1
|
Vadlamani S, Ozmen M, Gugger JJ, Cheney A, Amuan M, Diaz‐Arrastia R, Pugh MJ, Kennedy E. Mediators of epilepsy risk after traumatic brain injury: A 20-year U.S. veteran cohort study. Epilepsia 2025; 66:1177-1186. [PMID: 39729030 PMCID: PMC11997920 DOI: 10.1111/epi.18248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a significant risk factor for epilepsy, but little work has explored whether risk of epilepsy after TBI may operate through intermediary mechanisms. The objective of this study was to statistically screen for potentially mediating effects among 64 comorbidities for epilepsy risk following TBI among Post-9/11 U.S. veterans. METHODS This longitudinal matched cohort study used an established algorithm to identify veterans in Department of Defense (DoD) and Veterans Health Administration (VHA) records with a history of the primary exposure, TBI, between 2003 and 2023, who were demographically matched 1:1 with veterans without history of TBI exposure from the same cohort. In the observation time window after index date, mediation models estimated the proportion eliminated of the total TBI-epilepsy relationship by other factors. Cox proportional hazard models were implemented for 64 comorbidities determined using International Classification of Diseases, Ninth/Tenth Revision (ICD-9/10) codes, each individually tested for the potential mediation of epilepsy onset after date of first TBI (index date), adjusting for demographic and military covariates. Age-stratified mediation analyses were conducted. Biologically plausible mechanisms were investigated. RESULTS Among N = 292 200 veterans in the TBI and matched groups, 8458 (2.9%) had an epilepsy diagnosis that met study criteria between 2003 and 2023. The adjusted hazard ratio (HR, 95% CI) for epilepsy given TBI was 6.76 [6.33-7.21]. The median duration between TBI documentation and epilepsy diagnosis was 3.3 years. In the observation time after index date (median duration: 12.2 years), Cox proportional hazard models identified the primary meditators of epilepsy risk after TBI as post-concussive symptoms (10.3%), cognitive dysfunction (7.0%), suicidal ideation/attempt (5.1%), overdose and drug abuse (3.8%-4.8%), and stroke (3.8%). SIGNIFICANCE This study identified neurological conditions and symptoms that may play an intermediary role in the TBI-epilepsy relationship. Specific changes in health status after TBI may present useful targets for future trials and experimental approaches of PTE prevention.
Collapse
Affiliation(s)
- Shashank Vadlamani
- VA Salt Lake City Health Care SystemInformatics, Decision‐Enhancement and Analytic Sciences CenterSalt Lake CityUtahUSA
- Division of EpidemiologyUniversity of UtahSalt Lake CityUtahUSA
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Mustafa Ozmen
- Division of EpidemiologyUniversity of UtahSalt Lake CityUtahUSA
- Department of Electrical and Electronics EngineeringAntalya Bilim UniversityAntalyaTurkey
| | - James J. Gugger
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Amanda Cheney
- Division of EpidemiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Megan Amuan
- VA Salt Lake City Health Care SystemInformatics, Decision‐Enhancement and Analytic Sciences CenterSalt Lake CityUtahUSA
- Division of EpidemiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Ramon Diaz‐Arrastia
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Mary Jo Pugh
- VA Salt Lake City Health Care SystemInformatics, Decision‐Enhancement and Analytic Sciences CenterSalt Lake CityUtahUSA
- Division of EpidemiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Eamonn Kennedy
- VA Salt Lake City Health Care SystemInformatics, Decision‐Enhancement and Analytic Sciences CenterSalt Lake CityUtahUSA
- Division of EpidemiologyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
2
|
Niu Y, Cai Z, Cheng J, Zhou J, Qu X, Li C, Zhang Z, Zhang S, Nan Y, Tang Q, Zhang L, Hao Y. Mild traumatic brain injury increases vulnerability to post-traumatic stress disorder in rats and the possible role of hippocampal DNA methylation. Front Behav Neurosci 2025; 19:1539028. [PMID: 40099224 PMCID: PMC11911326 DOI: 10.3389/fnbeh.2025.1539028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Clinical studies have established that patients with mild traumatic brain injury (mTBI) are at an increased risk for developing post-traumatic stress disorder (PTSD), suggesting that mTBI increases vulnerability to subsequent PTSD onset. However, preclinical animal studies investigating this link remain scarce, and the specific biological mechanism through which mTBI increases vulnerability to PTSD is largely unknown. Methods In this study, we modeled mTBI in rats using a mild, closed-head, weight-drop injury, followed 72 h later by exposure to single prolonged stress (SPS) to simulate PTSD. Then, we investigated the impact of mTBI on subsequent PTSD development by observing the behaviors of rats in a series of validated behavioral tests and further explored the possible role of hippocampal DNA methylation. Results We found that, compared with rats in the PTSD-only group, those in the mTBI + PTSD group exhibited higher anxiety levels, higher depression levels, and impaired spatial learning and memory as determined in the open field test, the forced swimming test, and the Morris water maze test, respectively. Rats in the mTBI + PTSD group also exhibited higher hippocampal DNMT3b protein expression compared with those in the PTSD group. Conclusion In conclusion, our results demonstrated that mTBI increases vulnerability to PTSD in rats, possibly through alterations in hippocampal DNA methylation patterns.
Collapse
Affiliation(s)
- Yujie Niu
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zhibiao Cai
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Junkai Cheng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Zhou
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Xiaodong Qu
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Changdong Li
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Zhongjing Zhang
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Shenghao Zhang
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Yaqiang Nan
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Qifeng Tang
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yelu Hao
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Van Etten EJ, Knight AR, Colaizzi TA, Carbaugh J, Kenna A, Fortier CB, Milberg WP. Peritraumatic Context and Long-Term Outcomes of Concussion. JAMA Netw Open 2025; 8:e2455622. [PMID: 39841473 PMCID: PMC11755194 DOI: 10.1001/jamanetworkopen.2024.55622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 01/23/2025] Open
Abstract
Importance There has been a great deal of interest in mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) and their association with one another, yet their interaction and subsequent associations with long-term outcomes remain poorly understood. Objective To compare the long-term outcomes of mTBI that occurred in the context of psychological trauma (peritraumatic context) with mTBI that did not (nonperitraumatic context). Design, Setting, and Participants This cohort study of post-9/11 US veterans used data from the Translational Research Center for Traumatic Brain Injury and Stress Disorders (TRACTS) study at the Veterans Affairs Boston Healthcare System, which began in 2009; the current study utilized data from baseline TRACTS visits conducted between 2009 and 2024. Data analysis occurred from January to October 2024. Exposures Peritraumatic mTBI, nonperitraumatic mTBI, or no TBI. Main Outcomes and Measures The primary outcomes were PTSD severity (measured by the Clinician-Administered PTSD Scale-4th edition), postconcussive symptoms (measured by the Neurobehavioral Symptom Inventory), and self-reported disability status (measured by the World Health Organization Disability Assessment Schedule II). Differences between groups were compared using analyses of covariance with least significant difference comparisons. Results This sample of 567 post-9/11 veterans (mean [SD] age, 33.72 [9.29] years; 507 men [89.4%]; mean [SD] years of education, 14.19 [2.16]) included 183 individuals with no TBI, 189 individuals with nonperitraumatic mTBI, and 195 individuals with peritraumatic mTBI. Veterans with a history of peritraumatic mTBI had greater PTSD severity (F2,552 = 8.45; P < .001), postconcussive symptoms (F2,533 = 11.09; P < .001), and disability (F2,527 = 11.13; P < .001) than the nonperitraumatic mTBI and no TBI groups. Importantly, no significant differences in any outcome measure between nonperitraumatic mTBI and no TBI groups were observed. Conclusions and Relevance This cohort study found that mTBI was only associated with long-term consequences when it co-occurred with a traumatic event exposure. This finding raises a novel hypothesis of the association of mTBI with PTSD, in which the acute biological and physiological outcomes of mTBI may be associated with temporarily scaffolding the formation of PTSD symptoms, which could enhance the production of long-term postconcussive symptoms and disability.
Collapse
Affiliation(s)
- Emily J. Van Etten
- Translational Research Center for TBI and Stress Disorders, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Arielle R. Knight
- Translational Research Center for TBI and Stress Disorders, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Tristan A. Colaizzi
- Translational Research Center for TBI and Stress Disorders, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Jack Carbaugh
- Translational Research Center for TBI and Stress Disorders, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Alexandra Kenna
- Translational Research Center for TBI and Stress Disorders, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - William P. Milberg
- Translational Research Center for TBI and Stress Disorders, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| |
Collapse
|
4
|
Vanier C, Santhanam P, Rochester N, Carter L, Lim M, Kilani A, Venkatesh S, Azad S, Knoblauch T, Surti T, Brown C, Sanchez JR, Ma L, Parikh S, Germin L, Fazzini E, Snyder TH. Symptom Persistence Relates to Volume and Asymmetry of the Limbic System after Mild Traumatic Brain Injury. J Clin Med 2024; 13:5154. [PMID: 39274367 PMCID: PMC11396354 DOI: 10.3390/jcm13175154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Persistent symptoms have been reported in up to 50% of the 27 million people with mild traumatic brain injuries (mTBI) every year. MRI findings are currently limited by low diagnostic and prognostic sensitivities, constraining the value of imaging in the stratification of patients following mTBI. Limbic system structures are promising brain regions in offering prognostic factors for symptom persistence following mTBI. The objective of this study was to associate volume and symmetry of limbic system structures with the presence and persistence of common symptoms in patients with mTBI. Methods: This study focused on 524 adults (aged 18-82), 58% female, with 82% injured in motor vehicle accidents and 28% reporting loss of consciousness (LOC). Magnetic resonance imaging (MRI) data included a sagittal 3D T1-weighted sequence with 1.2 mm slice thickness, with voxel sizes of 0.93 mm × 0.93 mm × 1.2 mm, obtained a median of 156 days after injury. Symptom diagnosis and persistence were collected retrospectively from patient medical records. Intracranial volume-adjusted regional volumes per side utilizing automated volumetric analysis (NeuroQuant®) were used to calculate total volume, laterality index, and side-independent asymmetry. Covariates included age, sex, LOC, and days from injury. Limbic volumetrics did not relate to symptom presentation, except the (-) association between headache presence and thalamus volume (adjusted odds ratio = 0.51, 95% confidence interval = 0.32, 0.85). Headache, balance problems, anxiety, and depression persistence was (-) associated with thalamus volume (hazard ratio (HR) 1.25 to 1.94). Longer persistence of balance problems was associated with (-) lateral orbitofrontal cortex volume (HR = 1.33) and (+) asymmetry of the hippocampus (HR = 0.27). Persistence of cognitive deficits was associated with (+) asymmetry in the caudal anterior cingulate (HR = 0.67). Depression persistence was associated with (+) asymmetry in the isthmus of the cingulate gyrus (HR = 5.39). Persistence of anxiety was associated with (-) volume of the parahippocampal gyrus (HR = 1.67), orbitofrontal cortex (HR > 1.97), and right-biased laterality of the entorhinal cortex (HR = 0.52). Conclusions: Relative volume and asymmetry of the limbic system structures in patients with mTBI are associated with the persistence of symptoms, particularly anxiety. The conclusions of this study are limited by the absence of a reference group with no mTBI.
Collapse
Affiliation(s)
- Cheryl Vanier
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | | | - Nicholas Rochester
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Medicine, Central Michigan University, Midland, MI 48859, USA
| | | | - Mike Lim
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Amir Kilani
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Shivani Venkatesh
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Sherwin Azad
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Thomas Knoblauch
- Imgen Research Group, Las Vegas, NV 89118, USA
- Department of Interdisciplinary Health Sciences, University of Nevada, Las Vegas, NV 89557, USA
| | - Tapasya Surti
- Department of Neurology, University of Texas Health Science Center, Houston, TX 78701-2982, USA
| | - Colin Brown
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Justin Roy Sanchez
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Leon Ma
- Department of Anesthesiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Shaunaq Parikh
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Leo Germin
- Clinical Neurology Specialists, Las Vegas, NV 89147, USA
| | - Enrico Fazzini
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Travis H Snyder
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
- Department of Radiology, HCA Healthcare, Mountain View Hospital, Las Vegas, NV 89166, USA
- SimonMed Imaging, Las Vegas, NV 89121, USA
| |
Collapse
|
5
|
Seitz-Holland J, Alemán-Gómez Y, Cho KIK, Pasternak O, Cleusix M, Jenni R, Baumann PS, Klauser P, Conus P, Hagmann P, Do KQ, Kubicki M, Dwir D. Matrix metalloproteinase 9 (MMP-9) activity, hippocampal extracellular free water, and cognitive deficits are associated with each other in early phase psychosis. Neuropsychopharmacology 2024; 49:1140-1150. [PMID: 38431757 PMCID: PMC11109110 DOI: 10.1038/s41386-024-01814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Increasing evidence points toward the role of the extracellular matrix, specifically matrix metalloproteinase 9 (MMP-9), in the pathophysiology of psychosis. MMP-9 is a critical regulator of the crosstalk between peripheral and central inflammation, extracellular matrix remodeling, hippocampal development, synaptic pruning, and neuroplasticity. Here, we aim to characterize the relationship between plasma MMP-9 activity, hippocampal microstructure, and cognition in healthy individuals and individuals with early phase psychosis. We collected clinical, blood, and structural and diffusion-weighted magnetic resonance imaging data from 39 individuals with early phase psychosis and 44 age and sex-matched healthy individuals. We measured MMP-9 plasma activity, hippocampal extracellular free water (FW) levels, and hippocampal volumes. We used regression analyses to compare MMP-9 activity, hippocampal FW, and volumes between groups. We then examined associations between MMP-9 activity, FW levels, hippocampal volumes, and cognitive performance assessed with the MATRICS battery. All analyses were controlled for age, sex, body mass index, cigarette smoking, and years of education. Individuals with early phase psychosis demonstrated higher MMP-9 activity (p < 0.0002), higher left (p < 0.05) and right (p < 0.05) hippocampal FW levels, and lower left (p < 0.05) and right (p < 0.05) hippocampal volume than healthy individuals. MMP-9 activity correlated positively with hippocampal FW levels (all participants and individuals with early phase psychosis) and negatively with hippocampal volumes (all participants and healthy individuals). Higher MMP-9 activity and higher hippocampal FW levels were associated with slower processing speed and worse working memory performance in all participants. Our findings show an association between MMP-9 activity and hippocampal microstructural alterations in psychosis and an association between MMP-9 activity and cognitive performance. Further, more extensive longitudinal studies should examine the therapeutic potential of MMP-9 modulators in psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Image Analysis Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Rojczyk P, Heller C, Seitz-Holland J, Kaufmann E, Sydnor VJ, Berger L, Pankatz L, Rathi Y, Bouix S, Pasternak O, Salat D, Hinds SR, Esopenko C, Fortier CB, Milberg WP, Shenton ME, Koerte IK. Intimate partner violence perpetration among veterans: associations with neuropsychiatric symptoms and limbic microstructure. Front Neurol 2024; 15:1360424. [PMID: 38882690 PMCID: PMC11178105 DOI: 10.3389/fneur.2024.1360424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background Intimate partner violence (IPV) perpetration is highly prevalent among veterans. Suggested risk factors of IPV perpetration include combat exposure, post-traumatic stress disorder (PTSD), depression, alcohol use, and mild traumatic brain injury (mTBI). While the underlying brain pathophysiological characteristics associated with IPV perpetration remain largely unknown, previous studies have linked aggression and violence to alterations of the limbic system. Here, we investigate whether IPV perpetration is associated with limbic microstructural abnormalities in military veterans. Further, we test the effect of potential risk factors (i.e., PTSD, depression, substance use disorder, mTBI, and war zone-related stress) on the prevalence of IPV perpetration. Methods Structural and diffusion-weighted magnetic resonance imaging (dMRI) data were acquired from 49 male veterans of the Iraq and Afghanistan wars (Operation Enduring Freedom/Operation Iraqi Freedom; OEF/OIF) of the Translational Research Center for TBI and Stress Disorders (TRACTS) study. IPV perpetration was assessed using the psychological aggression and physical assault sub-scales of the Revised Conflict Tactics Scales (CTS2). Odds ratios were calculated to assess the likelihood of IPV perpetration in veterans with either of the following diagnoses: PTSD, depression, substance use disorder, or mTBI. Fractional anisotropy tissue (FA) measures were calculated for limbic gray matter structures (amygdala-hippocampus complex, cingulate, parahippocampal gyrus, entorhinal cortex). Partial correlations were calculated between IPV perpetration, neuropsychiatric symptoms, and FA. Results Veterans with a diagnosis of PTSD, depression, substance use disorder, or mTBI had higher odds of perpetrating IPV. Greater war zone-related stress, and symptom severity of PTSD, depression, and mTBI were significantly associated with IPV perpetration. CTS2 (psychological aggression), a measure of IPV perpetration, was associated with higher FA in the right amygdala-hippocampus complex (r = 0.400, p = 0.005). Conclusion Veterans with psychiatric disorders and/or mTBI exhibit higher odds of engaging in IPV perpetration. Further, the more severe the symptoms of PTSD, depression, or TBI, and the greater the war zone-related stress, the greater the frequency of IPV perpetration. Moreover, we report a significant association between psychological aggression against an intimate partner and microstructural alterations in the right amygdala-hippocampus complex. These findings suggest the possibility of a structural brain correlate underlying IPV perpetration that requires further research.
Collapse
Affiliation(s)
- Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Carina Heller
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
| | - Luisa Berger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Lara Pankatz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Software Engineering and IT, École de technologie supérieure, Montreal, QC, Canada
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, United States
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, United States
| | - Sidney R Hinds
- Department of Radiology and Neurology, Uniformed Services University, Bethesda, MD, United States
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
7
|
van Velkinburgh JC, Herbst MD, Casper SM. Diffusion tensor imaging in the courtroom: Distinction between scientific specificity and legally admissible evidence. World J Clin Cases 2023; 11:4477-4497. [PMID: 37469746 PMCID: PMC10353495 DOI: 10.12998/wjcc.v11.i19.4477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
Interest and uptake of science and medicine peer-reviewed literature by readers outside of a paper’s topical subject, field or even discipline is ever-expanding. While the application of knowledge from one field or discipline to others can stimulate innovative solutions to problems facing modern society, it is also fraught with danger for misuse. In the practice of law in the United States, academic papers are submitted to the courts as evidence in personal injury litigation from both the plaintiff (complainant) and defendant. Such transcendence of an academic publication over disciplinary boundaries is immediately met with the challenge of application by a group that inherently lacks in-depth knowledge on the scientific method, the practice of evidence-based medicine, or the publication process as a structured and internationally synthesized process involving peer review and guided by ethical standards and norms. A modern-day example of this is the ongoing conflict between the sensitivity of diffusion tensor imaging (DTI) and the legal standards for admissibility of evidence in litigation cases of mild traumatic brain injury (mTBI). In this review, we amalgamate the peer-reviewed research on DTI in mTBI with the court’s rationale underlying decisions to admit or exclude evidence of DTI abnormalities to support claims of brain injury. We found that the papers which are critical of the use of DTI in the courtroom reflect a primary misunderstanding about how diagnostic biomarkers differ legally from relevant and admissible evidence. The clinical use of DTI to identify white matter abnormalities in the brain at the chronic stage is a valid methodology both clinically as well as forensically, contributes data that may or may not corroborate the existence of white matter damage, and should be admitted into evidence in personal injury trials if supported by a clinician. We also delve into an aspect of science publication and peer review that can be manipulated by scientists and clinicians to publish an opinion piece and misrepresent it as an unbiased, evidence-based, systematic research article in court cases, the decisions of which establish precedence for future cases and have implications on future legislation that will impact the lives of every citizen and erode the integrity of science and medicine practitioners.
Collapse
Affiliation(s)
| | - Mark D Herbst
- Diagnostic Radiology, Independent Diagnostic Radiology Inc, St Petersburg, FL 33711, United States
| | - Stewart M Casper
- Personal Injury Law, Casper & DeToledo LLC, Stamford, CT 06905, United States
| |
Collapse
|
8
|
de Souza N, Esopenko C, Jia Y, Parrott JS, Merkley T, Dennis E, Hillary F, Velez C, Cooper D, Kennedy J, Lewis J, York G, Menefee D, McCauley S, Bowles AO, Wilde E, Tate DF. Discriminating Mild Traumatic Brain Injury and Posttraumatic Stress Disorder Using Latent Neuroimaging and Neuropsychological Profiles in Active-Duty Military Service Members. J Head Trauma Rehabil 2023; 38:E254-E266. [PMID: 36602276 PMCID: PMC10264548 DOI: 10.1097/htr.0000000000000848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) commonly occur among military Service Members and Veterans and have heterogenous, but also overlapping symptom presentations, which often complicate the diagnoses of underlying impairments and development of effective treatment plans. Thus, we sought to examine whether the combination of whole brain gray matter (GM) and white matter (WM) structural measures with neuropsychological performance can aid in the classification of military personnel with mTBI and PTSD. METHODS Active-Duty US Service Members ( n = 156; 87.8% male) with a history of mTBI, PTSD, combined mTBI+PTSD, or orthopedic injury completed a neuropsychological battery and T1- and diffusion-weighted structural neuroimaging. Cortical, subcortical, ventricular, and WM volumes and whole brain fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were calculated. Latent profile analyses were performed to determine how the GM and WM indicators, together with neuropsychological indicators, classified individuals. RESULTS For both GM and WM, respectively, a 4-profile model was the best fit. The GM model identified greater ventricular volumes in Service Members with cognitive symptoms, including those with a diagnosis of mTBI, either alone or with PTSD. The WM model identified reduced FA and elevated RD in those with psychological symptoms, including those with PTSD or mTBI and comorbid PTSD. However, contrary to expectation, a global neural signature unique to those with comorbid mTBI and PTSD was not identified. CONCLUSIONS The findings demonstrate that neuropsychological performance alone is more robust in differentiating Active-Duty Service Members with mTBI and PTSD, whereas global neuroimaging measures do not reliably differentiate between these groups.
Collapse
Affiliation(s)
- N.L. de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - C. Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Y. Jia
- Department of Interdisciplinary Studies, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - J. S. Parrott
- Department of Interdisciplinary Studies, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - T.L. Merkley
- Department of Psychology & Neuroscience Center, Brigham Young University, Provo, UT, USA
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - E.L. Dennis
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - F.G. Hillary
- Department of Psychology, Pennsylvania State University, University Park, PA 16802, United States
- Social Life and Engineering Sciences Imaging Center, University Park, PA 16802, United States
| | - C. Velez
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - D.B. Cooper
- San Antonio VA Polytrauma Rehabilitation Center, San Antonio, TX
- Departments of Rehabilitation Medicine and Psychiatry, UT Health San Antonio, TX
| | - J. Kennedy
- General Dynamics Information Technology (GDIT) contractor for the Traumatic Brain Injury Center of Excellence (TBICoE), Neurology Service, Department of Medicine, Brooke Army Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, USA
| | - J. Lewis
- Neurology Clinic, Wright Patterson Air Force Base, Wright Patterson AFB, Ohio
| | - G. York
- Alaska Radiology Associates, Anchorage, AK
| | - D.S. Menefee
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
| | - S.R. McCauley
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - A. O. Bowles
- Brain Injury Rehabilitation Service, Department of Rehabilitation Medicine, Brooke Army Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, US
| | - E.A. Wilde
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX USA
| | - D. F. Tate
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| |
Collapse
|
9
|
Philip NS, Ramanathan D, Gamboa B, Brennan MC, Kozel FA, Lazzeroni L, Madore MR. Repetitive Transcranial Magnetic Stimulation for Depression and Posttraumatic Stress Disorder in Veterans With Mild Traumatic Brain Injury. Neuromodulation 2023; 26:878-884. [PMID: 36737300 PMCID: PMC10765323 DOI: 10.1016/j.neurom.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Mild traumatic brain injury (mTBI) is a signature injury of military conflicts and is prevalent in veterans with major depressive disorder (MDD) and posttraumatic stress disorder (PTSD). Although therapeutic transcranial magnetic stimulation (TMS) can reduce symptoms of depression and PTSD, whether traumatic brain injury (TBI) affects TMS responsiveness is not yet known. We hypothesized mTBI would be associated with higher pretreatment symptom burden and poorer TMS response. MATERIALS AND METHODS We investigated a registry of veterans (N = 770) who received TMS for depression across the US Veterans Affairs system. Of these, 665 (86.4%) had data on TBI and lifetime number of head injuries while 658 had complete data related to depression outcomes. Depression symptoms were assessed using the nine-item Patient Health Questionnaire and PTSD symptoms using the PTSD Checklist for DSM-5. Linear mixed effects models and t-tests evaluated whether head injuries predicted symptom severity before treatment, and how TBI status affected clinical TMS outcomes. RESULTS Of the 658 veterans included, 337 (50.7%) reported previous mTBI, with a mean of three head injuries (range 1-20). TBI status did not predict depressive symptom severity or TMS-associated changes in depression (all p's > 0.1). TBI status was associated with a modest attenuation of TMS-associated improvement in PTSD (in patients with PTSD Checklist for DSM-5 scores > 33). There was no correlation between the number of head injuries and TMS response (p > 0.1). CONCLUSIONS Contrary to our hypothesis, presence of mTBI did not meaningfully change TMS outcomes. Veterans with mTBI had greater PTSD symptoms, yet neither TBI status nor cumulative head injuries reduced TMS effectiveness. Limitations include those inherent to retrospective registry studies and self-reporting. Although these findings are contrary to our hypotheses, they support the safety and effectiveness of TMS for MDD and PTSD in patients who have comorbid mTBI.
Collapse
Affiliation(s)
- Noah S Philip
- Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Healthcare System, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Dhakshin Ramanathan
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Bruno Gamboa
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - McKenna C Brennan
- Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Healthcare System, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Frank Andrew Kozel
- Department of Behavioral Sciences and Social Medicine, Florida State University, Tallahassee, FL, USA
| | - Laura Lazzeroni
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle R Madore
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Esagoff AI, Stevens DA, Kosyakova N, Woodard K, Jung D, Richey LN, Daneshvari NO, Luna LP, Bray MJ, Bryant BR, Rodriguez CP, Krieg A, Trapp NT, Jones MB, Roper C, Goldwaser EL, Berich-Anastasio E, Pletnikova A, Lobner K, Lauterbach M, Sair HI, Peters ME. Neuroimaging Correlates of Post-Traumatic Stress Disorder in Traumatic Brain Injury: A Systematic Review of the Literature. J Neurotrauma 2023; 40:1029-1044. [PMID: 36259461 PMCID: PMC10402701 DOI: 10.1089/neu.2021.0453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neuroimaging is widely utilized in studying traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). The risk for PTSD is greater after TBI than after non-TBI trauma, and PTSD is associated with worse outcomes after TBI. Studying the neuroimaging correlates of TBI-related PTSD may provide insights into the etiology of both conditions and help identify those TBI patients most at risk of developing persistent symptoms. The objectives of this systematic review were to examine the current literature on neuroimaging in TBI-related PTSD, summarize key findings, and highlight strengths and limitations to guide future research. A Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA) compliant literature search was conducted in PubMed (MEDLINE®), PsycINFO, Embase, and Scopus databases prior to January 2022. The database query yielded 4486 articles, which were narrowed based on specified inclusion criteria to a final cohort of 16 studies, composed of 854 participants with TBI. There was no consensus regarding neuroimaging correlates of TBI-related PTSD among the included articles. A small number of studies suggest that TBI-related PTSD is associated with white matter tract changes, particularly in frontotemporal regions, as well as changes in whole-brain networks of resting-state connectivity. Future studies hoping to identify reliable neuroimaging correlates of TBI-related PTSD would benefit from ensuring consistent case definition, preferably with clinician-diagnosed TBI and PTSD, selection of comparable control groups, and attention to imaging timing post-injury. Prospective studies are needed and should aim to further differentiate predisposing factors from sequelae of TBI-related PTSD.
Collapse
Affiliation(s)
- Aaron I. Esagoff
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel A. Stevens
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natalia Kosyakova
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Kaylee Woodard
- Louisiana State University Health Sciences Center – New Orleans, New Orleans, Louisiana, USA
| | - Diane Jung
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa N. Richey
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas O. Daneshvari
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Licia P. Luna
- Department of Radiology and Radiological Science, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J.C. Bray
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry R. Bryant
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carla P. Rodriguez
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akshay Krieg
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas T. Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Melissa B. Jones
- Menninger Department of Psychiatry and Behavioral Sciences, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, Texas, USA
| | - Carrie Roper
- VA Maryland Healthcare System, Baltimore, Maryland, USA
- Sheppard Pratt, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric L. Goldwaser
- Sheppard Pratt, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Alexandra Pletnikova
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katie Lobner
- Department of Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Margo Lauterbach
- Sheppard Pratt, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haris I. Sair
- Louisiana State University Health Sciences Center – New Orleans, New Orleans, Louisiana, USA
| | - Matthew E. Peters
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Rojczyk P, Seitz-Holland J, Kaufmann E, Sydnor VJ, Kim CL, Umminger LF, Wiegand TLT, Guenette JP, Zhang F, Rathi Y, Bouix S, Pasternak O, Fortier CB, Salat D, Hinds SR, Heinen F, O’Donnell LJ, Milberg WP, McGlinchey RE, Shenton ME, Koerte IK. Sleep Quality Disturbances Are Associated with White Matter Alterations in Veterans with Post-Traumatic Stress Disorder and Mild Traumatic Brain Injury. J Clin Med 2023; 12:2079. [PMID: 36902865 PMCID: PMC10004675 DOI: 10.3390/jcm12052079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Sleep disturbances are strongly associated with mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). PTSD and mTBI have been linked to alterations in white matter (WM) microstructure, but whether poor sleep quality has a compounding effect on WM remains largely unknown. We evaluated sleep and diffusion magnetic resonance imaging (dMRI) data from 180 male post-9/11 veterans diagnosed with (1) PTSD (n = 38), (2) mTBI (n = 25), (3) comorbid PTSD+mTBI (n = 94), and (4) a control group with neither PTSD nor mTBI (n = 23). We compared sleep quality (Pittsburgh Sleep Quality Index, PSQI) between groups using ANCOVAs and calculated regression and mediation models to assess associations between PTSD, mTBI, sleep quality, and WM. Veterans with PTSD and comorbid PTSD+mTBI reported poorer sleep quality than those with mTBI or no history of PTSD or mTBI (p = 0.012 to <0.001). Poor sleep quality was associated with abnormal WM microstructure in veterans with comorbid PTSD+mTBI (p < 0.001). Most importantly, poor sleep quality fully mediated the association between greater PTSD symptom severity and impaired WM microstructure (p < 0.001). Our findings highlight the significant impact of sleep disturbances on brain health in veterans with PTSD+mTBI, calling for sleep-targeted interventions.
Collapse
Affiliation(s)
- Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, 80336 Munich, Germany
- Department of Neurology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Valerie J. Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Cara L. Kim
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Lisa F. Umminger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Tim L. T. Wiegand
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Jeffrey P. Guenette
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Software Engineering and IT, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - David Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA 02130, USA
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, 02115 MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA 02129, USA
| | - Sidney R. Hinds
- Department of Neurology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Florian Heinen
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Lauren J. O’Donnell
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - William P. Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, 02115 MA, USA
| | - Regina E. McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, 02115 MA, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, 80336 Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, 82152 Munich, Germany
| |
Collapse
|
12
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
13
|
Jarvis JM, Roy J, Schmithorst V, Lee V, Devine D, Meyers B, Munjal N, Clark RSB, Kochanek PM, Panigrahy A, Ceschin R, Fink EL. Limbic pathway vulnerability associates with neurologic outcome in children after cardiac arrest. Resuscitation 2023; 182:109634. [PMID: 36336196 PMCID: PMC10408582 DOI: 10.1016/j.resuscitation.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
AIM To analyze whether brain connectivity sequences including diffusion tensor imaging (DTI) and resting state functional magnetic resonance imaging (rsfMRI) identify vulnerable brain regions and networks associated with neurologic outcome after pediatric cardiac arrest. METHODS Children aged 2 d-17 y with cardiac arrest were enrolled in one of 2 parent studies at a single center. Clinically indicated brain MRI with DTI and rsfMRI and performed within 2 weeks after arrest were analyzed. Tract-wise fractional anisotropy (FA) and axial, radial, and mean diffusivity assessed DTI, and functional connectivity strength (FCS) assessed rsfMRI between outcome groups. Unfavorable neurologic outcome was defined as Pediatric Cerebral Performance Category score 4-6 or change > 1 between 6 months after arrest vs baseline. RESULTS Among children with DTI (n = 28), 57% had unfavorable outcome. Mean, radial, axial diffusivity and FA of varying direction of magnitude in the limbic tracts, including the right cingulum parolfactory, left cingulum parahippocampal, corpus callosum forceps major, and corpus callosum forceps minor tracts, were associated with unfavorable neurologic outcome (p < 0.05). Among children with rsfMRI (n = 12), 67% had unfavorable outcome. Decreased FCS in the ventromedial and dorsolateral prefrontal cortex, insula, precentral gyrus, anterior cingulate, and inferior parietal lobule were correlated regionally with unfavorable neurologic outcome (p < 0.05 Family-Wise Error corrected). CONCLUSION Decreased multimodal connectivity measures of paralimbic tracts were associated with unfavorable neurologic outcome after pediatric cardiac arrest. Longitudinal analysis correlating brain connectivity sequences with long term neuropsychological outcomes to identify the impact of pediatric cardiac arrest in vulnerable brain networks over time appears warranted.
Collapse
Affiliation(s)
- Jessica M Jarvis
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, United States
| | - Joy Roy
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, United States
| | - Vanessa Schmithorst
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, United States
| | - Vince Lee
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States
| | - Danielle Devine
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, United States
| | - Benjamin Meyers
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, United States
| | - Neil Munjal
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, United States
| | - Robert S B Clark
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, United States; Safar Center for Resuscitation Research, University of Pittsburgh, United States
| | - Patrick M Kochanek
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, United States; Safar Center for Resuscitation Research, University of Pittsburgh, United States
| | - Ashok Panigrahy
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, United States
| | - Rafael Ceschin
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, United States; Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, United States
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, United States; Safar Center for Resuscitation Research, University of Pittsburgh, United States.
| |
Collapse
|
14
|
Marcolini S, Rojczyk P, Seitz-Holland J, Koerte IK, Alosco ML, Bouix S. Posttraumatic Stress and Traumatic Brain Injury: Cognition, Behavior, and Neuroimaging Markers in Vietnam Veterans. J Alzheimers Dis 2023; 95:1427-1448. [PMID: 37694363 PMCID: PMC10578246 DOI: 10.3233/jad-221304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are common in Veterans and linked to behavioral disturbances, increased risk of cognitive decline, and Alzheimer's disease. OBJECTIVE We studied the synergistic effects of PTSD and TBI on behavioral, cognitive, and neuroimaging measures in Vietnam war Veterans. METHODS Data were acquired at baseline and after about one-year from male Veterans categorized into: PTSD, TBI, PTSD+TBI, and Veteran controls without PTSD or TBI. We applied manual tractography to examine white matter microstructure of three fiber tracts: uncinate fasciculus (N = 91), cingulum (N = 87), and inferior longitudinal fasciculus (N = 95). ANCOVAs were used to compare Veterans' baseline behavioral and cognitive functioning (N = 285), white matter microstructure, amyloid-β (N = 230), and tau PET (N = 120). Additional ANCOVAs examined scores' differences from baseline to follow-up. RESULTS Veterans with PTSD and PTSD+TBI, but not Veterans with TBI only, exhibited poorer behavioral and cognitive functioning at baseline than controls. The groups did not differ in baseline white matter, amyloid-β, or tau, nor in behavioral and cognitive functioning, and tau accumulation change. Progression of white matter abnormalities of the uncinate fasciculus in Veterans with PTSD compared to controls was observed; analyses in TBI and PTSD+TBI were not run due to insufficient sample size. CONCLUSIONS PTSD and PTSD+TBI negatively affect behavioral and cognitive functioning, while TBI does not contribute independently. Whether progressive decline in uncinate fasciculus microstructure in Veterans with PTSD might account for cognitive decline should be further studied. Findings did not support an association between PTSD, TBI, and Alzheimer's disease pathology based on amyloid and tau PET.
Collapse
Affiliation(s)
- Sofia Marcolini
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Philine Rojczyk
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Johanna Seitz-Holland
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K. Koerte
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Michael L. Alosco
- Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Software Engineering and Information Technology, École de Technologie Supe´rieure, Montre´al, Canada
| | | |
Collapse
|
15
|
Klimova A, Breukelaar IA, Bryant RA, Korgaonkar MS. A comparison of the functional connectome in mild traumatic brain injury and post-traumatic stress disorder. Hum Brain Mapp 2022; 44:813-824. [PMID: 36206284 PMCID: PMC9842915 DOI: 10.1002/hbm.26101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) often co-occur in the context of threat to one's life. These conditions also have an overlapping symptomatology and include symptoms of anxiety, poor concentration and memory problems. A major challenge has been articulating the underlying neurobiology of these overlapping conditions. The primary aim of this study was to compare intrinsic functional connectivity between mTBI (without PTSD) and PTSD (without mTBI). The study included functional MRI data from 176 participants: 42 participants with mTBI, 67 with PTSD and a comparison group of 66 age and sex-matched healthy controls. We used network-based statistical analyses for connectome-wide comparisons of intrinsic functional connectivity between mTBI relative to PTSD and controls. Our results showed no connectivity differences between mTBI and PTSD groups. However, we did find that mTBI had significantly reduced connectivity relative to healthy controls within an extensive network of regions including default mode, executive control, visual and auditory networks. The mTBI group also displayed hyperconnectivity between dorsal and ventral attention networks and perceptual regions. The PTSD group also demonstrated abnormal connectivity within these networks relative to controls. Connectivity alterations were not associated with severity of PTSD or post-concussive symptoms in either clinical group. Taken together, the similar profiles of intrinsic connectivity alterations in these two conditions provide neural evidence that can explain, in part, the overlapping symptomatology between mTBI and PTSD.
Collapse
Affiliation(s)
- Aleksandra Klimova
- Brain Dynamics Centre, Westmead Institute for Medical ResearchThe University of SydneyWestmeadAustralia
| | - Isabella A. Breukelaar
- Brain Dynamics Centre, Westmead Institute for Medical ResearchThe University of SydneyWestmeadAustralia,School of PsychologyUniversity of New South WalesSydneyAustralia
| | - Richard A. Bryant
- Brain Dynamics Centre, Westmead Institute for Medical ResearchThe University of SydneyWestmeadAustralia,School of PsychologyUniversity of New South WalesSydneyAustralia
| | - Mayuresh S. Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical ResearchThe University of SydneyWestmeadAustralia,Department of Psychiatry, Faculty of Medicine and HealthUniversity of SydneyWestmeadAustralia
| |
Collapse
|
16
|
Legarda SB, Lahti CE, McDermott D, Michas-Martin A. Use of Novel Concussion Protocol With Infralow Frequency Neuromodulation Demonstrates Significant Treatment Response in Patients With Persistent Postconcussion Symptoms, a Retrospective Study. Front Hum Neurosci 2022; 16:894758. [PMID: 35685335 PMCID: PMC9170890 DOI: 10.3389/fnhum.2022.894758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/20/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction Concussion is a growing public health concern. No uniformly established therapy exists; neurofeedback studies report treatment value. We use infralow frequency neuromodulation (ILF) to remediate disabling neurological symptoms caused by traumatic brain injury (TBI) and noted improved outcomes with a novel concussion protocol. Postconcussion symptoms (PCS) and persistent postconcussion symptoms (PPCS; >3 months post head injury) are designated timelines for protracted neurological complaints following TBI. We performed a retrospective study to explore effectiveness of ILF in PCS/PPCS and investigated the value of using this concussion protocol. Method Patients with PCS/PPCS seen for their first neurology office visit or received their first neurofeedback session between 1 August 2018 and 31 January 2021 were entered. Outcomes were compared following treatment as usual (TAU) vs. TAU with ILF neurotherapy (TAU+ILF). The study cohort was limited to PPCS patients; the TAU+ILF group was restricted further to PPCS patients receiving at least 10 neurotherapy sessions. Within the TAU+ILF group, comparisons were made between those who trained at least 10 sessions using concussion protocol (TAU+ILF+CP) and those who trained for at least 10 sessions of ILF regardless of protocol (TAU+ILF-CP). Results Among our resultant PPCS cohort (n = 59) leading persistent neurological complaints were headache (67.8%), memory impairment (57.6%), and brain fog (50.8%). PPCS patients in TAU+ILF+CP (n = 25) demonstrated greater net (p = 0.004) and percent (p = 0.026) improvement of symptoms compared to PPCS subjects in TAU (n = 26). PPCS patients in TAU+ILF-CP (n = 8) trended toward significant symptom improvements compared to TAU, and TAU+ILF+CP trended toward greater efficacy than TAU+ILF-CP. Conclusion PPCS patients who received TAU+ILF+CP demonstrated significantly greater improvement as a group when compared to TAU. When used as an integrative modality to treatment as usual in managing patients with PPCS, ILF neuromodulation with use of concussion protocol provided significant symptom improvements.
Collapse
Affiliation(s)
- Stella B. Legarda
- Neurology, Montage Health, Montage Medical Group, Monterey, CA, United States
| | | | | | | |
Collapse
|
17
|
Wilson R, Kang DW, Tahbaz M, Norris M, Uno H, Ligibel J, Guenette J, Christopher C, Dieli-Conwright C. Improving cognitive function through high-intensity interval training in breast cancer patients undergoing chemotherapy – the CLARITY Trial: Protocol for a randomized study. (Preprint). JMIR Res Protoc 2022; 12:e39740. [PMID: 37027186 PMCID: PMC10132015 DOI: 10.2196/39740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND More than 75% of patients with breast cancer treated with chemotherapy experience cognitive impairments (eg, memory and attention problems), commonly known as chemo-brain. Exercise, especially aerobic high-intensity interval training (HIIT), is associated with better cognitive function in healthy populations. However, clinical trials testing the impact of exercise interventions on chemotherapy-induced cognitive decline in patients with cancer are lacking, and the mechanisms through which exercise could improve cognitive function are unclear. OBJECTIVE The objective of the Improving Cognitive Function Through High-Intensity Interval Training in Breast Cancer Patients Undergoing Chemotherapy trial is to examine the effects of HIIT on cognitive function in patients with breast cancer undergoing chemotherapy. METHODS This 2-arm, single-center, pilot randomized controlled trial will randomize 50 patients with breast cancer undergoing chemotherapy to HIIT or attention control. The HIIT group will perform a supervised 16-week, thrice-weekly intervention, with each session including a 5-minute warm-up at 10% maximal power output (POmax), 10 sets of alternating 1-minute high-intensity (90% POmax) and 1-minute recovery (10% POmax) intervals, and a 5-minute cooldown (10% POmax). The attention control group will receive a stretching program with no exercise components and be asked to maintain their exercise levels for 16 weeks. The primary outcomes of the study are executive function and memory measured using the National Institutes of Health toolbox and resting-state connectivity and diffusion tensor imaging microstructure evaluated using magnetic resonance imaging. The secondary and tertiary outcomes include cardiorespiratory fitness, body composition, physical fitness, and psychosocial health. The study has been approved by the institutional review board of the Dana-Farber Cancer Institute (20-222). RESULTS The trial was funded in January 2019, with recruitment started in June 2021. As of May 2022, a total of 4 patients have consented and been randomized (n=2, 50% to exercise; n=1, 25% to control; and n=1, 25% nonrandomized). Trial completion is expected in January 2024. CONCLUSIONS This first-of-its-kind study incorporates a novel exercise intervention (ie, HIIT) and comprehensive cognitive measures. If positive, our findings will establish the pilot efficacy of HIIT on chemotherapy-induced cognitive function in patients with breast cancer, providing the foundation for future larger phase-II and phase-III trials to confirm the findings and potentially establish HIIT as a standard of care for women undergoing chemotherapy for breast cancer. TRIAL REGISTRATION ClinicalTrials.gov NCT04724499; https://clinicaltrials.gov/ct2/show/NCT04724499. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/39740.
Collapse
Affiliation(s)
- Rebekah Wilson
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Dong-Woo Kang
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Meghan Tahbaz
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mary Norris
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Hajime Uno
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jennifer Ligibel
- Harvard Medical School, Boston, MA, United States
- Division of Breast Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jeffrey Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Cameron Christopher
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Christina Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects. J Control Release 2022; 347:143-163. [PMID: 35513209 DOI: 10.1016/j.jconrel.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
Synaptic plasticity is an important basis of learning and memory and participates in brain network remodelling after different types of brain injury (such as that caused by neurodegenerative diseases, cerebral ischaemic injury, posttraumatic stress disorder (PTSD), and psychiatric disorders). Therefore, improving synaptic plasticity is particularly important for the treatment of nervous system-related diseases. With the rapid development of nanotechnology, increasing evidence has shown that nanoparticles (NPs) can cross the blood-brain barrier (BBB) in different ways, directly or indirectly act on nerve cells, regulate synaptic plasticity, and ultimately improve nerve function. Therefore, to better elucidate the effect of NPs on synaptic plasticity, we review evidence showing that NPs can improve synaptic plasticity by regulating different influencing factors, such as neurotransmitters, receptors, presynaptic membrane proteins and postsynaptic membrane proteins, and further discuss the possible mechanism by which NPs improve synaptic plasticity. We conclude that NPs can improve synaptic plasticity and restore the function of damaged nerves by inhibiting neuroinflammation and oxidative stress, inducing autophagy, and regulating ion channels on the cell membrane. By reviewing the mechanism by which NPs regulate synaptic plasticity and the applications of NPs for the treatment of neurological diseases, we also propose directions for future research in this field and provide an important reference for follow-up research.
Collapse
|
19
|
Brown EM, Salat DH, Milberg WP, Fortier CB, McGlinchey RE. Accelerated longitudinal cortical atrophy in
OEF
/
OIF
/
OND
veterans with severe
PTSD
and the impact of comorbid
TBI. Hum Brain Mapp 2022; 43:3694-3705. [PMID: 35426972 PMCID: PMC9294300 DOI: 10.1002/hbm.25877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Veterans who deployed in support of Operation Enduring Freedom (OEF), Iraqi Freedom (OIF), and New Dawn (OND) commonly experience severe psychological trauma, often accompanied by physical brain trauma resulting in mild traumatic brain injury (mTBI). Prior studies of individuals with posttraumatic stress disorder (PTSD) have revealed alterations in brain structure, accelerated cellular aging, and impacts on cognition following exposure to severe psychological trauma and potential interactive effects of military‐related mTBI. To date, however, little is known how such deployment‐related trauma changes with time and age of injury of the affected veteran. In this study, we explored changes in cortical thickness, volume, and surface area after an average interval of approximately 2 years in a cohort of 254 OEF/OIF/OND Veterans ranging in age from 19 to 67 years. Whole‐brain vertex‐wise analyses revealed that veterans who met criteria for severe PTSD (Clinician‐Administered PTSD Scale ≥60) at baseline showed greater negative longitudinal changes in cortical thickness, volume, and area over time. Analyses also revealed a significant severe‐PTSD by age interaction on cortical measures with severe‐PTSD individuals exhibiting accelerated cortical degeneration with increasing age. Interaction effects of comorbid military‐related mTBI within the severe‐PTSD group were also observed in several cortical regions. These results suggest that those exhibiting severe PTSD symptomatology have accelerated atrophy that is exacerbated with increasing age and history of mTBI.
Collapse
Affiliation(s)
- Emma M. Brown
- Neuroimaging Research for Veterans (NeRVe) Center VA Boston Healthcare System Boston Massachusetts USA
- Translational Research Center for TBI and Stress Disorders (TRACTS) VA Boston Healthcare System Boston Massachusetts USA
| | - David H. Salat
- Neuroimaging Research for Veterans (NeRVe) Center VA Boston Healthcare System Boston Massachusetts USA
- Translational Research Center for TBI and Stress Disorders (TRACTS) VA Boston Healthcare System Boston Massachusetts USA
- Brain Aging and Dementia (BAnD) Laboratory, A. A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital Charlestown Massachusetts USA
| | - William P. Milberg
- Neuroimaging Research for Veterans (NeRVe) Center VA Boston Healthcare System Boston Massachusetts USA
- Translational Research Center for TBI and Stress Disorders (TRACTS) VA Boston Healthcare System Boston Massachusetts USA
- Department of Psychiatry Harvard Medical School Boston Massachusetts USA
- Geriatric Research, Education, and Clinical Center (GRECC) VA Boston Healthcare System Boston Massachusetts USA
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) VA Boston Healthcare System Boston Massachusetts USA
- Department of Psychiatry Harvard Medical School Boston Massachusetts USA
- Geriatric Research, Education, and Clinical Center (GRECC) VA Boston Healthcare System Boston Massachusetts USA
| | - Regina E. McGlinchey
- Neuroimaging Research for Veterans (NeRVe) Center VA Boston Healthcare System Boston Massachusetts USA
- Translational Research Center for TBI and Stress Disorders (TRACTS) VA Boston Healthcare System Boston Massachusetts USA
- Department of Psychiatry Harvard Medical School Boston Massachusetts USA
- Geriatric Research, Education, and Clinical Center (GRECC) VA Boston Healthcare System Boston Massachusetts USA
| |
Collapse
|
20
|
Shi Y, Wu X, Zhou J, Cui W, Wang J, Hu Q, Zhang S, Han L, Zhou M, Luo J, Wang Q, Liu H, Feng D, Ge S, Qu Y. Single-Nucleus RNA Sequencing Reveals that Decorin Expression in the Amygdala Regulates Perineuronal Nets Expression and Fear Conditioning Response after Traumatic Brain Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104112. [PMID: 35038242 PMCID: PMC8895134 DOI: 10.1002/advs.202104112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Traumatic brain injury (TBI) is a risk factor for posttraumatic stress disorder (PTSD). Augmented fear is a defining characteristic of PTSD, and the amygdala is considered the main brain region to process fear. The mechanism by which the amygdala is involved in fear conditioning after TBI is still unclear. Using single-nucleus RNA sequencing (snRNA-seq), transcriptional changes in cells in the amygdala after TBI are investigated. In total, 72 328 nuclei are obtained from the sham and TBI groups. 7 cell types, and analysis of differentially expressed genes (DEGs) reveals widespread transcriptional changes in each cell type after TBI are identified. In in vivo experiments, it is demonstrated that Decorin (Dcn) expression in the excitatory neurons of the amygdala significantly increased after TBI, and Dcn knockout in the amygdala mitigates TBI-associated fear conditioning. Of note, this effect is caused by a Dcn-mediated decrease in the expression of perineuronal nets (PNNs), which affect the glutamate-γ-aminobutyric acid balance in the amygdala. Finally, the results suggest that Dcn functions by interacting with collagen VI α3 (Col6a3). Consequently, the findings reveal transcriptional changes in different cell types of the amygdala after TBI and provide direct evidence that Dcn relieves fear conditioning by regulating PNNs.
Collapse
Affiliation(s)
- Yingwu Shi
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Xun Wu
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Jinpeng Zhou
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Wenxing Cui
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Jin Wang
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Qing Hu
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Shenghao Zhang
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Liying Han
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Meixuan Zhou
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jianing Luo
- Department of NeurosurgeryWest Theater General HospitalChengduSichuan610083China
| | - Qiang Wang
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Haixiao Liu
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Shunnan Ge
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Yan Qu
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| |
Collapse
|
21
|
Mayer AR, Quinn DK. Neuroimaging Biomarkers of New-Onset Psychiatric Disorders Following Traumatic Brain Injury. Biol Psychiatry 2022; 91:459-469. [PMID: 34334188 PMCID: PMC8665933 DOI: 10.1016/j.biopsych.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) has traditionally been associated with cognitive and behavioral changes during both the acute and chronic phases of injury. Because of its noninvasive nature, neuroimaging has the potential to provide unique information on underlying macroscopic and microscopic biological mechanisms that may serve as causative agents for these neuropsychiatric sequelae. This broad scoping review identifies at least 4 common macroscopic pathways that exist between TBI and new-onset psychiatric disorders, as well as several examples of how neuroimaging is currently being utilized in clinical research. The review then critically examines the strengths and limitations of neuroimaging for elucidating TBI-related microscopic pathology, such as microstructural changes, neuroinflammation, proteinopathies, blood-brain barrier damage, and disruptions in cellular signaling. A summary is then provided for how neuroimaging is currently being used to investigate TBI-related pathology in new-onset neurocognitive disorders, depression, and posttraumatic stress disorder. Identified gaps in the literature include a lack of prospective studies to definitively associate imaging findings with the development of new-onset psychiatric disorders, as well as antemortem imaging studies subsequently confirmed with postmortem correlates in the same study cohort. Although the spatial resolution and specificity of imaging biomarkers has greatly improved over the last 2 decades, we conclude that neuroimaging biomarkers do not yet exist for the definitive in vivo diagnosis of cellular pathology. This represents a necessary next step for further elucidating causal relationships between TBI and new-onset psychiatric disorders.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychology, University of New Mexico, Albuquerque, NM 87131,Corresponding author: Andrew Mayer, Ph.D., The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106 USA; Tel: 505-272-0769; Fax: 505-272-8002;
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
22
|
Chronic Administration of 7,8-DHF Lessens the Depression-like Behavior of Juvenile Mild Traumatic Brain Injury Treated Rats at Their Adult Age. Pharmaceutics 2021; 13:pharmaceutics13122169. [PMID: 34959450 PMCID: PMC8704538 DOI: 10.3390/pharmaceutics13122169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity among the global youth and commonly results in long-lasting sequelae, including paralysis, epilepsy, and a host of mental disorders such as major depressive disorder. Previous studies were mainly focused on severe TBI as it occurs in adults. This study explored the long-term adverse effect of mild TBI in juvenile animals (mTBI-J). Male Sprague Dawley rats received mTBI-J or sham treatment at six weeks old, then underwent behavioral, biochemical, and histological experiments three weeks later (at nine weeks old). TTC staining, H&E staining, and brain edema measurement were applied to evaluate the mTBI-J induced cerebral damage. The forced swimming test (FST) and sucrose preference test (SPT) were applied for measuring depression-like behavior. The locomotor activity test (LAT) was performed to examine mTBI-J treatment effects on motor function. After the behavioral experiments, the dorsal hippocampus (dHip) and ventral hippocampus (vHip) were dissected out for western blotting to examine the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB). Finally, a TrkB agonist 7,8-DHF was injected intraperitoneally to evaluate its therapeutic effect on the mTBI-J induced behavioral abnormalities at the early adult age. Results showed that a mild brain edema occurred, but no significant neural damage was found in the mTBI-J treated animals. In addition, a significant increase of depression-like behaviors was observed in the mTBI-J treated animals; the FST revealed an increase in immobility, and a decrease in sucrose consumption was found in the mTBI-J treated animals. There were no differences observed in the total distance traveled of the LAT and the fall latency of the rotarod test. The hippocampal BDNF expression, but not the TrkB, were significantly reduced in mTBI-J, and the mTBI-J treatment-induced depression-like behavior was lessened after four weeks of 7,8-DHF administration. Collectively, these results indicate that even a mild juvenile TBI treatment that did not produce motor deficits or significant histological damage could have a long-term adverse effect that could be sustained to adulthood, which raises the depression-like behavior in the adult age. In addition, chronic administration of 7,8-DHF lessens the mTBI-J treatment-induced depression-like behaviors in adult rats. We suggest the potential usage of 7,8-DHF as a therapeutic agent for preventing the long-term adverse effect of mTBI-J.
Collapse
|
23
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
24
|
Eagle SR, Kontos AP, Connaboy C. Association of impulsivity, physical development, and mental health to perceptual-motor control after concussion in adolescents. Eur J Sport Sci 2021; 22:1889-1897. [PMID: 34781850 DOI: 10.1080/17461391.2021.2003869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
HIGHLIGHTS After SRC, adolescents had deficits in action boundary perception accuracy, while reporting higher depression symptoms and impulsivity, including attention and cognitive instability components.Certain domains of impulsivity were predictive of action boundary perception accuracy and each perception actualization measure in the concussed group.ADD/ADHD history, anxiety scores, and physical development ratings were also significant predictors of perceptual-motor accuracy and actualization time.
Collapse
Affiliation(s)
- Shawn R Eagle
- Department of Orthopedic Surgery, UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony P Kontos
- Department of Orthopedic Surgery, UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chris Connaboy
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Nikolova S, Schwedt TJ, Li J, Wu T, Dumkrieger GM, Ross KB, Berisha V, Chong CD. T2* reduction in patients with acute post-traumatic headache. Cephalalgia 2021; 42:357-365. [PMID: 34644192 DOI: 10.1177/03331024211048509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Although iron accumulation in pain-processing brain regions has been associated with repeated migraine attacks, brain structural changes associated with post-traumatic headache have yet to be elucidated. To determine whether iron accumulation is associated with acute post-traumatic headache, magnetic resonance transverse relaxation rates (T2*) associated with iron accumulation were investigated between individuals with acute post-traumatic headache attributed to mild traumatic brain injury and healthy controls. METHODS Twenty individuals with acute post-traumatic headache and 20 age-matched healthy controls underwent 3T brain magnetic resonance imaging including quantitative T2* maps. T2* differences between individuals with post-traumatic headache versus healthy controls were compared using age-matched paired t-tests. Associations of T2* values with headache frequency and number of mild traumatic brain injuries were investigated using multiple linear regression in individuals with post-traumatic headache. Significance was determined using uncorrected p-value and cluster size threshold. RESULTS Individuals with post-traumatic headache had lower T2* values compared to healthy controls in cortical (bilateral frontal, bilateral anterior and posterior cingulate, right postcentral, bilateral temporal, right supramarginal, right rolandic, left insula, left occipital, right parahippocampal), subcortical (left putamen, bilateral hippocampal) and brainstem regions (pons). Within post-traumatic headache subjects, multiple linear regression showed a negative association between T2* in the right inferior parietal/supramarginal regions and number of mild traumatic brain injuries and a negative association between T2* in bilateral cingulate, bilateral precuneus, bilateral supplementary motor areas, bilateral insula, right middle temporal and right lingual areas and headache frequency. CONCLUSIONS Acute post-traumatic headache is associated with iron accumulation in multiple brain regions. Correlations with headache frequency and number of lifetime mild traumatic brain injuries suggest that iron accumulation is part of the pathophysiology or a marker of mild traumatic brain injury and post-traumatic headache.
Collapse
Affiliation(s)
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA.,ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
| | - Jing Li
- Georgia Tech, School of Industrial and Systems Engineering, 1372Georgia Tech, Georgia, USA
| | - Teresa Wu
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA.,School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | | | - Visar Berisha
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA.,School of Electrical, Computer and Energy Engineering and College of Health Solutions, Arizona State University, Tempe, AZ, USA.,College of Health Solutions, Phoenix, AZ, USA
| | - Catherine D Chong
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA.,ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
26
|
Thakur A, Choudhary D, Kumar B, Chaudhary A. A review on post-traumatic stress disorder (PTSD): "Symptoms, Therapies and Recent Case Studies". Curr Mol Pharmacol 2021; 15:502-516. [PMID: 34036925 DOI: 10.2174/1874467214666210525160944] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Post-traumatic stress disorder (PTSD), previously known as battle fatigue syndrome or shell shock, is a severe mental disturbance condition that is normally triggered by the experience of some frightening/scary events or trauma where a person undergoes some serious physical or mental harm or threatened. PTSD is a long-life effect of the continuous occurrence of traumatic conditions which, leading the production of feelings of helplessness, intense fear, and horror in the person. There are various examples of events that can cause PTSD, such as physical, mental, or sexual assault at home or working place by others, unexpected death of a loved one, an accidental event, war, or some kind of natural disaster. Treatment of PTSD includes the removal or reduction of these emotional feelings or symptoms with the aim to improve the daily life functioning of a person. Problems which are needed to be considered in case of PTSD like ongoing trauma, abusive or bad relationships. Various drugs which are used for the treatment of PTSD include selective serotonin reuptake inhibitors (SSRIs) (citalopram, fluvoxamine, fluoxetine, etc.); tricyclic antidepressants (amitriptyline and isocarboxazid); mood stabilizers (Divalproex and lamotrigine); atypical antipsychotics (aripiprazole and quetiapine), etc. In this review, we have covered the different risk factors, case studies related to various treatment options with different age group peoples in PTSD and their effects on them. We have also covered the symptoms and associated disorders which can play a key role in the development of PTSD.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031. Taiwan
| | - Diksha Choudhary
- Department of School of Pharmacy, Abhilashi University, Chail Chowk, tehsil Chachyot, Mandi, Himachal Pradesh 175028, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, India
| | - Amit Chaudhary
- Department of School of Pharmacy, Abhilashi University, Chail Chowk, tehsil Chachyot, Mandi, Himachal Pradesh 175028, India
| |
Collapse
|
27
|
Magnetoencephalography in the Detection and Characterization of Brain Abnormalities Associated with Traumatic Brain Injury: A Comprehensive Review. Med Sci (Basel) 2021; 9:medsci9010007. [PMID: 33557219 PMCID: PMC7930962 DOI: 10.3390/medsci9010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 01/18/2023] Open
Abstract
Magnetoencephalography (MEG) is a functional brain imaging technique with high temporal resolution compared with techniques that rely on metabolic coupling. MEG has an important role in traumatic brain injury (TBI) research, especially in mild TBI, which may not have detectable features in conventional, anatomical imaging techniques. This review addresses the original research articles to date that have reported on the use of MEG in TBI. Specifically, the included studies have demonstrated the utility of MEG in the detection of TBI, characterization of brain connectivity abnormalities associated with TBI, correlation of brain signals with post-concussive symptoms, differentiation of TBI from post-traumatic stress disorder, and monitoring the response to TBI treatments. Although presently the utility of MEG is mostly limited to research in TBI, a clinical role for MEG in TBI may become evident with further investigation.
Collapse
|
28
|
Use of Repetitive Transcranial Magnetic Stimulation in the Treatment of Neuropsychiatric and Neurocognitive Symptoms Associated With Concussion in Military Populations. J Head Trauma Rehabil 2020; 35:388-400. [PMID: 33165152 DOI: 10.1097/htr.0000000000000628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Since the year 2000, over 342 000 military service members have experienced a concussion, often associated with chronic neuropsychiatric and neurocognitive symptoms. Repetitive transcranial magnetic stimulation (rTMS) protocols have been developed for many of these symptoms in the general population. OBJECTIVE To conduct a scoping review of the literature on rTMS for neuropsychological and neurocognitive symptoms following concussion. METHODS PubMed and Google Scholar search engines identified 9 articles, written in English, corresponding to the search terms TBI or concussion; and TMS or rTMS; and depression, PTSD, or cognition. Studies that were not therapeutic trials or case reports, did not have neuropsychiatric or neurocognitive primary outcome measures, or described samples where 80% or more of the cohort did not have a TBI were excluded. RESULTS There were no reports of seizures nor difference in the frequency or quality of other adverse events as compared with the broader rTMS literature, supporting the safety of rTMS in this population. Support for the efficacy of rTMS for the treatment of neuropsychiatric and neurocognitive symptoms, in this population, is limited. CONCLUSIONS Large-scale, innovative, neuroscience-informed protocols are recommended to elucidate the potential utility of rTMS for the complex neuropsychiatric and neurocognitive symptoms associated with military concussions.
Collapse
|