1
|
Fascher M, Nowaczynski S, Muehlhan M. Substance use disorders are characterised by increased voxel-wise intrinsic measures in sensorimotor cortices: An ALE meta-analysis. Neurosci Biobehav Rev 2024; 162:105712. [PMID: 38733896 DOI: 10.1016/j.neubiorev.2024.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Substance use disorders (SUDs) are severe psychiatric illnesses. Seed region and independent component analyses are currently the dominant connectivity measures but carry the risk of false negatives due to selection. They can be complemented by a data-driven and whole-brain usage of voxel-wise intrinsic measures (VIMs). We meta-analytically integrated VIMs, namely regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), voxel-mirrored homotopy connectivity (VMHC) and degree centrality (DC) across different SUDs using the Activation Likelihood Estimation (ALE) algorithm, functionally decoded emerging clusters, and analysed their connectivity profiles. Our systematic search identified 51 studies including 1439 SUD participants. Although no overall convergent pattern of alterations across VIMs in SUDs was found, sensitivity analyses demonstrated two ALE-derived clusters of increased ReHo and ALFF in SUDs, which peaked in the left pre- and postcentral cortices. Subsequent analyses showed their involvement in action execution, somesthesis, finger tapping and vibrotactile monitoring/discrimination. Their numerous clinical correlates across included studies highlight the under-discussed role of sensorimotor cortices in SUD, urging a more attentive exploration of their clinical significance.
Collapse
Affiliation(s)
- Maximilian Fascher
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany.
| | - Sandra Nowaczynski
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; Department of Addiction Medicine, Carl-Friedrich-Flemming-Clinic, Helios Medical Center Schwerin, Wismarsche Str. 393, Schwerin 19055, Germany
| | - Markus Muehlhan
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany
| |
Collapse
|
2
|
Wu M, Chen Z, Chen X, Wang G, Xu C, Zhu Y, Xie M. Altered functional connectivity of the nucleus tractus solitarii in patients with chronic cough after lung surgery: an rs-fMRI study. Thorac Cancer 2023; 14:3202-3207. [PMID: 37718475 PMCID: PMC10643787 DOI: 10.1111/1759-7714.15110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND To explore the altered functional connectivity (FC) of the nucleus tractus solitarii (NTS) in patients with chronic cough after lung surgery using resting-state functional magnetic resonance imaging (rs-fMRI), and the association between abnormal FC and clinical scale scores. METHODS A total of 22 patients with chronic cough after lung surgery and 22 healthy controls were included. Visual analog scale (VAS), Mandarin Chinese version of the Leicester Cough Questionnaire (LCQ-MC), and Hamilton anxiety rating scale (HAMA) scores were assessed, and rs-fMRI data were collected. The FC analysis was performed using the NTS as the seed point, and FC values with all voxels in the whole brain were calculated. A two-sample t-test was used to compare FC differences between the two groups. The FC values of brain regions with differences were extracted and correlated with clinical scale scores. RESULTS In comparison to healthy controls, FC values in the NTS and anterior cingulate cortex(ACC) were reduced in patients with chronic cough after lung surgery (GRF correction, p-voxel < 0.005, p-cluster < 0.05) which were positively correlated with LCQ-MC scores (r = 0.534, p = 0.011), but with VAS (r = -0.500, p = 0.018), HAMA (r = -0.713, p < 0.001) scores were negatively correlated. CONCLUSIONS Reduced FC of the NTS with ACC may be associated with cough hypersensitivity and may contribute to anxiety in patients with chronic cough after lung surgery.
Collapse
Affiliation(s)
- Ming‐sheng Wu
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zheng‐wei Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xiao Chen
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Gao‐xiang Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Chun‐sheng Xu
- Medical Imaging CenterThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Yong‐fu Zhu
- The First Department of OncologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Ming‐ran Xie
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
3
|
Zheng R, Chen Y, Jiang Y, Zhou B, Han S, Wei Y, Wang C, Cheng J. Abnormal voxel-wise whole-brain functional connectivity in first-episode, drug-naïve adolescents with major depression disorder. Eur Child Adolesc Psychiatry 2023; 32:1317-1327. [PMID: 35318540 DOI: 10.1007/s00787-022-01959-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
Major depression disorder (MDD) is one of the most common psychiatric disorders. Previous studies have demonstrated structural and functional abnormalities in adult depression. However, the neurobiology of adolescent depression has not been fully understood. The aim of this study was to investigate the intrinsic dysconnectivity pattern of voxel-level whole-brain functional networks in first-episode, drug-naïve adolescents with MDD. Resting-state functional magnetic resonance imaging data were acquired from 66 depressed adolescents and 47 matched healthy controls. Voxel-wise degree centrality (DC) analysis was performed to identify voxels that showed altered whole-brain functional connectivity (FC) with other voxels. We further conducted seed-based FC analysis to investigate in more detail the connectivity patterns of the identified DC changes. The relationship between altered DC and clinical variables in depressed adolescents was also analyzed. Compared with controls, depressed adolescents showed lower DC in the bilateral hippocampus, left superior temporal gyrus and right insula. Seed-based analysis revealed that depressed adolescents, relative to controls, showed hypoconnectivity between the hippocampus to the medial prefrontal regions and right precuneus. Furthermore, the DC values in the bilateral hippocampus were correlated with the Hamilton Depression Rating Scale score and duration of disease (all P < 0.05, false discovery rate corrected). Our study indicates abnormal intrinsic dysconnectivity patterns of whole-brain functional networks in drug-naïve, first-episode adolescents with MDD, and abnormal DC in the hippocampus may affect the association of prefrontal-hippocampus circuit. These findings may provide new insights into the pathophysiology of adolescent-onset MDD.
Collapse
Affiliation(s)
- Ruiping Zheng
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Yuan Chen
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Yu Jiang
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Bingqian Zhou
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Shaoqiang Han
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Yarui Wei
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Caihong Wang
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Jingliang Cheng
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China.
| |
Collapse
|
4
|
Wang L, Hu F, Li W, Li Q, Li Y, Zhu J, Wei X, Yang J, Guo J, Qin Y, Shi H, Wang W, Wang Y. Relapse risk revealed by degree centrality and cluster analysis in heroin addicts undergoing methadone maintenance treatment. Psychol Med 2023; 53:2216-2228. [PMID: 34702384 DOI: 10.1017/s0033291721003937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Based on hubs of neural circuits associated with addiction and their degree centrality (DC), this study aimed to construct the addiction-related brain networks for patients diagnosed with heroin dependence undertaking stable methadone maintenance treatment (MMT) and further prospectively identify the ones at high risk for relapse with cluster analysis. METHODS Sixty-two male MMT patients and 30 matched healthy controls (HC) underwent brain resting-state functional MRI data acquisition. The patients received 26-month follow-up for the monthly illegal-drug-use information. Ten addiction-related hubs were chosen to construct a user-defined network for the patients. Then the networks were discriminated with K-means-clustering-algorithm into different groups and followed by comparative analysis to the groups and HC. Regression analysis was used to investigate the brain regions significantly contributed to relapse. RESULTS Sixty MMT patients were classified into two groups according to their brain-network patterns calculated by the best clustering-number-K. The two groups had no difference in the demographic, psychological indicators and clinical information except relapse rate and total heroin consumption. The group with high-relapse had a wider range of DC changes in the cortical-striatal-thalamic circuit relative to HC and a reduced DC in the mesocorticolimbic circuit relative to the low-relapse group. DC activity in NAc, vACC, hippocampus and amygdala were closely related with relapse. CONCLUSION MMT patients can be identified and classified into two subgroups with significantly different relapse rates by defining distinct brain-network patterns even if we are blind to their relapse outcomes in advance. This may provide a new strategy to optimize MMT.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Feng Hu
- Department of Radiology, The Hospital of Shaanxi Provincial Geology and Mineral Resources Bureau, Xi'an, P.R. China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Yongbin Li
- Department of Radiology, The Second Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Xuan Wei
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Jianxin Guo
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Yue Qin
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, P.R. China
| | - Hong Shi
- Department of Radiology, Xi'an No.1 Hospital, Xi'an, P.R. China
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Yarong Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| |
Collapse
|
5
|
Xu XM, Liu Y, Feng Y, Xu JJ, Gao J, Salvi R, Wu Y, Yin X, Chen YC. Degree centrality and functional connections in presbycusis with and without cognitive impairments. Brain Imaging Behav 2022; 16:2725-2734. [DOI: 10.1007/s11682-022-00734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
6
|
Ortiz RJ, Wagler AE, Yee JR, Kulkarni PP, Cai X, Ferris CF, Cushing BS. Functional Connectivity Differences Between Two Culturally Distinct Prairie Vole Populations: Insights Into the Prosocial Network. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:576-587. [PMID: 34839018 DOI: 10.1016/j.bpsc.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The goal of this study was to elucidate the fundamental connectivity-resting-state connectivity-within and between nodes in the olfactory and prosocial (PS) cores, which permits the expression of social monogamy in males; and how differential connectivity accounts for differential expression of prosociality and aggression. METHODS Using resting-state functional magnetic resonance imaging, we integrated graph theory analysis to compare functional connectivity between two culturally/behaviorally distinct male prairie voles (Microtusochrogaster). RESULTS Illinois males display significantly higher levels of prosocial behavior and lower levels of aggression than KI (Kansas dam and Illinois sire) males, which are associated with differences in underlying neural mechanisms and brain microarchitecture. Shared connectivity 1) between the anterior hypothalamic area and the paraventricular nucleus and 2) between the medial preoptic area and bed nucleus of the stria terminalis and the nucleus accumbens core suggests essential relationships required for male prosocial behavior. In contrast, Illinois males displayed higher levels of global connectivity and PS intracore connectivity, a greater role for the bed nucleus of the stria terminalis and anterior hypothalamic area, which were degree connectivity hubs, and greater PS and olfactory intercore connectivity. CONCLUSIONS These findings suggest that behavioral differences are associated with PS core degree of connectivity and postsignal induction. This transgenerational system may serve as powerful mental health and drug abuse translational model in future studies.
Collapse
Affiliation(s)
- Richard J Ortiz
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas
| | - Amy E Wagler
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, Texas
| | - Jason R Yee
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts
| | - Praveen P Kulkarni
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts
| | - Xuezhu Cai
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts
| | - Craig F Ferris
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts
| | - Bruce S Cushing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas.
| |
Collapse
|
7
|
何 勇, 张 利, 房 珊, 曾 雅, 杨 威, 陈 卫, 邵 玉, 程 瑞, 叶 祥, 徐 冬. [The measurements of the similarity of dynamic brain functional network]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:237-247. [PMID: 35523544 PMCID: PMC9927339 DOI: 10.7507/1001-5515.202103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Brain functional network changes over time along with the process of brain development, disease, and aging. However, most of the available measurements for evaluation of the difference (or similarity) between the individual brain functional networks are for charactering static networks, which do not work with the dynamic characteristics of the brain networks that typically involve a long-span and large-scale evolution over the time. The current study proposes an index for measuring the similarity of dynamic brain networks, named as dynamic network similarity (DNS). It measures the similarity by combining the "evolutional" and "structural" properties of the dynamic network. Four sets of simulated dynamic networks with different evolutional and structural properties (varying amplitude of changes, trend of changes, distribution of connectivity strength, range of connectivity strength) were generated to validate the performance of DNS. In addition, real world imaging datasets, acquired from 13 stroke patients who were treated by transcranial direct current stimulation (tDCS), were used to further validate the proposed method and compared with the traditional similarity measurements that were developed for static network similarity. The results showed that DNS was significantly correlated with the varying amplitude of changes, trend of changes, distribution of connectivity strength and range of connectivity strength of the dynamic networks. DNS was able to appropriately measure the significant similarity of the dynamics of network changes over the time for the patients before and after the tDCS treatments. However, the traditional methods failed, which showed significantly differences between the data before and after the tDCS treatments. The experiment results demonstrate that DNS may robustly measure the similarity of evolutional and structural properties of dynamic networks. The new method appears to be superior to the traditional methods in that the new one is capable of assessing the temporal similarity of dynamic functional imaging data.
Collapse
Affiliation(s)
- 勇权 何
- 华东师范大学 物理与电子科学学院 上海市磁共振重点实验室(上海 200062)Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China
| | - 利 张
- 华东师范大学 物理与电子科学学院 上海市磁共振重点实验室(上海 200062)Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China
| | - 珊 房
- 华东师范大学 物理与电子科学学院 上海市磁共振重点实验室(上海 200062)Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China
| | - 雅琴 曾
- 华东师范大学 物理与电子科学学院 上海市磁共振重点实验室(上海 200062)Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China
| | - 威 杨
- 华东师范大学 物理与电子科学学院 上海市磁共振重点实验室(上海 200062)Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China
| | - 卫东 陈
- 华东师范大学 物理与电子科学学院 上海市磁共振重点实验室(上海 200062)Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China
| | - 玉玲 邵
- 华东师范大学 物理与电子科学学院 上海市磁共振重点实验室(上海 200062)Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China
| | - 瑞动 程
- 华东师范大学 物理与电子科学学院 上海市磁共振重点实验室(上海 200062)Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China
| | - 祥明 叶
- 华东师范大学 物理与电子科学学院 上海市磁共振重点实验室(上海 200062)Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China
| | - 冬溶 徐
- 华东师范大学 物理与电子科学学院 上海市磁共振重点实验室(上海 200062)Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China
- 杭州医学院附属人民医院 浙江省人民医院 康复科(杭州 310014)Department of Rehabilitation Medicine, Zhejiang Province People’s Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| |
Collapse
|
8
|
Chen X, Xiao M, Qin J, Bian Z, Qiu J, Feng T, He Q, Lei X, Chen H. Association between high levels of body-esteem and increased degree of midcingulate cortex global connectivity: A resting-state fMRI study. Psychophysiology 2022; 59:e14072. [PMID: 35460526 DOI: 10.1111/psyp.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/09/2021] [Accepted: 03/27/2022] [Indexed: 11/26/2022]
Abstract
Multiple neuroimaging studies have examined the neural underpinnings of body image disturbances in patients with eating disorders. However, key brain regions related to body image, such as body-esteem (BE), among healthy individuals are understudied. Given the extremely crucial role of BE in eating behaviors and physical and mental health, the current study conducted data-driven analysis and characterized the neurobiological correlates of BE with the network properties of the resting brain using the voxel-wise degree centrality (DC) measures of resting-state functional magnetic resonance imaging (rs-fMRI) data and seed-based resting-state functional connectivity (RSFC). A total of 694 healthy young adults (females = 474, mean age = 18.38 years, range = 17-22) underwent rs-fMRI, and completed the Body-Esteem Scale for Adolescents and Adults, the Eating Disorder Diagnosis Scale, and the Restraint Scale. After correcting for differences in age, gender, body mass index, and head motion, whole-brain correlation analyses revealed that a high level of BE was associated with increased DC within the right midcingulate cortex (MCC) and subsequent high levels of MCC-based RSFC strengths. Furthermore, MCC connectivity patterns related to BE were inversely associated with disordered eating behaviors. These findings suggest that adaptive cognitive and emotional regulation (i.e., self-evaluation and emotion based on body image) may explain the potential relationship between MCC connectivity patterns and BE to a certain extent. As such, future studies should investigate these interesting possibilities.
Collapse
Affiliation(s)
- Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jingmin Qin
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ziming Bian
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Chongqing, China.,Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Xu S, Li M, Yang C, Fang X, Ye M, Wu Y, Yang B, Huang W, Li P, Ma X, Fu S, Yin Y, Tian J, Gan Y, Jiang G. Abnormal Degree Centrality in Children with Low-Function Autism Spectrum Disorders: A Sleeping-State Functional Magnetic Resonance Imaging Study. Neuropsychiatr Dis Treat 2022; 18:1363-1374. [PMID: 35818374 PMCID: PMC9270980 DOI: 10.2147/ndt.s367104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE This study used the graph-theory approach, degree centrality (DC) to analyze whole-brain functional networks at the voxel level in children with ASD, and investigated whether DC changes were correlated with any clinical variables in ASD children. METHODS The current study included 86 children with ASD and 54 matched healthy subjects Aged 2-5.5 years. Next, chloral hydrate induced sleeping-state functional magnetic resonance imaging (ss-fMRI) datasets were acquired from these ASD and healthy subjects. For a given voxel, the DC was calculated by calculating the number of functional connections with significantly positive correlations at the individual level. Group differences were tested using two-sample t-tests (p < 0.01, AlphaSim corrected). Finally, relationships between abnormal DCs and clinical variables were investigated via Pearson's correlation analysis. RESULTS Children with ASD exhibited low DC values in the right middle frontal gyrus (MFG) (p < 0.01, AlphaSim corrected). Furthermore, significantly negative correlations were established between the decreased average DC values within the right MFG in ASD children and the total ABC scores, as well as with two ABC subscales measuring highly relevant impairments in ASD (ie, stereotypes and object-use behaviors and difficulties in language). CONCLUSION Taken together, the results of our ss-fMRI study suggest that abnormal DC may represent an important contribution to elucidation of the neuropathophysiological mechanisms of preschoolers with ASD.
Collapse
Affiliation(s)
- Shoujun Xu
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Chunlan Yang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiangling Fang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Miaoting Ye
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Binrang Yang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Wenxian Huang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Peng Li
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Abnormal white matter within brain structural networks is associated with high-impulse behaviour in codeine-containing cough syrup dependent users. Eur Arch Psychiatry Clin Neurosci 2021; 271:823-833. [PMID: 32124022 DOI: 10.1007/s00406-020-01111-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/08/2020] [Indexed: 10/24/2022]
Abstract
Codeine-containing cough syrup (CCS) is considered as one of the most popular drug of dependence among adolescents because of its inexpensiveness and easy availability. However, its relationship with neurobiological effects remains sparsely explored. Herein, we examined how high-impulse behaviours relate to changes in the brain structural networks. Forty codeine-containing cough syrup dependent (CCSD) users and age-, gender-, and number of cigarettes smoked per day -matched forty healthy control (HC) subjects underwent structural brain imaging via MRI. High-impulse behaviour was assessed using the 30-item self-rated Barratt Impulsiveness Scale (BIS-11), and structural networks were constructed using diffusion tensor imaging and AAL-90 template. Between-group topological metrics were compared using nonparametric permutations. Benjamin-Hochberg false discovery rate correction was used to correct for multiple comparisons (P < 0.05). The relationships between abnormal network metrics and clinical characteristics of CCS dependent (BIS-11 total score, CCS- dependent duration and mean dose) were examined by Spearman's correlation. Structural networks of the CCSD group demonstrated lower small-world properties than those of the HC group. Abnormal changes in nodal properties among CCSD users were located mainly in the frontal gyrus, inferior parietal lobe and olfactory cortex. NBS analysis further indicated disrupted structural connections between the frontal gyrus and multiple brain regions. There were significant correlations between abnormal nodal properties of the frontal gyrus and clinical characteristics (BIS-11 total score, CCS dependent duration and mean dose) in the CCSD group. These findings suggest that the high-impulse behavioural expression in CCS addiction is associated with widespread brain regions, particularly within those in the frontal cortex. Aberrant brain regions and disrupted connectivity of structural network may be the bases of neuropathology for underlying symptoms of high-impulse behaviours in CCSD users, which may provide a novel sight to better treat and prevent codeine dependency in adolescents.
Collapse
|
11
|
Wang Y, Jiang M, Huang L, Meng X, Li S, Pang X, Zeng Z. Altered Functional Brain Network in Systemic Lupus Erythematosus Patients Without Overt Neuropsychiatric Symptoms Based on Resting-State Functional Magnetic Resonance Imaging and Multivariate Pattern Analysis. Front Neurol 2021; 12:690979. [PMID: 34354663 PMCID: PMC8333697 DOI: 10.3389/fneur.2021.690979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aims to investigate the alterations in functional brain network in systemic lupus erythematosus patients without overt neuropsychiatric symptoms [neuropsychiatric systemic lupus erythematosus (non-NPSLE)] from the perspective of degree centrality (DC) and functional connectivity (FC) using resting-state functional magnetic resonance imaging (MRI) and multivariate pattern analysis (MVPA) approach. Methods: DC analysis was performed based on the resting-state functional MRI data derived from 47 non-NPSLE patients and 47 healthy controls (HCs). Nodes with abnormal DC were utilized as seeds for further FC analysis. The correlation between MRI variables and clinical or neuropsychological data was analyzed using Pearson correlation analysis. Finally, MVPA classification based on DC was performed. Results: When compared with the HCs, the non-NPSLE patients exhibited remarkably higher DC in the bilateral hippocampus (HIP), right insula (INS), and lower DC in the left superior parietal gyrus. Furthermore, the patients displayed significantly higher FC between the left HIP and the left INS/left dorsolateral middle frontal gyrus/left supramarginal gyrus and higher FC between the right HIP and the right middle temporal gyrus/right dorsolateral middle frontal gyrus/right dorsolateral inferior frontal gyrus/right supramarginal gyrus (all imaging variables mentioned earlier underwent cluster-level false discovery rate corrections, the voxel threshold was p < 0.001, cluster threshold was p < 0.05). Correlation analysis revealed significantly negative correlations between DC values of the right INS and disease activity and the DC values of the right HIP and the Montreal Cognitive Assessment scores. The accuracy, sensitivity, and specificity of MVPA classification based on DC were 72.34, 63.83, and 80.85%, respectively. The most discriminative power brain regions were chiefly located within the temporal, parietal, and frontal regions. Conclusion: Patients with non-NPSLE exhibited abnormal DC and FC in the brain network. MVPA based on DC possessed commendable classification ability. Our study may provide a novel perspective on the neuropathological mechanisms underlying subclinical brain damage in non-NPSLE.
Collapse
Affiliation(s)
- Yiling Wang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Muliang Jiang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lixuan Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Meng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shu Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoqi Pang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zisan Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Wei Z, Fan Z, Qi Z, Tong Y, Guo Q, Chen L. Reorganization of auditory-visual network interactions in long-term unilateral postlingual hearing loss. J Clin Neurosci 2021; 87:97-102. [PMID: 33863544 DOI: 10.1016/j.jocn.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Long-term unilateral hearing loss could reorganize the functional network association between the bilateral auditory cortices, while alterations of other functional networks need to be further explored. We attempted to investigate the pattern of the reorganization of functional network associations between the auditory and visual cortex caused by long-term postlingual unilateral hearing loss (UHI) and its relationship with clinical characteristics. Therefore, 48 patients with hearing loss caused by unilateral acoustic tumors and 52 matched healthy controls were enrolled, and their high-resolution structural MRI and resting-state functional MRI data were also collected to depict the brain network. Degree centrality (DC) was employed to evaluate the functional network association of the auditory-visual network interaction. Group comparisons were performed to investigate the network reorganization, and its correlations with clinical data were calculated. Compared with the healthy control group, patients with UHI showed significantly increased DC between the auditory network (superior temporal gyrus and the medial geniculate body) and the visual network. Meanwhile, this difference was positively correlated with the extent of hearing impairment, and the correlation was more significant with the ipsilateral superior temporal gyrus in cases of acoustic neuroma. These results suggest that long-term unilateral hearing impairment may lead to enhancement of the visual-auditory network interactions and that the degree of reorganization is positively correlated with the pure tone average (PTA) and is more significant for the ipsilateral superior temporal gyrus, which provides clinical evidence regarding cross-modal plasticity in the UHI and its lateralization.
Collapse
Affiliation(s)
- Zixuan Wei
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Zhen Fan
- Neurosurgical Institute of Fudan University, China
| | - Zengxin Qi
- Shanghai Clinical Medical Center of Neurosurgery, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China
| | - Qinglong Guo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China.
| |
Collapse
|
13
|
Functional connectome-based biomarkers predict chronic codeine-containing cough syrup dependent. J Psychiatr Res 2020; 130:333-341. [PMID: 32889355 DOI: 10.1016/j.jpsychires.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Codeine-containing cough syrup (CCS) is considered among the most popular drugs of abuse in adolescents worldwide. Accurate prediction and identification of CCS dependent (CCSD) users are crucial. This study aimed to identify a brain-connectome-based predictor of CCSD using a machine learning model based on a ten-fold cross-validation logistic regression (LR) classifier. METHODS 40 CCSD users and 40 healthy control (HC) subjects underwent functional magnetic resonance imaging to construct weight functional networks. Partial correlation analysis was used to analyze relations between abnormal network metrics and clinical characteristics (BIS total scores, CCS abuse duration, and mean CCS dose) in CCSD. A ten-fold cross-validation LR classifier was used to classify CCSD users and HC subjects. RESULTS The CCSD group showed significantly abnormal nodes and connections in the right posterior cingulate, right middle insula, bilateral prefrontal cortex, parietal lobe, temporal lobe, occipital lobe, and cerebellum. Furthermore, higher characteristic path length and lower clustering coefficient (Cp), global efficiency, and local efficiency (Eloc) were observed in the global topologies in CCSD. The abnormal global properties (Cp and Eloc) and node properties of the prefrontal cortex were significantly correlated with clinical characteristics (BIS-11 scores, CCS abuse duration) in CCSD. The LR classifier models demonstrated accuracy, sensitivity, specificity, precision, and AUC of 82.5%, 82.5%, 82.5%, 76.8%, and 82.5%. CONCLUSIONS These data demonstrate that abnormal functional connectome may be closely linked to clinical characteristics in CCSD. Functional connectome-based biomarkers can be a powerful tool for personalized diagnosis of CCSD in the future.
Collapse
|
14
|
Cheng Y, Yan L, Hu L, Wu H, Huang X, Tian Y, Wu X. Differences in network centrality between high and low myopia: a voxel-level degree centrality study. Acta Radiol 2020; 61:1388-1397. [PMID: 32098475 DOI: 10.1177/0284185120902385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Previous studies have linked high myopia (HM) to brain activity, and the difference between HM and low myopia (LM) can be assessed. PURPOSE To study the differences in functional networks of brain activity between HM and LM by the voxel-level degree centrality (DC) method. MATERIAL AND METHODS Twenty-eight patients with HM (10 men, 18 women), 18 patients with LM (4 men, 14 women), and 59 healthy controls (27 men, 32 women) were enrolled in this study. The voxel-level DC method was used to assess spontaneous brain activity. Correlation analysis was used to explore the change of average DC value in different brain regions, in order to analyze differences in brain activity between HM and LM. RESULTS DC values of the right cerebellum anterior lobe/brainstem, right parahippocampal gyrus, and left caudate in HM patients were significantly higher than those in LM patients (P < 0.05). In contrast, DC values of the left medial frontal gyrus, right inferior frontal gyrus, left middle frontal gyrus, and left inferior parietal lobule were significantly lower in patients with HM (P < 0.05). However, there was no correlation between behavior and average DC values in different brain regions (P < 0.05). CONCLUSION Different changes in brain regions between HM and LM may indicate differences in neural mechanisms between HM and LM. DC values could be useful as biomarkers for differences in brain activity between patients with HM and LM. This study provides a new method to assess differences in functional networks of brain activity between patients with HM and LM.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Li Yan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Liqun Hu
- Department of Ophthalmology, Ganzhou People's Hospital of Jiangxi Province, PR China
| | - Hongyun Wu
- Department of Ophthalmology, Ganzhou People's Hospital of Jiangxi Province, PR China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yu Tian
- Department of Ophthalmology, Ganzhou People's Hospital of Jiangxi Province, PR China
| | - Xiaorong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
15
|
Sariah A, Pu W, Xue Z, Liu Z, Huang X. Reduced Cortical Thickness in the Right Caudal Middle Frontal Is Associated With Symptom Severity in Betel Quid-Dependent Chewers. Front Psychiatry 2020; 11:654. [PMID: 32754064 PMCID: PMC7366340 DOI: 10.3389/fpsyt.2020.00654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/24/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Findings from brain structural imaging studies on betel quid dependence have supported relations between betel quid chewing and alterations in gray matter volume and white matter integrity. However, the effect of betel quid chewing on cortical thickness and the link between cortical thickness and symptom severity remains unascertained. METHODS In this observational study, we compared cortical thickness measures from 24 male betel quid-dependent chewers with 27 male healthy controls. Using FreeSufer, we obtained three-dimensional T1-weighted images that were used to compute the thickness of the cerebral cortex throughout the cortical layer. RESULTS Compared to healthy controls, betel quid dependent chewers displayed significant decreased cortical thickness in the precuneus, entorhinal, right paracentral, middle temporal, and caudal middle frontal gyri. Betel quid dependence scale scores negatively correlated (r = -0.604; p = 0.002) with reduced cortical thickness in the right caudal middle frontal of betel quid-dependent chewers. CONCLUSION The findings provide evidence for cortical thickness abnormality in betel dependent chewers and further propose that the severity of betel quid symptoms may be a critical aspect associated with the cortical alterations. The observed alterations may serve as potential mechanisms to explain why BQ chewing behavior is persistent among individuals with betel quid dependence.
Collapse
Affiliation(s)
- Adellah Sariah
- National Clinical Research Centre for Mental Disorders, Institute of Mental Health and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Mental Health and Psychiatric Nursing, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania
| | - Weidan Pu
- Medical Psychological Institute, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhimin Xue
- National Clinical Research Centre for Mental Disorders, Institute of Mental Health and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhening Liu
- National Clinical Research Centre for Mental Disorders, Institute of Mental Health and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaojun Huang
- National Clinical Research Centre for Mental Disorders, Institute of Mental Health and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
16
|
Zhang B, Li B, Liu RQ, Shu YQ, Min YL, Yuan Q, Zhu PW, Lin Q, Ye L, Shao Y. Altered spontaneous brain activity pattern in patients with ophthalmectomy: an resting-state fMRI study. Int J Ophthalmol 2020; 13:263-270. [PMID: 32090036 DOI: 10.18240/ijo.2020.02.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To use the voxel-wise degree centrality (DC) method to explore the underlying functional network brain-activity in patients with ophthalmectomy. METHODS A total of 32 ophthalmic surgery patients (10 women and 22 men), and 32 healthy subjects (10 women and 22 men) highly matched in gender, age, and the same operation method. Everyone experienced a resting-state functional magnetic resonance imaging scan. The spontaneous brain activity could be assessed by DC. Correlation analysis was used to explore the relationships between the average DC signal values and behavior performance in different regions. Receiver operating characteristic (ROC) curve analysis was utilized to differentiate between ophthalmectomy patients and healthy controls (HCs). RESULTS Compared with HCs, ophthalmectomy patients had greatly reduced DC values in left lingual gyrus, bilateral lingual lobe, left cingulate gyrus, and increased DC values of left cerebellum posterior lobe, left middle frontal gyrus1, right supramarginal gyrus, left middle frontal gyrus2, right middle frontal gyrus. However, we did not find that there was a correlation between the average DC values from various brain regions and clinical manifestations. CONCLUSION Dysfunction may be caused by ophthalmectomy in lots of cerebral areas, which may show the potential pathological mechanism of ophthalmectomy and it is beneficial to clinical diagnosis.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Ophthalmology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Biao Li
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi Province, China
| | - Rong-Qiang Liu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yong-Qiang Shu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - You-Lan Min
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi Province, China
| | - Qing Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi Province, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi Province, China
| | - Qi Lin
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi Province, China
| | - Lei Ye
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
17
|
Wu K, Liu M, He L, Tan Y. Abnormal degree centrality in delayed encephalopathy after carbon monoxide poisoning: a resting-state fMRI study. Neuroradiology 2020; 62:609-616. [PMID: 31955235 PMCID: PMC7186243 DOI: 10.1007/s00234-020-02369-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/10/2020] [Indexed: 01/15/2023]
Abstract
Purpose To explore neuropathologic mechanisms in functional brain regions in patients with delayed encephalopathy after carbon monoxide poisoning (DEACMP) from the perspective of the brain network nodes by resting-state functional magnetic resonance imaging (rs-fMRI). Methods The fMRI and cognitive assessments were performed in 25 patients with DEACMP and 25 age-, sex- and education-matched healthy controls (HCs). Data analysis was performed via the degree centrality (DC) method. Then, the associations between the cognitive assessments and DC in the identified abnormal brain regions were assessed by using a correlation analysis. Results Compared with the HCs, the DEACMP patients displayed significantly decreased DC values in the right superior frontal gyrus, right precentral gyrus, right angular gyrus, right marginal gyrus, right hippocampus, and left thalamus but increased DC values in the right inferior frontal gyrus, right cingulate gyrus, left superior temporal gyrus, left medial temporal gyrus, right lingual gyrus, and right posterior cerebellar lobe, pons, and midbrain (GRF correction, voxel P value < 0.001, cluster P value < 0.01). The correlation analysis in the DEACMP group revealed that there was a negative correlation between the DC values in the right hippocampus and MMSE scores, whereas a positive correlation was observed in the right cingulate gyrus. Conclusions Patients with DEACMP exhibited abnormal degree centrality in the brain network. This finding may provide a new approach for examining the neuropathologic mechanisms underlying DEACMP.
Collapse
Affiliation(s)
- Kaifu Wu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Meng Liu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Laichang He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yongming Tan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
18
|
Sun Y, Wang H, Bo S. Altered topological connectivity of internet addiction in resting-state EEG through network analysis. Addict Behav 2019; 95:49-57. [PMID: 30844604 DOI: 10.1016/j.addbeh.2019.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
The results of some neuroimaging studies have revealed that people with internet addiction (IA) exhibit structural and functional changes in specific brain areas and connections. However, the understanding about global topological organization of IA may also require a more integrative and holistic view of brain function. In the present study, we used synchronization likelihood combined with graph theory analysis to investigate the functional connectivity (FC) and topological differences between 25 participants with IA and 27 healthy controls (HCs) based on their spontaneous EEG activities in the eye-closed resting state. There were no significant differences in FC (total network or sub-networks) between groups (p > .05 for all). Graph analysis showed significantly lower characteristic path length and clustering coefficient in the IA group than in the HC group in the beta and gamma bands, respectively. Altered nodal centralities of the frontal (FP1, FPz) and parietal (CP1, CP5, PO3, PO7, P5, P6, TP8) lobes in the IA group were also observed. Correlation analysis demonstrated that the observed regional alterations were significantly correlated with the severity of IA. Collectively, our findings showed that IA group demonstrated altered topological organization, shifting towards a more random state. Moreover, this study revealed the important role of altered brain areas in the neuropathological mechanism of IA and provided further supportive evidence for the diagnosis of IA.
Collapse
|
19
|
|