1
|
Wang JX, Fu L, Lei Q, Zhuang JY. Ovarian hormone effects on cognitive flexibility in social contexts: Evidence from resting-state and task-based fMRI. Physiol Behav 2025; 292:114842. [PMID: 39938608 DOI: 10.1016/j.physbeh.2025.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/04/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Accumulating evidence suggests that the menstrual cycle and its endogenous ovarian hormones, including progesterone (PROG) and estradiol (E2), affect cognitive performance in women, particularly by modulating the prefrontal regions. In this study, we investigated whether differences in PROG and E2 levels modulate attentional control by affecting the prefrontal cognitive control areas. An fMRI scan was conducted on 53 naturally cycling healthy women in their late follicular phase (FP, n = 28) or mid-luteal phase (LP, n = 25) to examine the resting and task states during the completion of a face‒gender Stroop task. PROG was found to be positively correlated with the nodal efficiency of the inferior frontal gyrus (IFG) in the resting-state executive control network. At the behavioral level, while accuracy in categorizing male faces remained similar, participants in the mid-LP were significantly more accurate in categorizing female faces than those in the late FP. At the neural level, both the univariate and multivariate results indicated that higher levels of PROG enhance the detection and resolution of female incongruent faces through the activation of the bilateral IFG. These findings expand evidence of the effects of ovarian hormones on prefrontal-based attentional control in the social context.
Collapse
Affiliation(s)
- Jia-Xi Wang
- Mental Health Education Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lulu Fu
- Department of Psychology, East China Normal University, Shanghai, 200062, China
| | - Qin Lei
- Department of Psychology, East China Normal University, Shanghai, 200062, China
| | - Jin-Ying Zhuang
- Department of Psychology, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
2
|
Medina S, Forero CG, Sanabria‐Mazo JP, Rodríguez‐Freire C, Navarrete J, O'Daly OG, Howard MA, Luciano JV. Baseline Functional Connectivity of the Mesolimbic, Salience, and Sensorimotor Systems Predicts Responses to Psychological Therapies for Chronic Low Back Pain With Comorbid Depression: A Functional MRI Study. Brain Behav 2025; 15:e70380. [PMID: 40022281 PMCID: PMC11870833 DOI: 10.1002/brb3.70380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2025] Open
Abstract
INTRODUCTION Chronic low back pain (CLBP) is a prevalent and debilitating condition. Cognitive behavioral therapy (CBT) can improve coping mechanisms for CLBP and pain-related outcomes. However, the mechanisms by which they do so remain undetermined. We explored the neural correlates of CLBP symptoms and CBT action using functional magnetic resonance imaging (fMRI) in women with CLBP and comorbid depression. METHODS Forty individuals underwent fMRI followed by 8 weeks of either treatment as usual (TAU) or one of two CBT in addition to TAU: acceptance and commitment therapy (ACT) or behavioral activation treatment for depression (BATD). Pain intensity, depression, psychological inflexibility, and pain catastrophizing scores were obtained at baseline and follow-up. Functional connectivity (FC) patterns of the salience network (SN), sensorimotor network (SMN), and the mesolimbic pathway (MLP), derived from resting-state fMRI examination were correlated with both baseline and delta (baseline-follow-up) pain-related psychological measures. RESULTS Individuals receiving ACT and BATD showed reduced depression, psychological inflexibility, and pain catastrophizing. Strong baseline connectivity of the SN and SMN corresponded with higher pain intensity, but strong connectivity of the MLP and precuneus corresponded with lower pain intensity. Pain intensity changes correlated with mesolimbic-salience connectivity following ACT, and with sensorimotor connectivity following BATD. Specifically, stronger baseline FC between the MLP and posterior insula predicted greater pain intensity reduction with ACT, while stronger FC between the SMN and secondary somatosensory cortex predicted greater pain intensity reduction with BATD. FC of the SN correlated with changes in psychological inflexibility across both therapies. CONCLUSIONS We illustrate the potential of FC as a biomarker of CLBP plus depression and the response to CBT. Our data suggest ACT and BATD have differing underlying brain mechanisms. These findings indicate that FC biomarkers could guide personalized treatment, improving individual outcomes.
Collapse
Affiliation(s)
- Sonia Medina
- Department of NeuroimagingKing's College LondonLondonUK
- Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Carlos G. Forero
- School of MedicineUniversitat Internacional de CatalunyaSant Cugat del VallèsSpain
| | - Juan P. Sanabria‐Mazo
- Teaching, Research & Innovation UnitParc Sanitari Sant Joan de DéuSant Boi de LlobregatSpain
- CIBER of Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Carla Rodríguez‐Freire
- Teaching, Research & Innovation UnitParc Sanitari Sant Joan de DéuSant Boi de LlobregatSpain
| | - Jaime Navarrete
- Teaching, Research & Innovation UnitParc Sanitari Sant Joan de DéuSant Boi de LlobregatSpain
- CIBER of Epidemiology and Public Health (CIBERESP)MadridSpain
| | | | | | - Juan V. Luciano
- Teaching, Research & Innovation UnitParc Sanitari Sant Joan de DéuSant Boi de LlobregatSpain
- CIBER of Epidemiology and Public Health (CIBERESP)MadridSpain
- Department of Clinical & Health PsychologyAutonomous University of BarcelonaBellaterraSpain
| |
Collapse
|
3
|
Bachmann T, Mueller K, Kusnezow SNA, Schroeter ML, Piaggi P, Weise CM. Cerebellocerebral connectivity predicts body mass index: a new open-source Python-based framework for connectome-based predictive modeling. Gigascience 2025; 14:giaf010. [PMID: 40072905 PMCID: PMC11899596 DOI: 10.1093/gigascience/giaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity. METHODS We utilized the Human Connectome Project's Young Adults dataset, including functional magnetic resonance imaging (fMRI) and behavioral data, to perform connectome-based predictive modeling (CPM) restricted to cerebellocerebral connectivity of resting-state fMRI and task-based fMRI. We developed a Python-based open-source framework to perform CPM, a data-driven technique with built-in cross-validation to establish brain-behavior relationships. Significance was assessed with permutation analysis. RESULTS We found that (i) cerebellocerebral connectivity predicted BMI, (ii) task-general cerebellocerebral connectivity predicted BMI more reliably than resting-state fMRI and individual task-based fMRI separately, (iii) predictive networks derived this way overlapped with established functional brain networks (namely, frontoparietal networks, the somatomotor network, the salience network, and the default mode network), and (iv) we found there was an inverse overlap between networks predictive of BMI and networks predictive of cognitive measures adversely affected by overweight/obesity. CONCLUSIONS Our results suggest obesity-specific alterations in cerebellocerebral connectivity, specifically with regard to task execution. With brain areas and brain networks relevant to task performance implicated, these alterations seem to reflect a neurobiological substrate for task performance adversely affected by obesity.
Collapse
Affiliation(s)
- Tobias Bachmann
- Department of Neurology, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Neurology, First Faculty of Medicine and General University Hospital in Prague, Prague 12108, Czech Republic
| | - Simon N A Kusnezow
- Department of Neurology, University of Halle Medical Center, Halle 06102, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Christopher M Weise
- Department of Neurology, University of Halle Medical Center, Halle 06102, Germany
| |
Collapse
|
4
|
Saluja S, Qiu L, Wang AR, Campos G, Seilheimer R, McNab JA, Haber SN, Barbosa DAN, Halpern CH. Diffusion Magnetic Resonance Imaging Tractography Guides Investigation of the Zona Incerta: A Novel Target for Deep Brain Stimulation. Biol Psychiatry 2024; 96:445-454. [PMID: 38401802 PMCID: PMC11338738 DOI: 10.1016/j.biopsych.2024.02.1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND The zona incerta (ZI) is a subcortical structure primarily investigated in rodents that is implicated in various behaviors, ranging from motor control to survival-associated activities, partly due to its integration in multiple neural circuits. In the current study, we used diffusion magnetic resonance imaging tractography to segment the ZI and gain insight into its connectivity in various circuits in humans. METHODS We performed probabilistic tractography in 7T diffusion MRI on 178 participants from the Human Connectome Project to validate the ZI's anatomical subdivisions and their respective tracts. K-means clustering segmented the ZI based on each voxel's connectivity profile. We further characterized the connections of each ZI subregion using probabilistic tractography with each subregion as a seed. RESULTS We identified 2 dominant clusters that delineated the whole ZI into rostral and caudal subregions. The caudal ZI primarily connected with motor regions, while the rostral ZI received a topographic distribution of projections from prefrontal areas, notably the anterior cingulate and medial prefrontal cortices. We generated a probabilistic ZI atlas that was registered to a patient-participant's magnetic resonance imaging scan for placement of stereoencephalographic leads for electrophysiology-guided deep brain stimulation to treat their obsessive-compulsive disorder. Rostral ZI stimulation improved the patient's core symptoms (mean improvement 21%). CONCLUSIONS We present a tractography-based atlas of the rostral and caudal ZI subregions constructed using high-resolution diffusion magnetic resonance imaging from 178 healthy participants. Our work provides an anatomical foundation to explore the rostral ZI as a novel target for deep brain stimulation to treat refractory obsessive-compulsive disorder and other disorders associated with dysfunctional reward circuitry.
Collapse
Affiliation(s)
- Sabir Saluja
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liming Qiu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allan R Wang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gustavo Campos
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Seilheimer
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer A McNab
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Suzanne N Haber
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Daniel A N Barbosa
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Casey H Halpern
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.
| |
Collapse
|
5
|
Perera MPN, Gotsis ES, Bailey NW, Fitzgibbon BM, Fitzgerald PB. Exploring functional connectivity in large-scale brain networks in obsessive-compulsive disorder: a systematic review of EEG and fMRI studies. Cereb Cortex 2024; 34:bhae327. [PMID: 39152672 PMCID: PMC11329673 DOI: 10.1093/cercor/bhae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric condition that is difficult to treat due to our limited understanding of its pathophysiology. Functional connectivity in brain networks, as evaluated through neuroimaging studies, plays a pivotal role in understanding OCD. While both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been extensively employed in OCD research, few have fully synthesized their findings. To bridge this gap, we reviewed 166 studies (10 EEG, 156 fMRI) published up to December 2023. In EEG studies, OCD exhibited lower connectivity in delta and alpha bands, with inconsistent findings in other frequency bands. Resting-state fMRI studies reported conflicting connectivity patterns within the default mode network (DMN) and sensorimotor cortico-striato-thalamo-cortical (CSTC) circuitry. Many studies observed decreased resting-state connectivity between the DMN and salience network (SN), implicating the 'triple network model' in OCD. Task-related hyperconnectivity within the DMN-SN and hypoconnectivity between the SN and frontoparietal network suggest OCD-related cognitive inflexibility, potentially due to triple network dysfunction. In conclusion, our review highlights diverse connectivity differences in OCD, revealing complex brain network interplay that contributes to symptom manifestation. However, the presence of conflicting findings underscores the necessity for targeted research to achieve a comprehensive understanding of the pathophysiology of OCD.
Collapse
Affiliation(s)
- M Prabhavi N Perera
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Efstathia S Gotsis
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Neil W Bailey
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Bernadette M Fitzgibbon
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Paul B Fitzgerald
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| |
Collapse
|
6
|
Yu J, Xu Q, Ma L, Huang Y, Zhu W, Liang Y, Wang Y, Tang W, Zhu C, Jiang X. Convergent functional change of frontoparietal network in obsessive-compulsive disorder: a voxel-based meta-analysis. Front Psychiatry 2024; 15:1401623. [PMID: 39041046 PMCID: PMC11260709 DOI: 10.3389/fpsyt.2024.1401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is a chronic psychiatric illness with complex clinical manifestations. Cognitive dysfunction may underlie OC symptoms. The frontoparietal network (FPN) is a key region involved in cognitive control. However, the findings of impaired FPN regions have been inconsistent. We employed meta-analysis to identify the fMRI-specific abnormalities of the FPN in OCD. Methods PubMed, Web of Science, Scopus, and EBSCOhost were searched to screen resting-state functional magnetic resonance imaging (rs-fMRI) studies exploring dysfunction in the FPN of OCD patients using three indicators: the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF), regional homogeneity (ReHo) and functional connectivity (FC). We compared all patients with OCD and control group in a primary analysis, and divided the studies by medication in secondary meta-analyses with the activation likelihood estimation (ALE) algorithm. Results A total of 31 eligible studies with 1359 OCD patients (756 men) and 1360 healthy controls (733 men) were included in the primary meta-analysis. We concluded specific changes in brain regions of FPN, mainly in the left dorsolateral prefrontal cortex (DLPFC, BA9), left inferior frontal gyrus (IFG, BA47), left superior temporal gyrus (STG, BA38), right posterior cingulate cortex (PCC, BA29), right inferior parietal lobule (IPL, BA40) and bilateral caudate. Additionally, altered connectivity within- and between-FPN were observed in the bilateral DLPFC, right cingulate gyrus and right thalamus. The secondary analyses showed improved convergence relative to the primary analysis. Conclusion OCD patients showed dysfunction FPN, including impaired local important nodal brain regions and hypoconnectivity within the FPN (mainly in the bilateral DLPFC), during the resting state. Moreover, FPN appears to interact with the salience network (SN) and default mode network (DMN) through pivotal brain regions. Consistent with the hypothesis of fronto-striatal circuit dysfunction, especially in the dorsal cognitive circuit, these findings provide strong evidence for integrating two pathophysiological models of OCD.
Collapse
Affiliation(s)
- Jianping Yu
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qianwen Xu
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Lisha Ma
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yueqi Huang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Liang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunzhan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenxin Tang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoying Jiang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Thomas SA, Ryan SK, Gilman J. Resting state network connectivity is associated with cognitive flexibility performance in youth in the Adolescent Brain Cognitive Development Study. Neuropsychologia 2023; 191:108708. [PMID: 37898357 PMCID: PMC10842068 DOI: 10.1016/j.neuropsychologia.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Cognitive flexibility is an executive functioning skill that develops in childhood, and when impaired, has transdiagnostic implications for psychiatric disorders. To identify how intrinsic neural architecture at rest is linked to cognitive flexibility performance, we used the data-driven method of independent component analysis (ICA) to investigate resting state networks (RSNs) and their whole-brain connectivity associated with levels of cognitive flexibility performance in children. We hypothesized differences by cognitive flexibility performance in RSN connectivity strength in cortico-striatal circuitry, which would manifest via the executive control network, right and left frontoparietal networks (FPN), salience network, default mode network (DMN), and basal ganglia network. We selected participants from the Adolescent Brain Cognitive Development (ABCD) Study who scored at the 25th, ("CF-Low"), 50th ("CF-Average"), or 75th percentiles ("CF-High") on a cognitive flexibility task, were early to middle puberty, and did not exhibit significant psychopathology (n = 967, 47.9% female; ages 9-10). We conducted whole-brain ICA, identifying 14 well-characterized RSNs. Groups differed in connectivity strength in the right FPN, anterior DMN, and posterior DMN. Planned comparisons indicated CF-High had stronger connectivity between right FPN and supplementary motor/anterior cingulate than CF-Low. CF-High had more anti-correlated connectivity between anterior DMN and precuneus than CF-Average. CF-Low had stronger connectivity between posterior DMN and supplementary motor/anterior cingulate than CF-Average. Post-hoc correlations with reaction time by trial type demonstrated significant associations with connectivity. In sum, our results suggest childhood cognitive flexibility performance is associated with DMN and FPN connectivity strength at rest, and that there may be optimal levels of connectivity associated with task performance that vary by network.
Collapse
Affiliation(s)
- Sarah A Thomas
- Bradley Hasbro Children's Research Center, 25 Hoppin St., Box #36, Providence, RI, 02903, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Box 1901, 164 Angell St., 4th Floor, Providence, RI, 02912, USA.
| | - Sarah K Ryan
- Bradley Hasbro Children's Research Center, 25 Hoppin St., Box #36, Providence, RI, 02903, USA.
| | - Jodi Gilman
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Shitova AD, Zharikova TS, Kovaleva ON, Luchina AM, Aktemirov AS, Olsufieva AV, Sinelnikov MY, Pontes-Silva A, Zharikov YO. Tourette syndrome and obsessive-compulsive disorder: A comprehensive review of structural alterations and neurological mechanisms. Behav Brain Res 2023; 453:114606. [PMID: 37524204 DOI: 10.1016/j.bbr.2023.114606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/02/2023]
Abstract
Currently, it is possible to study the pathogenesis of Tourette's syndrome (TS) in more detail, due to more advanced methods of neuroimaging. However, medical and surgical treatment options are limited by a lack of understanding of the nature of the disorder and its relationship to some psychiatric disorders, the most common of which is obsessive-compulsive disorder (OCD). It is believed that the origin of chronic tic disorders is based on an imbalance of excitatory and inhibitory influences in the Cortico-Striato-Thalamo-Cortical circuits (CSTC). The main CSTCs involved in the pathological process have been identified by studying structural and neurotransmitter disturbances in the interaction between the cortex and the basal ganglia. A neurotransmitter deficiency in CSTC has been demonstrated by immunohistochemical and genetic methods, but it is still not known whether it arises as a consequence of genetically determined disturbances of neuronal migration during ontogenesis or as a consequence of altered production of proteins involved in neurotransmitter production. The aim of this review is to describe current ideas about the comorbidity of TS with OCD, the involvement of CSTC in the pathogenesis of both disorders and the background of structural and neurotransmitter changes in CSTC that may serve as targets for drug and neuromodulatory treatments.
Collapse
Affiliation(s)
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Olga N Kovaleva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Anastasia M Luchina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Arthur S Aktemirov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Anna V Olsufieva
- Moscow University for Industry and Finance "Synergy", Moscow 125315, Russia
| | - Mikhail Y Sinelnikov
- Department of Oncology and Radiotherapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; Russian National Centre of Surgery, Avtsyn Research Institute of Human Morphology, Moscow 117418, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| |
Collapse
|
9
|
Becker HC, Norman LJ, Yang H, Monk CS, Phan KL, Taylor SF, Liu Y, Mannella K, Fitzgerald KD. Disorder-specific cingulo-opercular network hyperconnectivity in pediatric OCD relative to pediatric anxiety. Psychol Med 2023; 53:1468-1478. [PMID: 37010220 PMCID: PMC10009399 DOI: 10.1017/s0033291721003044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prior investigation of adult patients with obsessive compulsive disorder (OCD) has found greater functional connectivity within orbitofrontal-striatal-thalamic (OST) circuitry, as well as altered connectivity within and between large-scale brain networks such as the cingulo-opercular network (CON) and default mode network (DMN), relative to controls. However, as adult OCD patients often have high rates of co-morbid anxiety and long durations of illness, little is known about the functional connectivity of these networks in relation to OCD specifically, or in young patients near illness onset. METHODS In this study, unmedicated female patients with OCD (ages 8-21 years, n = 23) were compared to age-matched female patients with anxiety disorders (n = 26), and healthy female youth (n = 44). Resting-state functional connectivity was used to determine the strength of functional connectivity within and between OST, CON, and DMN. RESULTS Functional connectivity within the CON was significantly greater in the OCD group as compared to the anxiety and healthy control groups. Additionally, the OCD group displayed greater functional connectivity between OST and CON compared to the other two groups, which did not differ significantly from each other. CONCLUSIONS Our findings indicate that previously noted network connectivity differences in pediatric patients with OCD were likely not attributable to co-morbid anxiety disorders. Moreover, these results suggest that specific patterns of hyperconnectivity within CON and between CON and OST circuitry may characterize OCD relative to non-OCD anxiety disorders in youth. This study improves understanding of network dysfunction underlying pediatric OCD as compared to pediatric anxiety.
Collapse
Affiliation(s)
- Hannah C. Becker
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Luke J. Norman
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Huan Yang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Christopher S. Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - K. Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Stephan F. Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Yanni Liu
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Kristin Mannella
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Kate D. Fitzgerald
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Fornaro S, Vallesi A. Functional connectivity abnormalities of brain networks in obsessive–compulsive disorder: a systematic review. CURRENT PSYCHOLOGY 2023. [DOI: 10.1007/s12144-023-04312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Abstract
Obsessive-compulsive disorder (OCD) is characterized by cognitive abnormalities encompassing several executive processes. Neuroimaging studies highlight functional abnormalities of executive fronto-parietal network (FPN) and default-mode network (DMN) in OCD patients, as well as of the prefrontal cortex (PFC) more specifically. We aim at assessing the presence of functional connectivity (FC) abnormalities of intrinsic brain networks and PFC in OCD, possibly underlying specific computational impairments and clinical manifestations. A systematic review of resting-state fMRI studies investigating FC was conducted in unmedicated OCD patients by querying three scientific databases (PubMed, Scopus, PsycInfo) up to July 2022 (search terms: “obsessive–compulsive disorder” AND “resting state” AND “fMRI” AND “function* *connect*” AND “task-positive” OR “executive” OR “central executive” OR “executive control” OR “executive-control” OR “cognitive control” OR “attenti*” OR “dorsal attention” OR “ventral attention” OR “frontoparietal” OR “fronto-parietal” OR “default mode” AND “network*” OR “system*”). Collectively, 20 studies were included. A predominantly reduced FC of DMN – often related to increased symptom severity – emerged. Additionally, intra-network FC of FPN was predominantly increased and often positively related to clinical scores. Concerning PFC, a predominant hyper-connectivity of right-sided prefrontal links emerged. Finally, FC of lateral prefrontal areas correlated with specific symptom dimensions. Several sources of heterogeneity in methodology might have affected results in unpredictable ways and were discussed. Such findings might represent endophenotypes of OCD manifestations, possibly reflecting computational impairments and difficulties in engaging in self-referential processes or in disengaging from cognitive control and monitoring processes.
Collapse
|
11
|
Haber SN, Lehman J, Maffei C, Yendiki A. The rostral zona incerta: a subcortical integrative hub and potential DBS target for OCD. Biol Psychiatry 2023; 93:1010-1022. [PMID: 37055285 DOI: 10.1016/j.biopsych.2023.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/13/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND The zona incerta (ZI) is involved in mediating survival behaviors and is connected to a wide range of cortical and subcortical structures, including key basal ganglia nuclei. Based on these connections and their links to behavioral modulation, we propose that the ZI is a connectional hub for mediating between top-down and bottom-up control and a possible target for deep brain stimulation for obsessive-compulsive disorder. METHODS We analyzed the trajectory of cortical fibers to the ZI in nonhuman and human primates based on tracer injections in monkeys and high-resolution diffusion magnetic resonance imaging in humans. The organization of cortical and subcortical connections within the ZI were identified in the nonhuman primate studies. RESULTS Monkey anatomical data and human diffusion magnetic resonance imaging data showed a similar trajectory of fibers/streamlines to the ZI. Prefrontal cortex/anterior cingulate cortex terminals all converged within the rostral ZI, with dorsal and lateral areas being most prominent. Motor areas terminated caudally. Dense subcortical reciprocal connections included the thalamus, medial hypothalamus, substantia nigra/ventral tegmental area, reticular formation, and pedunculopontine nucleus and a dense nonreciprocal projection to the lateral habenula. Additional connections included the amygdala, dorsal raphe nucleus, and periaqueductal gray. CONCLUSIONS Dense connections with dorsal and lateral prefrontal cortex/anterior cingulate cortex cognitive control areas and the lateral habenula and the substantia nigra/ventral tegmental area, coupled with inputs from the amygdala, hypothalamus, and brainstem, suggest that the rostral ZI is a subcortical hub positioned to modulate between top-down and bottom-up control. A deep brain stimulation electrode placed in the rostral ZI would not only involve connections common to other deep brain stimulation sites but also capture several critically distinctive connections.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts.
| | - Julia Lehman
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Li W, Chen X, Luo Y, Luo L, Chen H. Orbitofrontal neural dissociation of healthy and unhealthy food reward sensitivity in normal-weight binge eaters. Psychiatry Res 2022; 316:114736. [PMID: 35932570 DOI: 10.1016/j.psychres.2022.114736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/24/2022] [Accepted: 07/20/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE The orbitofrontal cortex (OFC) has been repeatedly found to play an important role in food reward processing and binge eating (BE) episodes. However, most studies have focused mainly on reward-related neural alterations in clinical binge eating patients, with little consideration of preclinical individuals with BE that are more likely to develop from non-clinical individuals to clinical patients in the future. This study aimed to examine whether preclinical binge eaters exhibited OFC-related resting-state functional connectivity (rsFC) in the context of food reward. METHOD Binge eaters (BE group, n = 28) and healthy controls (HCs, n = 28) matched for age and body mass index (BMI) underwent rs-fMRI scans and completed self-reported assessment of BE symptoms. Food reward sensitivity was measured using the modified food incentive delay task. Analysis of covariance was used to assess the between-group differences in the medial and lateral OFC (a priori selected regions of interest) connectivity patterns in the context of food reward, while controlling for age, sex, and BMI. RESULTS Lower unhealthy food (UF) reward sensitivity was significantly associated with stronger inverse OFC-putamen connectivity for HCs, while the BE group showed no association between UF reward sensitivity and the OFC-putamen connectivity. Higher healthy food (HF) reward sensitivity in the BE group was significantly correlated with stronger positive OFC-middle frontal gyrus and OFC-inferior parietal gyrus connectivity, while the opposite was found for HCs. CONCLUSIONS Binge eaters showed less functional synchrony within reward regions contributing to the UF reward sensitivity, but enhanced neural interactions between reward and inhibitory control regions correlated with the HF reward sensitivity. These novel findings may demonstrate the potential orbitofrontal neural dissociation of unhealthy and healthy food reward sensitivity in normal-weight binge eaters.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Yijun Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Lin Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China; Research Center of Psychology and Social Development, Chongqing 400715, China.
| |
Collapse
|
13
|
Raposo-Lima C, Moreira P, Magalhães R, Ferreira S, Sousa N, Picó-Pérez M, Morgado P. Differential patterns of association between resting-state functional connectivity networks and stress in OCD patients. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110563. [PMID: 35569618 DOI: 10.1016/j.pnpbp.2022.110563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a highly prevalent psychiatric disorder that is characterized by its complex pathophysiology and heterogenous presentation. Multiple studies to date have identified a variety of factors that are involved in the development of symptoms, but little is known about how these affect brain function. In this study, we have tried to understand how stress, one of the most studied risk factors for OCD, may influence resting-state functional connectivity (rsFC) by comparing resting brain activity of OCD patients with healthy control subjects, while assessing self-reported levels of perceived stress using the Perceived Stress Scale-10 (PSS-10). Seventy-five OCD patients and seventy-one healthy matched control subjects were enrolled in this study, where we used a data-driven, independent component analysis approach. Our results show differences in connectivity between patients and healthy controls involving the dorsal attention (DAN) and lateral visual networks, with patients presenting increased rsFC within the DAN and decreased rsFC within the lateral visual network. Moreover, connectivity in the anterior default mode (aDMN), dorsal attention and basal ganglia networks was associated with PSS scores in OCD patients. Specifically, rsFC within the DAN and aDMN was positively correlated with PSS scores, while the opposite was observed for the basal ganglia network. This study is the first to report such association between rsFC alterations and self-reported stress levels. Our findings are relevant in the context of OCD pathophysiology given evidence of functional dysconnectivity involving the same networks in previous OCD studies and the possible involvement of these changes in the generation of obsessions.
Collapse
Affiliation(s)
- Catarina Raposo-Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Pedro Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal; Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal; Hospital de Braga, Braga, Portugal.
| |
Collapse
|
14
|
Jiang X, Dahmani S, Bronshteyn M, Yang FN, Ryan JP, Gallagher RC, Damera SR, Kumar PN, Moore DJ, Ellis RJ, Turkeltaub PE. Cingulate transcranial direct current stimulation in adults with HIV. PLoS One 2022; 17:e0269491. [PMID: 35658059 PMCID: PMC9165807 DOI: 10.1371/journal.pone.0269491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Neuronal dysfunction plays an important role in the high prevalence of HIV-associated neurocognitive disorders (HAND) in people with HIV (PWH). Transcranial direct current stimulation (tDCS)-with its capability to improve neuronal function-may have the potential to serve as an alternative therapeutic approach for HAND. Brain imaging and neurobehavioral studies provide converging evidence that injury to the anterior cingulate cortex (ACC) is highly prevalent and contributes to HAND in PWH, suggesting that ACC may serve as a potential neuromodulation target for HAND. Here we conducted a randomized, double-blind, placebo-controlled, partial crossover pilot study to test the safety, tolerability, and potential efficacy of anodal tDCS over cingulate cortex in adults with HIV, with a focus on the dorsal ACC (dACC). METHODS Eleven PWH (47-69 years old, 2 females, 100% African Americans, disease duration 16-36 years) participated in the study, which had two phases, Phase 1 and Phase 2. During Phase 1, participants were randomized to receive ten sessions of sham (n = 4) or cingulate tDCS (n = 7) over the course of 2-3 weeks. Treatment assignments were unknown to the participants and the technicians. Neuropsychology and MRI data were collected from four additional study visits to assess treatment effects, including one baseline visit (BL, prior to treatment) and three follow-up visits (FU1, FU2, and FU3, approximately 1 week, 3 weeks, and 3 months after treatment, respectively). Treatment assignment was unblinded after FU3. Participants in the sham group repeated the study with open-label cingulate tDCS during Phase 2. Statistical analysis was limited to data from Phase 1. RESULTS Compared to sham tDCS, cingulate tDCS led to a decrease in Perseverative Errors in Wisconsin Card Sorting Test (WCST), but not Non-Perseverative Errors, as well as a decrease in the ratio score of Trail Making Test-Part B (TMT-B) to TMT-Part A (TMT-A). Seed-to-voxel analysis with resting state functional MRI data revealed an increase in functional connectivity between the bilateral dACC and a cluster in the right dorsal striatum after cingulate tDCS. There were no differences in self-reported discomfort ratings between sham and cingulate tDCS. CONCLUSIONS Cingulate tDCS is safe and well-tolerated in PWH, and may have the potential to improve cognitive performance and brain function. A future study with a larger sample is warranted.
Collapse
Affiliation(s)
- Xiong Jiang
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Sophia Dahmani
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Margarita Bronshteyn
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Fan Nils Yang
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - John Paul Ryan
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - R. Craig Gallagher
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Srikanth R. Damera
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Princy N. Kumar
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States of America
| | - David J. Moore
- Department of Psychiatry, University of California, San Diego, CA, United States of America
| | - Ronald J. Ellis
- Department of Psychiatry, University of California, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego, CA, United States of America
| | - Peter E. Turkeltaub
- Department of Neurology and Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
15
|
Pavel DG, Henderson TA, DeBruin S. The Legacy of the TTASAAN Report-Premature Conclusions and Forgotten Promises: A Review of Policy and Practice Part I. Front Neurol 2022; 12:749579. [PMID: 35450131 PMCID: PMC9017602 DOI: 10.3389/fneur.2021.749579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Brain perfusion single photon emission computed tomography (SPECT) scans were initially developed in 1970's. A key radiopharmaceutical, hexamethylpropyleneamine oxime (HMPAO), was originally approved in 1988, but was unstable. As a result, the quality of SPECT images varied greatly based on technique until 1993, when a method of stabilizing HMPAO was developed. In addition, most SPECT perfusion studies pre-1996 were performed on single-head gamma cameras. In 1996, the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (TTASAAN) issued a report regarding the use of SPECT in the evaluation of neurological disorders. Although the TTASAAN report was published in January 1996, it was approved for publication in October 1994. Consequently, the reported brain SPECT studies relied upon to derive the conclusions of the TTASAAN report largely pre-date the introduction of stabilized HMPAO. While only 12% of the studies on traumatic brain injury (TBI) in the TTASAAN report utilized stable tracers and multi-head cameras, 69 subsequent studies with more than 23,000 subjects describe the utility of perfusion SPECT scans in the evaluation of TBI. Similarly, dementia SPECT imaging has improved. Modern SPECT utilizing multi-headed gamma cameras and quantitative analysis has a sensitivity of 86% and a specificity of 89% for the diagnosis of mild to moderate Alzheimer's disease-comparable to fluorodeoxyglucose positron emission tomography. Advances also have occurred in seizure neuroimaging. Lastly, developments in SPECT imaging of neurotoxicity and neuropsychiatric disorders have been striking. At the 25-year anniversary of the publication of the TTASAAN report, it is time to re-examine the utility of perfusion SPECT brain imaging. Herein, we review studies cited by the TTASAAN report vs. current brain SPECT imaging research literature for the major indications addressed in the report, as well as for emerging indications. In Part II, we elaborate technical aspects of SPECT neuroimaging and discuss scan interpretation for the clinician.
Collapse
Affiliation(s)
- Dan G Pavel
- Pathfinder Brain SPECT Imaging, Deerfield, IL, United States.,The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States
| | - Theodore A Henderson
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States
| | - Simon DeBruin
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Good Lion Imaging, Columbia, SC, United States
| |
Collapse
|
16
|
Enguix V, Easson K, Gilbert G, Saint-Martin C, Rohlicek C, Luck D, Lodygensky GA, Brossard-Racine M. Altered resting state functional connectivity in youth with congenital heart disease operated during infancy. PLoS One 2022; 17:e0264781. [PMID: 35427374 PMCID: PMC9012393 DOI: 10.1371/journal.pone.0264781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Congenital heart disease (CHD) has been associated with structural brain growth and long-term developmental impairments, including deficits in learning, memory, and executive functions. Altered functional connectivity has been shown to be altered in neonates born with CHD; however, it is unclear if these early life alterations are also present during adulthood. Therefore, this study aimed to compare resting state functional connectivity networks associated with executive function deficits between youth (16 to 24 years old) with complex CHD (mean age = 20.13; SD = 2.35) who underwent open-heart surgery during infancy and age- and sex-matched controls (mean age = 20.41; SD = 2.05). Using the Behavior Rating Inventory of Executive Function–Adult Version questionnaire, we found that participants with CHD presented with poorer performance on the inhibit, initiate, emotional control, working memory, self-monitor, and organization of materials clinical scales than healthy controls. We then compared the resting state networks theoretically corresponding to these impaired functions, namely the default mode, dorsal attention, fronto-parietal, fronto-orbital, and amygdalar networks, between the two groups. Participants with CHD presented with decreased functional connectivity between the fronto-orbital cortex and the hippocampal regions and between the amygdala and the frontal pole. Increased functional connectivity was observed within the default mode network, the dorsal attention network, and the fronto-parietal network. Overall, our results suggest that youth with CHD present with disrupted resting state functional connectivity in widespread networks and regions associated with altered executive functioning.
Collapse
Affiliation(s)
- Vincente Enguix
- Canadian Neonatal Brain Platform, Montreal, Canada
- Department of Pediatrics, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Canada
| | - Kaitlyn Easson
- Advances in Brain & Child Development (ABCD) Research Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | - Christine Saint-Martin
- Department of Medical Imaging, Division of Pediatric Radiology, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Charles Rohlicek
- Department of Pediatrics, Division of Cardiology, Montreal Children’s Hospital, Montreal, QC, Canada
| | - David Luck
- Canadian Neonatal Brain Platform, Montreal, Canada
- Department of Pediatrics, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Canada
| | - Gregory Anton Lodygensky
- Canadian Neonatal Brain Platform, Montreal, Canada
- Department of Pediatrics, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Canada
| | - Marie Brossard-Racine
- Department of Medical Imaging, Division of Pediatric Radiology, Montreal Children’s Hospital, Montreal, QC, Canada
- Department of Pediatrics, Division of Cardiology, Montreal Children’s Hospital, Montreal, QC, Canada
- School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada
- Department of Pediatrics, Division of Neonatology, Montreal Children’s Hospital, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
17
|
Hasuzawa S, Tomiyama H, Murayama K, Ohno A, Kang M, Mizobe T, Kato K, Matsuo A, Kikuchi K, Togao O, Nakao T. Inverse Association Between Resting-State Putamen Activity and Iowa Gambling Task Performance in Patients With Obsessive-Compulsive Disorder and Control Subjects. Front Psychiatry 2022; 13:836965. [PMID: 35633792 PMCID: PMC9136000 DOI: 10.3389/fpsyt.2022.836965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Symptoms of obsessive-compulsive disorder (OCD) have been conceptualized as manifestations of decision-making deficits. Patients with OCD exhibit impairment during the decision-making process, as assessed by the Iowa Gambling Task (IGT). This impairment is independent of clinical severity and disease progression. However, the association between the decision-making deficit and resting-state brain activity of patients with OCD has not been examined. METHODS Fifty unmedicated patients with OCD and 55 matched control subjects completed IGT. Resting-state brain activity was examined using the fractional amplitude of low-frequency fluctuations (fALFFs). fALFF analysis focused on the slow-4 and 5 bands. Group comparisons were performed to determine the association between IGT performance and fALFFs. RESULTS There was a significant group difference in the association between the IGT total net score and slow-4 fALFFs in the left putamen (voxel height threshold of p < 0.001; cluster size threshold of p < 0.05; family wise error-corrected). Higher putamen slow-4 fALFFs were correlated with lower IGT scores for OCD patients (r = -0.485; p < 0.0005) and higher IGT scores for control subjects (r = 0.402; p < 0.005). There was no group difference in the association between the IGT total net score and slow-5 fALFFs. CONCLUSIONS These findings in unmedicated patients demonstrate the importance of resting-state putamen activity for decision-making deficit associated with OCD, as measured by IGT. The inverse correlation may be explained by the hypersensitive response of the putamen in patients with OCD.
Collapse
Affiliation(s)
- Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aikana Ohno
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Mingi Kang
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Matsuo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Tomiyama H, Murayama K, Nemoto K, Tomita M, Hasuzawa S, Mizobe T, Kato K, Ohno A, Tsuruta S, Togao O, Hiwatashi A, Nakao T. Increased functional connectivity between presupplementary motor area and inferior frontal gyrus associated with the ability of motor response inhibition in obsessive-compulsive disorder. Hum Brain Mapp 2021; 43:974-984. [PMID: 34816523 PMCID: PMC8764470 DOI: 10.1002/hbm.25699] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Recent evidence suggests that presupplementary motor area (pre‐SMA) and inferior frontal gyrus (IFG) play an important role in response inhibition. However, no study has investigated the relationship between these brain networks at resting‐state and response inhibition in obsessive–compulsive disorder (OCD). We performed resting‐state functional magnetic resonance imaging scans and then measured the response inhibition of 41 medication‐free OCD patients and 49 healthy control (HC) participants by using the stop‐signal task outside the scanner. We explored the differences between OCD and HC groups in the functional connectivity of pre‐SMA and IFG associated with the ability of motor response inhibition. OCD patients showed a longer stop‐signal reaction time (SSRT). Compared to HC, OCD patients exhibit different associations between the ability of motor response inhibition and the functional connectivity between pre‐SMA and IFG, inferior parietal lobule, dorsal anterior cingulate cortex, insula, and anterior prefrontal cortex. Additional analysis to investigate the functional connectivity difference from the seed ROIs to the whole brain voxels revealed that, compared to HC, OCD exhibited greater functional connectivity between pre‐SMA and IFG. Also, this functional connectivity was positively correlated with the SSRT score. These results provide additional insight into the characteristics of the resting‐state functional connectivity of the regions belonging to the cortico‐striato‐thalamo‐cortical circuit and the cingulo‐opercular salience network, underlying the impaired motor response inhibition of OCD. In particular, we emphasize the importance of altered functional connectivity between pre‐SMA and IFG for the pathophysiology of motor response inhibition in OCD.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyotaka Nemoto
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mayumi Tomita
- Department of Psychology, Kurume University, Kurume, Japan
| | - Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aikana Ohno
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Sae Tsuruta
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Zhao J, Manza P, Gu J, Song H, Zhuang P, Shi F, Dong Z, Lu C, Wang GJ, He D. Contrasting dorsal caudate functional connectivity patterns between frontal and temporal cortex with BMI increase: link to cognitive flexibility. Int J Obes (Lond) 2021; 45:2608-2616. [PMID: 34433905 DOI: 10.1038/s41366-021-00929-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Obesity is associated with brain intrinsic functional reorganization. However, little is known about the BMI-related interhemispheric functional connectivity (IHFC) alterations, and their link with executive function in young healthy adults. METHODS We examined voxel-mirrored homotopic connectivity (VMHC) patterns in 417 young adults from the Human Connectome Project. Brain regions with significant association between BMI and VMHC were identified using multiple linear regression. Results from these analyses were then used to determine regions for seed-voxel FC analysis, and multiple linear regression was used to explore the brain regions showing significant association between BMI and FC. The correlations between BMI-related executive function measurements and VMHC, as well as seed-voxel FC, were further examined. RESULTS BMI was negatively associated with scores of Dimensional Change Card Sort Test (DCST) assessing cognitive flexibility (r = -0.14, p = 0.006) and with VMHC of bilateral inferior parietal lobule, insula and dorsal caudate. The dorsal caudate emerged as a nexus for BMI-related findings: greater BMI was associated with greater FC between caudate and hippocampus and lower FC between caudate and several prefrontal nodes (right inferior frontal gyrus, anterior cingulate cortex, and middle frontal gyrus). The FC between right caudate and left hippocampus was negatively associated with scores of DCST (r = -0.15, p = 0.0018). CONCLUSIONS Higher BMI is associated with poorer cognitive flexibility performance and IHFC in an extensive set of brain regions implicated in cognitive control. Larger BMI was associated with higher caudate-medial temporal lobe FC and lower caudate-dorsolateral prefrontal cortex FC. These findings may have relevance for executive function associated with weight gain among otherwise healthy young adults.
Collapse
Affiliation(s)
- Jizheng Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China. .,Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, Shaanxi, China. .,Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi, China.
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Jun Gu
- Department of Endocrinology, The First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei, China
| | - Huaibo Song
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi, China
| | - Puning Zhuang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi, China
| | - Fulei Shi
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi, China
| | - Zhengqi Dong
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi, China
| | - Cheng Lu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Dongjian He
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China. .,Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, Shaanxi, China. .,Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi, China.
| |
Collapse
|
20
|
Prasuhn J, Prasuhn M, Fellbrich A, Strautz R, Lemmer F, Dreischmeier S, Kasten M, Münte TF, Hanssen H, Heldmann M, Brüggemann N. Association of Locus Coeruleus and Substantia Nigra Pathology With Cognitive and Motor Functions in Patients With Parkinson Disease. Neurology 2021; 97:e1007-e1016. [PMID: 34187859 DOI: 10.1212/wnl.0000000000012444] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/10/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the contribution of substantia nigra (SN) and locus coeruleus (LC) pathology to clinical signs and symptoms in Parkinson's disease (PD) by applying neuromelanin-weighted imaging. METHODS Forty-seven patients with PD and 53 matched controls underwent motor assessment, a neuropsychological test battery and neuromelanin-weighted MRI. Patients with PD have been enrolled after fulfilling the criteria for 'clinically established PD' as defined by the Movement Disorders Society Clinical Diagnostic Criteria. Two independent raters identified SN and LC and calculated the contrast-to-noise ratio (CNR). RESULTS The intra-rater reliability demonstrated a good reliability between raters with an intraclass correlation coefficient of .88 (p<.001) and an inter-rater reliability of .80 (p<.001). Both, SN and LC CNRs were lower in patients with PD (p≤.001) compared to controls. The CNR of SN but not of LC was strongly correlated with disease duration (p≤.001). Neuromelanin pathology of the pars compacta-containing dorso-lateral SN correlated with MDS-UPDRS I, II and III but not cognitive functions. In contrast, neuromelanin pathology of LC was associated with cognitive functions in all tested domains but not with motor impairment or activities of daily living. No such associations were present in controls. CONCLUSIONS Neuromelanin imaging of the SN and LC is well-suited to map neurodegeneration in PD. Neuromelanin pathology of the SN correlates with motor dysfunction whereas LC pathology is related to cognitive impairment. Neuromelanin-weighted imaging of the LC could thus serve as an imaging marker of executive and other cognitive dysfunctions in PD. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that neuromelanin-weighted imaging was associated with the severity of various signs and symptoms in patients with PD.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Michelle Prasuhn
- Department of Ophthalmology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Laboratory for Angiogenesis and Ocular Cell Transplantation, University of Lübeck, Lübeck, Germany
| | - Anja Fellbrich
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Robert Strautz
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychiatry, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Felicitas Lemmer
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Shalida Dreischmeier
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Department of Psychiatry, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Henrike Hanssen
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany .,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
Frontoparietal hyperconnectivity during cognitive regulation in obsessive-compulsive disorder followed by reward valuation inflexibility. J Psychiatr Res 2021; 137:657-666. [PMID: 33187688 DOI: 10.1016/j.jpsychires.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/01/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by cognitive deficits and altered reward processing systems. An imbalance between cognitive and reward pathways may explain the lack of control over obsessions followed by rewarding compulsive behaviors. While the processes of emotional cognitive regulation are widely studied in OCD, the mechanisms of cognitive regulation of reward are poorly described. Our goal was to investigate the OCD impact on cognitive regulation of reward at behavioral and neural functioning levels. OCD and control participants performed a functional magnetic resonance imaging task where they cognitively modulated their craving for food pictures under three cognitive regulation conditions: indulge/increase craving, distance/decrease craving, and natural/no regulation of craving. After regulation, the participants gave each picture a monetary value. We found that OCD patients had fixed food valuation scores while the control group modulated these values accordingly to the regulation conditions. Moreover, we observed frontoparietal hyperconnectivity during cognitive regulation. Our results suggest that OCD is characterized by deficits in cognitive regulation of internal states associated with inflexible behavior during reward processing. These findings bring new insights into the nature of compulsive behaviors in OCD.
Collapse
|
22
|
Murray L, Maurer JM, Peechatka AL, Frederick BB, Kaiser RH, Janes AC. Sex differences in functional network dynamics observed using coactivation pattern analysis. Cogn Neurosci 2021; 12:120-130. [PMID: 33734028 DOI: 10.1080/17588928.2021.1880383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sex differences in the organization of large-scale resting-state brain networks have been identified using traditional static measures, which average functional connectivity over extended time periods. In contrast, emerging dynamic measures have the potential to define sex differences in network changes over time, providing additional understanding of neurobiological sex differences. To meet this goal, we used a Coactivation Pattern Analysis (CAP) using resting-state functional magnetic resonance imaging data from 181 males and 181 females from the Human Connectome Project. Significant main effects of sex were observed across two independent imaging sessions. Relative to males, females spent more total time in two transient network states (TNSs) spatially overlapping with the dorsal attention network and occipital/sensory-motor network. Greater time spent in these TNSs was related to females making more frequent transitions into these TNSs compared to males. In contrast, males spent more total time in TNSs spatially overlapping with the salience network, which was related to males staying for longer periods once entering these TNSs compared to females. State-to-state transitions also significantly differed between sexes: females transitioned more frequently from default mode network (DMN) states to the dorsal attention network state, whereas males transitioned more frequently from DMN states to salience network states. Results show that males and females spend differing amounts of time at rest in two distinct attention-related networks and show sex-specific transition patterns from DMN states into these attention-related networks. This work lays the groundwork for future investigations into the cognitive and behavioral implications of these sex-specific network dynamics.
Collapse
Affiliation(s)
- Laura Murray
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - J Michael Maurer
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Mind Research Network, Albuquerque, New Mexico, USA
| | - Alyssa L Peechatka
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Blaise B Frederick
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Roselinde H Kaiser
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Amy C Janes
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Murayama K, Tomiyama H, Tsuruta S, Ohono A, Kang M, Hasuzawa S, Mizobe T, Kato K, Togao O, Hiwatashi A, Nakao T. Aberrant Resting-State Cerebellar-Cerebral Functional Connectivity in Unmedicated Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:659616. [PMID: 33967861 PMCID: PMC8102723 DOI: 10.3389/fpsyt.2021.659616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Although abnormality of cerebellar-cerebral functional connectivity at rest in obsessive-compulsive disorder (OCD) has been hypothesized, only a few studies have investigated the neural mechanism. To verify the findings of previous studies, a large sample of patients with OCD was studied because OCD shows possible heterogeneity. Methods: Forty-seven medication-free patients with OCD and 62 healthy controls (HCs) underwent resting-state functional magnetic imaging scans. Seed-based connectivity was examined to investigate differences in cerebellar-cerebral functional connectivity in OCD patients compared with HCs. Correlations between functional connectivity and the severity of obsessive-compulsive symptoms were analyzed. Results: In OCD, we found significantly increased functional connectivity between the right lobule VI and the left precuneus, which is a component of the default mode network (DMN), compared to HCs. However, there was no correlation between the connectivity of the right lobule VI-left precuneus and obsessive-compulsive severity. Conclusions: These findings suggest that altered functional connectivity between the cerebellum and DMN might cause changes in intrinsic large-scale brain networks related to the traits of OCD.
Collapse
Affiliation(s)
- Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sae Tsuruta
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan.,Karatsu Red Cross Hospital, Karatsu, Japan
| | - Aikana Ohono
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Mingi Kang
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|