1
|
Saleem A, Harmata G, Jain S, Voss MW, Fiedorowicz JG, Williams A, Shaffer JJ, Richards JG, Barsotti EJ, Sathyaputri L, Schmitz SL, Christensen GE, Long JD, Xu J, Wemmie JA, Magnotta VA. Functional Connectivity of the Cerebellar Vermis in Bipolar Disorder and Associations with Mood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526878. [PMID: 36778335 PMCID: PMC9915674 DOI: 10.1101/2023.02.02.526878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purpose Studies of the neural underpinnings of bipolar type I disorder have focused on the emotional control network. However, there is also growing evidence for cerebellar involvement, including abnormal structure, function, and metabolism. Here, we sought to assess functional connectivity of the cerebellum with the cerebrum in bipolar disorder and to assess whether any effects might depend on mood. Methods This cross-sectional study enrolled 128 participants with bipolar type I disorder and 83 control comparison participants who completed a 3T MRI scan, which included anatomical imaging as well as resting state BOLD imaging. Functional connectivity of the cerebellar vermis to all other brain regions was assessed. Based on quality control metrics of the fMRI data, 109 participants with bipolar disorder and 79 controls were used to in the statistical analysis comparing connectivity of the vermis as well as associations with mood. Potential impacts of medications were also explored. Results Functional connectivity of the cerebellar vermis in bipolar disorder was found to differ significantly between brain regions known to be involved in the control of emotion, motor function, and language. While connections with emotion and motor control areas were significantly stronger in bipolar disorder, connection to a region associated language production was significantly weaker. In the participants with bipolar disorder, ratings of depression and mania were inversely associated with vermis functional connectivity. No effect of medications on these connections were observed. Conclusion Together the findings suggest cerebellum may play a compensatory role in bipolar disorder and when it can no longer fulfill this role, depression and mania develop. The proximity of the cerebellar vermis to the skull may make this region a potential target for treatment with transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Arshaq Saleem
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242
| | - Gail Harmata
- Department of Radiology, University of Iowa, Iowa City, IA, 52242
| | - Shivangi Jain
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242
| | - Michelle W. Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242
| | - Jess G. Fiedorowicz
- The Ottawa Hospital, Ottawa Hospital Research Institute, University of Ottawa Brain & Mind Research Institute, Ottawa ON Canada K1H 8L6
| | - Aislinn Williams
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242
| | | | | | | | - Leela Sathyaputri
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242
| | - Samantha L. Schmitz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242
| | - Gary E. Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242,Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242
| | - Jeffrey D. Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242,Department of Biostatistics, University of Iowa, Iowa City, IA, 52242
| | - Jia Xu
- Department of Radiology, University of Iowa, Iowa City, IA, 52242
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242,Veterans Affairs Medical Center, Iowa City, Iowa, USA,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Department of Neurosurgery, University of Iowa, Iowa City, IA, 52242
| | - Vincent A. Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, 52242,Department of Psychiatry, University of Iowa, Iowa City, IA, 52242,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
2
|
Rootes-Murdy K, Edmond JT, Jiang W, Rahaman MA, Chen J, Perrone-Bizzozero NI, Calhoun VD, van Erp TGM, Ehrlich S, Agartz I, Jönsson EG, Andreassen OA, Westlye LT, Wang L, Pearlson GD, Glahn DC, Hong E, Buchanan RW, Kochunov P, Voineskos A, Malhotra A, Tamminga CA, Liu J, Turner JA. Clinical and cortical similarities identified between bipolar disorder I and schizophrenia: A multivariate approach. Front Hum Neurosci 2022; 16:1001692. [PMID: 36438633 PMCID: PMC9684186 DOI: 10.3389/fnhum.2022.1001692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Structural neuroimaging studies have identified similarities in the brains of individuals diagnosed with schizophrenia (SZ) and bipolar I disorder (BP), with overlap in regions of gray matter (GM) deficits between the two disorders. Recent studies have also shown that the symptom phenotypes associated with SZ and BP may allow for a more precise categorization than the current diagnostic criteria. In this study, we sought to identify GM alterations that were unique to each disorder and whether those alterations were also related to unique symptom profiles. MATERIALS AND METHODS We analyzed the GM patterns and clinical symptom presentations using independent component analysis (ICA), hierarchical clustering, and n-way biclustering in a large (N ∼ 3,000), merged dataset of neuroimaging data from healthy volunteers (HV), and individuals with either SZ or BP. RESULTS Component A showed a SZ and BP < HV GM pattern in the bilateral insula and cingulate gyrus. Component B showed a SZ and BP < HV GM pattern in the cerebellum and vermis. There were no significant differences between diagnostic groups in these components. Component C showed a SZ < HV and BP GM pattern bilaterally in the temporal poles. Hierarchical clustering of the PANSS scores and the ICA components did not yield new subgroups. N-way biclustering identified three unique subgroups of individuals within the sample that mapped onto different combinations of ICA components and symptom profiles categorized by the PANSS but no distinct diagnostic group differences. CONCLUSION These multivariate results show that diagnostic boundaries are not clearly related to structural differences or distinct symptom profiles. Our findings add support that (1) BP tend to have less severe symptom profiles when compared to SZ on the PANSS without a clear distinction, and (2) all the gray matter alterations follow the pattern of SZ < BP < HV without a clear distinction between SZ and BP.
Collapse
Affiliation(s)
- Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Jesse T. Edmond
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, Medical School, Zhongda Hospital, Institute of Psychosomatics, Southeast University, Nanjing, China
| | - Md A. Rahaman
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | | | - Vince D. Calhoun
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Ingrid Agartz
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institute and Stockholm Health Care Services, Stockholm, Sweden
- K. G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik G. Jönsson
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institute and Stockholm Health Care Services, Stockholm, Sweden
| | - Ole A. Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- K. G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- K. G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Lei Wang
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, Columbus, OH, United States
| | - Godfrey D. Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, United States
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, United States
| | - David C. Glahn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, United States
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert W. Buchanan
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Aristotle Voineskos
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Anil Malhotra
- Division of Psychiatry Research, Zucker Hillside Hospital, Queens, NY, United States
| | - Carol A. Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Jessica A. Turner
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
3
|
Diaz AP, Fernandes BS, Teixeira AL, Mwangi B, Hasan KM, Wu MJ, Selvaraj S, Suen P, Zanao TA, Brunoni AR, Sanches M, Soares JC. White matter microstructure associated with anhedonia among individuals with bipolar disorders and high-risk for bipolar disorders. J Affect Disord 2022; 300:91-98. [PMID: 34936916 PMCID: PMC8828704 DOI: 10.1016/j.jad.2021.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Anhedonia - a key symptom of depression - is highly associated with poorer outcomes and suicidal behavior. Alterations in the circuitry of reward-related brain regions have been robustly associated with anhedonia in unipolar depression, but not bipolar disorder (BD). We investigated white matter microstructures associated with anhedonia in participants with BD types I and II and first-degree relatives of patients with BD (BD-siblings). METHODS Eighty participants (BD types I and II: 56 [70%], and BD-siblings: 24 [30%]) underwent diffusion tensor imaging (DTI); Fractional anisotropy (FA) of different tracts were computed. Anhedonia was assessed using item 8, ("inability to feel'') of the MADRS scale. General linear models were used to compare the FA of different tracts in participants with and without anhedonia controlling for several clinical and demographic variables. RESULTS The mean age of the sample was 37 (± 11) years old, and 68.8% were female. Participants with anhedonia (32.5%) presented lower mean FA in the left uncinate fasciculus (UF) (p = 0.005), right temporal endings of the superior longitudinal fasciculus (SLFT) (p = 0.04), and in the left and right parietal endings of the superior longitudinal fasciculus (SLFP) (p = 0.003, and p = 0.04, respectively). Similar comparisons between participants with or without current depressive episodes and between participants with or without inner tension according to the MADRS did not show significant differences, specificity of the findings for anhedonia. CONCLUSIONS Lower FA in the left UF and SLF are potential neuroimaging markers of anhedonia in individuals with BD and high-risk for BD.
Collapse
Affiliation(s)
- Alexandre Paim Diaz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Road, Suite 3130, Houston, TX 77054, United States.
| | - Brisa S. Fernandes
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Antonio Lucio Teixeira
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Benson Mwangi
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Khader M. Hasan
- The University of Texas Health Science Center at Houston, Department of Diagnostic and Interventional Imaging, Diffusion MRI Research Lab, Houston, Texas
| | - Mon-Ju Wu
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Sudhakar Selvaraj
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Paulo Suen
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Tamires Araujo Zanao
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andre R. Brunoni
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marsal Sanches
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| | - Jair C. Soares
- The University of Texas Health Science Center at Houston, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Houston, Texas
| |
Collapse
|
4
|
Domain L, Guillery M, Linz N, König A, Batail JM, David R, Corouge I, Bannier E, Ferré JC, Dondaine T, Drapier D, Robert GH. Multimodal MRI cerebral correlates of verbal fluency switching and its impairment in women with depression. Neuroimage Clin 2021; 33:102910. [PMID: 34942588 PMCID: PMC8713114 DOI: 10.1016/j.nicl.2021.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The search of biomarkers in the field of depression requires easy implementable tests that are biologically rooted. Qualitative analysis of verbal fluency tests (VFT) are good candidates, but its cerebral correlates are unknown. METHODS We collected qualitative semantic and phonemic VFT scores along with grey and white matter anatomical MRI of depressed (n = 26) and healthy controls (HC, n = 25) women. Qualitative VFT variables are the "clustering score" (i.e. the ability to produce words within subcategories) and the "switching score" (i.e. the ability to switch between clusters). The clustering and switching scores were automatically calculated using a data-driven approach. Brain measures were cortical thickness (CT) and fractional anisotropy (FA). We tested for associations between CT, FA and qualitative VFT variables within each group. RESULTS Patients had reduced switching VFT scores compared to HC. Thicker cortex was associated with better switching score in semantic VFT bilaterally in the frontal (superior, rostral middle and inferior gyri), parietal (inferior parietal lobule including the supramarginal gyri), temporal (transverse and fusiform gyri) and occipital (lingual gyri) lobes in the depressed group. Positive association between FA and the switching score in semantic VFT was retrieved in depressed patients within the corpus callosum, right inferior fronto-occipital fasciculus, right superior longitudinal fasciculus extending to the anterior thalamic radiation (all p < 0.05, corrected). CONCLUSION Together, these results suggest that automatic qualitative VFT scores are associated with brain anatomy and reinforce its potential use as a surrogate for depression cerebral bases.
Collapse
Affiliation(s)
- L Domain
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - M Guillery
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - N Linz
- ki:elements, Saarbrücken, Germany
| | - A König
- Stars Team, Institut National de Recherche en Informatique et en Automatique (INRIA), Sophia Antipolis, France; CoBTeK (Cognition-Behaviour-Technology) Lab, FRIS-University Côte d'Azur, Nice, France
| | - J M Batail
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - R David
- Old-age Psychiatry DEPARTMENT, Geriatry Division, University of Nice, France
| | - I Corouge
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - E Bannier
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - J C Ferré
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - T Dondaine
- Univ. Lille, Inserm, CHU Lille, LilNCog, Lille Neuroscience & Cognition, F-59000 Lille, France
| | - D Drapier
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - G H Robert
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France; U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| |
Collapse
|