yu Huang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, San Francisco, CA 94143, USA
| | - Colm G Connolly
- Department of Psychiatry and the Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Eva Henje Blom
- Department of Psychiatry and the Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Clinical Science/Child- and Adolescent Psychiatry, Umeå University, SE-901 87 Umeå, Sweden
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, 1700 4th Street, BH102, San Francisco, CA 94143, USA
| | - Tony T Yang
- Department of Psychiatry and the Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Bordoni B, Marelli F, Morabito B, Sacconi B. Depression and anxiety in patients with chronic heart failure. Future Cardiol 2018; 14:115-119. [DOI: 10.2217/fca-2017-0073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Bruno Bordoni
- Foundation Don Carlo Gnocchi IRCCS, Department of Cardiology, Institute of Hospitalization & Care with Scientific Address, S Maria Nascente, Via Capecelatro 66, Milan 20100, Italy
| | - Fabiola Marelli
- CRESO, School of Osteopathic Centre for Research & Studies, Gorla Minore (VA) Piazza XXV Aprile 4, 21055, Italy
- CRESO, School of Osteopathic Centre for Research & Studies, Via Fanella, 91 61032 Fano (Pesaro Urbino), Italy
| | - Bruno Morabito
- CRESO, School of Osteopathic Centre for Research & Studies, Gorla Minore (VA) Piazza XXV Aprile 4, 21055, Italy
- CRESO, School of Osteopathic Centre for Research & Studies, Via Fanella, 91 61032 Fano (Pesaro Urbino), Italy
- Department of Radiological, Oncological & Anatomopathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Beatrice Sacconi
- Department of Radiological, Oncological & Anatomopathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, Italy
| |
Collapse
|