1
|
Qi X, Jia T, Sun B, Xia J, Wang C, Hong Z, Zhang Y, Yang H, Zhang C, Liu J. Individual differences in resting alpha band power and changes in theta band power during sustained pain are correlated with the pain-relieving efficacy of alpha HD-tACS on SM1. Neuroimage 2025; 312:121237. [PMID: 40280214 DOI: 10.1016/j.neuroimage.2025.121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025] Open
Abstract
High-definition transcranial alternating current stimulation (HD-tACS) targeting alpha rhythms (8-13 Hz) shows promise as a pain-relieving intervention, but individual responses vary widely. Understanding the neurobiological mechanism behind this variability is crucial for optimizing HD-tACS parameters to enhance its efficacy in pain relief. In a double-blind, within-subject, sham-controlled experimental study, 34 healthy participants were recruited. We investigated how individual differences in brain oscillations during rest and capsaicin-induced sustained pain states influence the efficacy of alpha HD-tACS. Participants underwent EEG assessments at rest and during capsaicin-induced sustained pain. They then received either sham or active HD-tACS on the sensorimotor cortex (SM1) or dorsolateral prefrontal cortex (DLPFC). We found significant reductions in delta and theta band power at the C4 electrode during sustained pain correlated with individual pain intensity. Additionally, stimulating the SM1 and DLPFC significantly relieved sustained pain. Resting alpha band power and changes in theta band power during sustained pain (the difference in theta band power between sustained pain and rest) at the C4 electrode were both significantly correlated with the pain-relieving efficacy of alpha HD-tACS on SM1. Notably, changes in theta band power mediated the relationship between resting alpha band power and pain-relieving efficacy. These results were not found with alpha HD-tACS on DLPFC. Our results suggest that the variations in theta band power during sustained pain may be crucial for understanding the variability in the efficacy of alpha HD-tACS targeting SM1. The factors influencing the efficacy of alpha HD-tACS on the DLPFC might be multifaceted.
Collapse
Affiliation(s)
- Xingang Qi
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan 637000, PR China; Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, PR China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, PR China
| | - Tianzhe Jia
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, PR China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, PR China
| | - Baijintao Sun
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan 637000, PR China
| | - Jiahui Xia
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, PR China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, PR China
| | - ChenXi Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, PR China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, PR China
| | - Zilong Hong
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, PR China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, PR China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, PR China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, PR China
| | - Hanfeng Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan 637000, PR China.
| | - Chuan Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan 637000, PR China.
| | - Jixin Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan 637000, PR China; Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, PR China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, PR China.
| |
Collapse
|
2
|
Kelardashti N, Dunkley BT, El‐Sayed R, Sanmugananthan VV, Kim JA, Osborne NR, Cheng JC, Rogachov A, Bosma RL, Besik AE, Davis KD. Alpha and Theta Oscillations Associated With Behavioral Phenotypes of Pain-Attention Interaction. Brain Behav 2025; 15:e70190. [PMID: 39829145 PMCID: PMC11743985 DOI: 10.1002/brb3.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 01/22/2025] Open
Abstract
PURPOSE Pain is inherently salient and so draws our attention in addition to impacting performance on attention-demanding tasks. Individual variability in pain-attention interactions can be assessed by two kinds of behavioral phenotypes that quantify how individuals prioritize pain versus attentional needs. The intrinsic attention to pain (IAP) measure quantifies the degree to which a person attends to pain (high-IAP) or mind-wanders away from pain (low-IAP). The A/P categorization quantifies how pain impacts cognitive performance during an attention-demanding task classifying individuals into P type (pain dominates, worse performance during pain in comparison to no pain) and A type (attention to task dominates, better performance during pain in comparison to no pain). Although previous MRI-based studies have linked these phenotypes with the dynamic pain connectome (DPC), the underlying neural oscillations are not known. This paper aims to examine the brain-behavior relationship between alpha and theta oscillations within nodes of the DPC and pain-attention phenotypes. METHOD Fifty participants (27 F, 23 M) underwent resting-state magnetoencephalography (MEG). Individual IAP scores were determined by assessing mind-wandering during pain and A/P type was based on interference of pain with cognitive task performance. FINDING The main findings were: (1) peak alpha frequency (PAF) power did not differ between low/high-IAP individuals or A/P-type individuals within the nodes of the DPC; (2) compared to high-IAP individuals, those with low-IAP have slower PAF in the left primary somatosensory cortex, posterior cingulate cortex and precuneus and higher theta power in the ascending nociceptive pathway and default mode network; (3) males with low-IAP, compared to females, had higher PAF power throughout the DPC. CONCLUSION Alpha and theta oscillations within the DPC may underlie aspects of attentional focus and pain-attention interactions.
Collapse
Affiliation(s)
- Nikou Kelardashti
- Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Benjamin T. Dunkley
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Diagnostic ImagingHospital for Sick ChildrenTorontoOntarioCanada
- Neurosciences & Mental HealthSickKids Research InstituteTorontoOntarioCanada
- Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
- Department of PsychologyUniversity of NottinghamNottinghamUK
| | - Rima El‐Sayed
- Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Vaidhehi Veena Sanmugananthan
- Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Junseok Andrew Kim
- Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Natalie Rae Osborne
- Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Joshua C. Cheng
- Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Anton Rogachov
- Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Rachael L. Bosma
- Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Ariana E. Besik
- Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Karen Deborah Davis
- Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Lopez Ramos CG, Rockhill AP, Shahin MN, Gragg A, Tan H, Yamamoto EA, Fecker AL, Ismail M, Cleary DR, Raslan AM. Beta Oscillations in the Sensory Thalamus During Severe Facial Neuropathic Pain Using Novel Sensing Deep Brain Stimulation. Neuromodulation 2024; 27:1419-1427. [PMID: 38878055 DOI: 10.1016/j.neurom.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 12/08/2024]
Abstract
OBJECTIVE Advancements in deep brain stimulation (DBS) devices provide a unique opportunity to record local field potentials longitudinally to improve the efficacy of treatment for intractable facial pain. We aimed to identify potential electrophysiological biomarkers of pain in the ventral posteromedial nucleus (VPM) of the thalamus and periaqueductal gray (PAG) using a long-term sensing DBS system. MATERIALS AND METHODS We analyzed power spectra of ambulatory pain-related events from one patient implanted with a long-term sensing generator, representing different pain intensities (pain >7, pain >9) and pain qualities (no pain, burning, stabbing, and shocking pain). Power spectra were parametrized to separate oscillatory and aperiodic features and compared across the different pain states. RESULTS Overall, 96 events were marked during a 16-month follow-up. Parameterization of spectra revealed a total of 62 oscillatory peaks with most in the VPM (77.4%). The pain-free condition did not show any oscillations. In contrast, β peaks were observed in the VPM during all episodes (100%) associated with pain >9, 56% of episodes with pain >7, and 50% of burning pain events (center frequencies: 28.4 Hz, 17.8 Hz, and 20.7 Hz, respectively). Episodes of pain >9 indicated the highest relative β band power in the VPM and decreased aperiodic exponents (denoting the slope of the power spectra) in both the VPM and PAG. CONCLUSIONS For this patient, an increase in β band activity in the sensory thalamus was associated with severe facial pain, opening the possibility for closed-loop DBS in facial pain.
Collapse
Affiliation(s)
| | - Alexander P Rockhill
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Maryam N Shahin
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Antonia Gragg
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Hao Tan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Erin A Yamamoto
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Adeline L Fecker
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Mostafa Ismail
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Daniel R Cleary
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Ho A, Lee SJ, Drew VJ, Jung J, Kang J, Cheong C, Kim T. Sleep disturbance correlated with severity of neuropathic pain in sciatic nerve crush injury model. J Sleep Res 2024; 33:e14137. [PMID: 38199868 DOI: 10.1111/jsr.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The association between sleep and pain has been investigated widely. However, inconsistent results from animal studies compared with human data show the need for a validated animal model in the sleep-pain association field. Our study aims to validate common neuropathic pain models as a tool for evaluating the sleep-pain association. Electrodes electroencephalogram (EEG) and electromyogram (EMG) were surgically implanted to measure sleep. The von Frey test was used to measure pain sensitivity. Following the baseline data acquisition, two pain-modelling procedures were performed: sciatic nerve crush injury (SCI) and common peroneal nerve ligation (CPL). Post-injury measurements were performed on days 1, 5, 10, and 15 post-surgery. The results presented decreased paw withdrawal thresholds and reduced NREM sleep duration in both models on the first post-surgery day. In the SCI model, NREM sleep duration was negatively correlated with paw withdrawal thresholds (p = 0.0466), but not in the CPL model. Wake alpha and theta EEG powers were also correlated with the pain threshold. The results confirm that the SCI model shows disturbed sleep patterns associated with increased pain sensitivity, suggesting it is a reliable tool for investigating sleep disturbances associated with neuropathic pain.
Collapse
Affiliation(s)
- Anh Ho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung-Jun Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Victor J Drew
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jieun Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Chanyoung Cheong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
5
|
Sano M, Iwatsuki K, Hirata H, Hoshiyama M. Imbalance in positive and negative acceleration ratio of alpha oscillation in patients with complex regional pain syndrome. Heliyon 2024; 10:e36463. [PMID: 39281607 PMCID: PMC11401108 DOI: 10.1016/j.heliyon.2024.e36463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Objectives To elucidate the functional characteristics of the brain in the presence of chronic pain using electroencephalography (EEG), with a focus on the dynamics of neural excitation and inhibition. Methods Resting-state EEG was performed in: 17 patients with complex regional pain syndrome (CRPS) who exhibited chronic pain higher than 20 on the visual analogue scale (VAS), 6 patients with reduced CRPS symptoms and chronic pain less than 20 on VAS, and healthy age-matched controls. For the analysis, 50 s of electroencephalogram (EEG) signals were extracted from EEG recordings during wakefulness and rest with eyes closed. The envelope of the alpha frequency band was calculated by examining the positive and negative accelerations of the envelope oscillation, ratio of positive (Ap) to negative (An) accelerations (Ap-An ratio), and mean amplitude of the envelope. Comparisons were made between patients and controls, and correlations between these EEG measures and the subjective pain VAS were evaluated.Significant differences in the value of Ap, An and Ap-An ratio were observed at temporal and central electrodes between patients with pain symptoms and controls. Those with reduced CRPS symptoms exhibited a distinct Ap-An ratio at the majority of electrodes when compared with those exhibiting chronic pain. Conclusions Distinct patterns in alpha wave envelope dynamics, reflecting excitatory and inhibitory activities, were associated with chronic pain in patients with CRPS. The pain-relieved state of CRPS suggested that a new balance of activities was established. This relationship indicated a potential association between altered alpha oscillation characteristics and the subjective experience of pain. Significance This study introduces a novel method for analyzing alpha oscillation envelopes, providing new insights into the neural pathophysiology of chronic pain in CRPS patients. This approach has the potential to enhance our understanding of the alterations in brain function that occur under chronic pain conditions.
Collapse
Affiliation(s)
- Misako Sano
- Division of Prevention & Rehabilitation Sciences, Graduate School of Health Sciences, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Katsuyuki Iwatsuki
- Department of Hnad Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Hitoshi Hirata
- Department of Hnad Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Minoru Hoshiyama
- Division of Prevention & Rehabilitation Sciences, Graduate School of Health Sciences, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
- Brain & Mind Research Center, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| |
Collapse
|
6
|
Lopes TS, Santana JE, Silva WS, Fraga FJ, Montoya P, Sá KN, Lopes LC, Lucena R, Zana Y, Baptista AF. Increased Delta and Theta Power Density in Sickle Cell Disease Individuals with Chronic Pain Secondary to Hip Osteonecrosis: A Resting-State Eeg Study. Brain Topogr 2024; 37:859-873. [PMID: 38060074 DOI: 10.1007/s10548-023-01027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Identify the presence of a dysfunctional electroencephalographic (EEG) pattern in individuals with sickle cell disease (SCD) and hip osteonecrosis, and assess its potential associations with depression, anxiety, pain severity, and serum levels of brain-derived neurotrophic factor (BDNF). METHODS In this cross-sectional investigation, 24 SCD patients with hip osteonecrosis and chronic pain were matched by age and sex with 19 healthy controls. Resting-state EEG data were recorded using 32 electrodes for both groups. Power spectral density (PSD) and peak alpha frequency (PAF) were computed for each electrode across Delta, Theta, Alpha, and Beta frequency bands. Current Source Density (CSD) measures were performed utilizing the built-in Statistical nonparametric Mapping Method of the LORETA-KEY software. RESULTS Our findings demonstrated that SCD individuals exhibited higher PSD in delta and theta frequency bands when compared to healthy controls. Moreover, SCD individuals displayed increased CSD in delta and theta frequencies, coupled with decreased CSD in the alpha frequency within brain regions linked to pain processing, motor function, emotion, and attention. In comparison to the control group, depression symptoms, and pain intensity during hip abduction were positively correlated with PSD and CSD in the delta frequency within the parietal region. Depression symptoms also exhibited a positive association with PSD and CSD in the theta frequency within the same region, while serum BDNF levels showed a negative correlation with CSD in the alpha frequency within the left insula. CONCLUSION This study indicates that individuals with SCD experiencing hip osteonecrosis and chronic pain manifest a dysfunctional EEG pattern characterized by the persistence of low-frequency PSD during a resting state. This dysfunctional EEG pattern may be linked to clinical and biochemical outcomes, including depression symptoms, pain severity during movement, and serum BDNF levels.
Collapse
Affiliation(s)
- Tiago S Lopes
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil.
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil.
- Bahia Adventist College, Cachoeira, Brazil.
| | - Jamille E Santana
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
| | | | - Francisco J Fraga
- Engineering, Modelling, and Applied Social Sciences Center, Federal University of ABC, Santo André, SP, Brazil
| | - Pedro Montoya
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- Research Institute of Health Sciences, University of Balearic Islands, Palma de Mallorca, Spain
| | - Katia N Sá
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
- Postgraduate and Research, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | - Larissa C Lopes
- Graduate Program in Medicine and Health, Federal University of Bahia, Salvador, Brazil
| | - Rita Lucena
- Graduate Program in Medicine and Health, Federal University of Bahia, Salvador, Brazil
| | - Yossi Zana
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
| | - Abrahão F Baptista
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
- Laboratory of Medical Investigations 54, Clinics Hospital, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
7
|
Sabater-Gárriz Á, Montoya P, Riquelme I. Enhanced EEG power density during painful stretching in individuals with cerebral palsy. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 150:104760. [PMID: 38795555 DOI: 10.1016/j.ridd.2024.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Pain perception mechanisms in cerebral palsy remain largely unclear. AIMS This study investigates brain activity in adults with cerebral palsy during painful and non-painful stretching to elucidate their pain processing characteristics. METHODS AND PROCEDURES Twenty adults with cerebral palsy and 20 controls underwent EEG in three conditions: rest, non-painful stretching, and painful stretching. Time-frequency power density of theta, alpha, and beta waves in somatosensory and frontal cortices was analyzed, alongside baseline pressure pain thresholds. OUTCOMES AND RESULTS Cerebral palsy individuals exhibited higher theta, alpha, and beta power density in both cortices during painful stretching compared to rest, and lower during non-painful stretching. Controls showed higher power density during non-painful stretching but lower during painful stretching. Cerebral palsy individuals had higher pain sensitivity, with those more sensitive experiencing greater alpha power density. CONCLUSIONS AND IMPLICATIONS These findings confirm alterations in the cerebral processing of pain in individuals with cerebral palsy. This knowledge could enhance future approaches to the diagnosis and treatment of pain in this vulnerable population.
Collapse
Affiliation(s)
- Álvaro Sabater-Gárriz
- Balearic ASPACE Foundation, Marratxí, Spain; Health Research Institute of the Balearic Islands (IUNICS-IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain; Department of Nursing and Physiotherapy, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Pedro Montoya
- Health Research Institute of the Balearic Islands (IUNICS-IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain; Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Inmaculada Riquelme
- Health Research Institute of the Balearic Islands (IUNICS-IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain; Department of Nursing and Physiotherapy, University of the Balearic Islands, Palma de Mallorca, Spain.
| |
Collapse
|
8
|
Huang Y, Gopal J, Kakusa B, Li AH, Huang W, Wang JB, Persad A, Ramayya A, Parvizi J, Buch VP, Keller C. Naturalistic acute pain states decoded from neural and facial dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593652. [PMID: 38766098 PMCID: PMC11100805 DOI: 10.1101/2024.05.10.593652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Pain is a complex experience that remains largely unexplored in naturalistic contexts, hindering our understanding of its neurobehavioral representation in ecologically valid settings. To address this, we employed a multimodal, data-driven approach integrating intracranial electroencephalography, pain self-reports, and facial expression quantification to characterize the neural and behavioral correlates of naturalistic acute pain in twelve epilepsy patients undergoing continuous monitoring with neural and audiovisual recordings. High self-reported pain states were associated with elevated blood pressure, increased pain medication use, and distinct facial muscle activations. Using machine learning, we successfully decoded individual participants' high versus low self-reported pain states from distributed neural activity patterns (mean AUC = 0.70), involving mesolimbic regions, striatum, and temporoparietal cortex. High self-reported pain states exhibited increased low-frequency activity in temporoparietal areas and decreased high-frequency activity in mesolimbic regions (hippocampus, cingulate, and orbitofrontal cortex) compared to low pain states. This neural pain representation remained stable for hours and was modulated by pain onset and relief. Objective facial expression changes also classified self-reported pain states, with results concordant with electrophysiological predictions. Importantly, we identified transient periods of momentary pain as a distinct naturalistic acute pain measure, which could be reliably differentiated from affect-neutral periods using intracranial and facial features, albeit with neural and facial patterns distinct from self-reported pain. These findings reveal reliable neurobehavioral markers of naturalistic acute pain across contexts and timescales, underscoring the potential for developing personalized pain interventions in real-world settings.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jay Gopal
- Brown University, Providence, RI, 02912, USA
| | - Bina Kakusa
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alice H. Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Weichen Huang
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey B. Wang
- Department of Anesthesia and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amit Persad
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ashwin Ramayya
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Josef Parvizi
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Corey Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Palo Alto, CA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| |
Collapse
|
9
|
Rajan J, Gaur GS, Shanmugavel K, S A. Relation between heart rate variability and spectral analysis of electroencephalogram in chronic neuropathic pain patients. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:253-264. [PMID: 38682173 PMCID: PMC11058544 DOI: 10.4196/kjpp.2024.28.3.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
Chronic neuropathic pain (CNP) is a complex condition often arising from neural maladaptation after nerve injury. Understanding CNP complications involves the intricate interplay between brain-heart dynamics, assessed through quantitative electroencephalogram (qEEG) and heart rate variability (HRV). However, insights into their interaction in chronic pain are limited. Resting EEG and simultaneous electrocardiogram (lead II) of the participants were recorded for qEEG and HRV analysis. Correlations between HRV and qEEG parameters were calculated and compared with age, sex, and body mass index (BMI)-matched controls. CNP patients showed reduced HRV and significant increases in qEEG power spectral densities within delta, theta, and beta frequency ranges. A positive correlation was found between low frequency/ high frequency (LF/HF) ratio in HRV analysis and theta, alpha, and beta frequency bands in qEEG among CNP patients. However, no significant correlation was observed between parasympathetic indices and theta, beta bands in qEEG within CNP group, unlike age, sex, and BMI-matched healthy controls. CNP patients display significant HRV reductions and distinctive qEEG patterns. While healthy controls exhibit significant correlations between parasympathetic HRV parameters and qEEG spectral densities, these relationships are diminished or absent in CNP individuals. LF/HF ratio, reflecting sympathovagal balance, correlates significantly with qEEG frequency bands (theta, alpha, beta), illuminating autonomic dysregulation in CNP. These findings emphasize the intricate brain-heart interplay in chronic pain, warranting further exploration.
Collapse
Affiliation(s)
- John Rajan
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Girwar Singh Gaur
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Karthik Shanmugavel
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Adinarayanan S
- Department of Anesthesiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
10
|
Barbosa SP, Junqueira YN, Akamatsu MA, Marques LM, Teixeira A, Lobo M, Mahmoud MH, Omer WE, Pacheco-Barrios K, Fregni F. Resting-state electroencephalography delta and theta bands as compensatory oscillations in chronic neuropathic pain: a secondary data analysis. BRAIN NETWORK AND MODULATION 2024; 3:52-60. [PMID: 39119588 PMCID: PMC11309019 DOI: 10.4103/bnm.bnm_17_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Chronic neuropathic pain (CNP) remains a significant clinical challenge, with complex neurophysiological underpinnings that are not fully understood. Identifying specific neural oscillatory patterns related to pain perception and interference can enhance our understanding and management of CNP. To analyze resting electroencephalography data from individuals with chronic neuropathic pain to explore the possible neural signatures associated with pain intensity, pain interference, and specific neuropathic pain characteristics. We conducted a secondary analysis from a cross-sectional study using electroencephalography data from a previous study, and Brief Pain Inventory from 36 patients with chronic neuropathic pain. For statistical analysis, we modeled a linear or logistic regression by dependent variable for each model. As independent variables, we used electroencephalography data with such brain oscillations: as delta, theta, alpha, and beta, as well as the oscillations low alpha, high alpha, low beta, and high beta, for the central, frontal, and parietal regions. All models tested for confounding factors such as age and medication. There were no significant models for Pain interference in general activity, walking, work, relationships, sleep, and enjoyment of life. However, the model for pain intensity during the past four weeks showed decreased alpha oscillations, and increased delta and theta oscillations were associated with decreased levels of pain, especially in the central area. In terms of pain interference in mood, the model showed high oscillatory Alpha signals in the frontal and central regions correlated with mood impairment due to pain. Our models confirm recent findings proposing that lower oscillatory frequencies, likely related to subcortical pain sources, may be associated with brain compensatory mechanisms and thus may be associated with decreased pain levels. On the other hand, higher frequencies, including alpha oscillations, may disrupt top-down compensatory mechanisms.
Collapse
Affiliation(s)
- Sara Pinto Barbosa
- Instituto de Medicina Física e
Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ygor Nascimento Junqueira
- Principles and Practice of Clinical Research Program,
Harvard T.H. Chan School of Public Health, Boston
| | | | - Lucas Murrins Marques
- Mental Health Department, Santa Casa de São Paulo
School of Medical Sciences, São Paulo, SP, Brazil
| | - Adriano Teixeira
- Federal University of Bahia, Multidisciplinary Health
Institute – IMS, Salvador, BA, Brazil
| | - Matheus Lobo
- Surgical Oncologist at Hospital A. C. Camargo, São
Paulo, SP, Brazil
| | | | | | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research
Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital,
Harvard Medical School, Boston, MD, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de
Investigación, Unidad de Investigación para la Generación y
Síntesis de Evidencias en Salud, Lima, Peru
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research
Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital,
Harvard Medical School, Boston, MD, USA
| |
Collapse
|
11
|
Mathew J, Perez TM, Adhia DB, De Ridder D, Mani R. Is There a Difference in EEG Characteristics in Acute, Chronic, and Experimentally Induced Musculoskeletal Pain States? a Systematic Review. Clin EEG Neurosci 2024; 55:101-120. [PMID: 36377346 DOI: 10.1177/15500594221138292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electroencephalographic (EEG) alterations have been demonstrated in acute, chronic, and experimentally induced musculoskeletal (MSK) pain conditions. However, there is no cumulative evidence on the associated EEG characteristics differentiating acute, chronic, and experimentally induced musculoskeletal pain states, especially compared to healthy controls. The present systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines (PRISMA) to review and summarize available evidence for cortical brain activity and connectivity alterations in acute, chronic, and experimentally induced MSK pain states. Five electronic databases were systematically searched from their inception to 2022. A total of 3471 articles were screened, and 26 full articles (five studies on chronic pain and 21 studies on experimentally induced pain) were included for the final synthesis. Using the Downs and Black risk of assessment tool, 92% of the studies were assessed as low to moderate quality. The review identified a 'very low' level of evidence for the changes in EEG and subjective outcome measures for both chronic and experimentally induced MSK pain based on the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. Overall, the findings of this review indicate a trend toward decreased alpha and beta EEG power in evoked chronic clinical pain conditions and increased theta and alpha power in resting-state EEG recorded from chronic MSK pain conditions. EEG characteristics are unclear under experimentally induced pain conditions.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research (CHARR), School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Tyson Michael Perez
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research (CHARR), School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Rosner J, de Andrade DC, Davis KD, Gustin SM, Kramer JLK, Seal RP, Finnerup NB. Central neuropathic pain. Nat Rev Dis Primers 2023; 9:73. [PMID: 38129427 PMCID: PMC11329872 DOI: 10.1038/s41572-023-00484-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide. The mechanisms that underlie central neuropathic pain are not fully understood, but the pathophysiology likely involves intricate interactions and maladaptive plasticity within spinal circuits and brain circuits associated with nociception and antinociception coupled with neuronal hyperexcitability. Modulation of neuronal activity, neuron-glia and neuro-immune interactions and targeting pain-related alterations in brain connectivity, represent potential therapeutic approaches. Current evidence-based pharmacological treatments include antidepressants and gabapentinoids as first-line options. Non-pharmacological pain management options include self-management strategies, exercise and neuromodulation. A comprehensive pain history and clinical examination form the foundation of central neuropathic pain classification, identification of potential risk factors and stratification of patients for clinical trials. Advanced neurophysiological and neuroimaging techniques hold promise to improve the understanding of mechanisms that underlie central neuropathic pain and as predictive biomarkers of treatment outcome.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Daniel C de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - John L K Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anaesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rebecca P Seal
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
13
|
Bemani S, Sarrafzadeh J, Noorizadeh Dehkordi S, Talebian S, Salehi R, Zarei J. The Analysis of Spontaneous Electroencephalogram (EEG) in Chronic Low Back Pain Patients Compared with Healthy Subjects. Med J Islam Repub Iran 2023; 37:128. [PMID: 38318405 PMCID: PMC10843364 DOI: 10.47176/mjiri.37.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 02/07/2024] Open
Abstract
Background Quantitative electroencephalography (EEG) power spectra analysis was applied to assess brain activation during chronic pain. Although many studies have shown that there are some common characteristics among individuals suffering from various pain syndromes, the data remains inconclusive. The present study aimed to assess chronic low back pain (CLBP) based on functional brain changes with EEG in CLBP patients compared with healthy controls. Methods Multichannel electroencephalogram data were recorded from 30 subjects with CLBP and 30 healthy controls under eye-open resting state conditions and active lumbar forward flexion, and their cortical oscillations were compared using electrode-level analysis. Data were analyzed using a pair t-test. Results A total of 30 patients (19 men and 11 women in the case group (mean [SD] age, 35.23 [5.93] years) with 30 age and sex-match healthy controls participated in the study. A paired t-test was applied to identify whether there was any difference in the absolute and relative power of frequency spectra between CLBP patients and healthy controls. The results showed a significant increase in alpha relative power in CLBP patients compared with healthy controls in an open-eye resting state ( P < 0.050) and active lumbar forward flexion ( P < 0.050). Conclusion The enhanced alpha relative power in CLBP patients could be relevant to attenuating sensory information gating and excessive integration of pain-related information. Increased power at the EEG seems to be one of the clinical characteristics of individuals with CLBP. EEG can be a simple and objective tool for studying the mechanisms involved in chronic pain and identifying specific characteristics of CLBP patients.
Collapse
Affiliation(s)
- Sanaz Bemani
- Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Sarrafzadeh
- Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Shohreh Noorizadeh Dehkordi
- Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebian
- Department of Physiotherapy, School of Rehabilitation Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salehi
- Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
- Department of Rehabilitation Management, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
- Geriatric Mental Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jamileh Zarei
- Department of Health Psychology, School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kenefati G, Rockholt MM, Ok D, McCartin M, Zhang Q, Sun G, Maslinski J, Wang A, Chen B, Voigt EP, Chen ZS, Wang J, Doan LV. Changes in alpha, theta, and gamma oscillations in distinct cortical areas are associated with altered acute pain responses in chronic low back pain patients. Front Neurosci 2023; 17:1278183. [PMID: 37901433 PMCID: PMC10611481 DOI: 10.3389/fnins.2023.1278183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Chronic pain negatively impacts a range of sensory and affective behaviors. Previous studies have shown that the presence of chronic pain not only causes hypersensitivity at the site of injury but may also be associated with pain-aversive experiences at anatomically unrelated sites. While animal studies have indicated that the cingulate and prefrontal cortices are involved in this generalized hyperalgesia, the mechanisms distinguishing increased sensitivity at the site of injury from a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs are not well known. Methods We compared measured pain responses to peripheral mechanical stimuli applied to a site of chronic pain and at a pain-free site in participants suffering from chronic lower back pain (n = 15) versus pain-free control participants (n = 15) by analyzing behavioral and electroencephalographic (EEG) data. Results As expected, participants with chronic pain endorsed enhanced pain with mechanical stimuli in both back and hand. We further analyzed electroencephalographic (EEG) recordings during these evoked pain episodes. Brain oscillations in theta and alpha bands in the medial orbitofrontal cortex (mOFC) were associated with localized hypersensitivity, while increased gamma oscillations in the anterior cingulate cortex (ACC) and increased theta oscillations in the dorsolateral prefrontal cortex (dlPFC) were associated with generalized hyperalgesia. Discussion These findings indicate that chronic pain may disrupt multiple cortical circuits to impact nociceptive processing.
Collapse
Affiliation(s)
- George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Julia Maslinski
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Aaron Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Baldwin Chen
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Erich P. Voigt
- Department of Otolaryngology-Head and Neck Surgery, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
15
|
de Andrade DC, García-Larrea L. Beyond trial-and-error: Individualizing therapeutic transcranial neuromodulation for chronic pain. Eur J Pain 2023; 27:1065-1083. [PMID: 37596980 PMCID: PMC7616049 DOI: 10.1002/ejp.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) applied to the motor cortex provides supplementary relief for some individuals with chronic pain who are refractory to pharmacological treatment. As rTMS slowly enters treatment guidelines for pain relief, its starts to be confronted with challenges long known to pharmacological approaches: efficacy at the group-level does not grant pain relief for a particular patient. In this review, we present and discuss a series of ongoing attempts to overcome this therapeutic challenge in a personalized medicine framework. DATABASES AND DATA TREATMENT Relevant scientific publications published in main databases such as PubMed and EMBASE from inception until March 2023 were systematically assessed, as well as a wide number of studies dedicated to the exploration of the mechanistic grounds of rTMS analgesic effects in humans, primates and rodents. RESULTS The main strategies reported to personalize cortical neuromodulation are: (i) the use of rTMS to predict individual response to implanted motor cortex stimulation; (ii) modifications of motor cortex stimulation patterns; (iii) stimulation of extra-motor targets; (iv) assessment of individual cortical networks and rhythms to personalize treatment; (v) deep sensory phenotyping; (vi) personalization of location, precision and intensity of motor rTMS. All approaches except (i) have so far low or moderate levels of evidence. CONCLUSIONS Although current evidence for most strategies under study remains at best moderate, the multiple mechanisms set up by cortical stimulation are an advantage over single-target 'clean' drugs, as they can influence multiple pathophysiologic paths and offer multiple possibilities of individualization. SIGNIFICANCE Non-invasive neuromodulation is on the verge of personalised medicine. Strategies ranging from integration of detailed clinical phenotyping into treatment design to advanced patient neurophysiological characterisation are being actively explored and creating a framework for actual individualisation of care.
Collapse
Affiliation(s)
- Daniel Ciampi de Andrade
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Luís García-Larrea
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
16
|
Zebhauser PT, Hohn VD, Ploner M. Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: a systematic review. Pain 2023; 164:1200-1221. [PMID: 36409624 PMCID: PMC10184564 DOI: 10.1097/j.pain.0000000000002825] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
ABSTRACT Reliable and objective biomarkers promise to improve the assessment and treatment of chronic pain. Resting-state electroencephalography (EEG) is broadly available, easy to use, and cost efficient and, therefore, appealing as a potential biomarker of chronic pain. However, results of EEG studies are heterogeneous. Therefore, we conducted a systematic review (PROSPERO CRD42021272622) of quantitative resting-state EEG and magnetoencephalography (MEG) studies in adult patients with different types of chronic pain. We excluded populations with severe psychiatric or neurologic comorbidity. Risk of bias was assessed using a modified Newcastle-Ottawa Scale. Semiquantitative data synthesis was conducted using modified albatross plots. We included 76 studies after searching MEDLINE, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and EMBASE. For cross-sectional studies that can serve to develop diagnostic biomarkers, we found higher theta and beta power in patients with chronic pain than in healthy participants. For longitudinal studies, which can yield monitoring and/or predictive biomarkers, we found no clear associations of pain relief with M/EEG measures. Similarly, descriptive studies that can yield diagnostic or monitoring biomarkers showed no clear correlations of pain intensity with M/EEG measures. Risk of bias was high in many studies and domains. Together, this systematic review synthesizes evidence on how resting-state M/EEG might serve as a diagnostic biomarker of chronic pain. Beyond, this review might help to guide future M/EEG studies on the development of pain biomarkers.
Collapse
Affiliation(s)
- Paul Theo Zebhauser
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Vanessa D. Hohn
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Markus Ploner
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
17
|
Seymour B, Crook RJ, Chen ZS. Post-injury pain and behaviour: a control theory perspective. Nat Rev Neurosci 2023; 24:378-392. [PMID: 37165018 PMCID: PMC10465160 DOI: 10.1038/s41583-023-00699-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
Injuries of various types occur commonly in the lives of humans and other animals and lead to a pattern of persistent pain and recuperative behaviour that allows safe and effective recovery. In this Perspective, we propose a control-theoretic framework to explain the adaptive processes in the brain that drive physiological post-injury behaviour. We set out an evolutionary and ethological view on how animals respond to injury, illustrating how the behavioural state associated with persistent pain and recuperation may be just as important as phasic pain in ensuring survival. Adopting a normative approach, we suggest that the brain implements a continuous optimal inference of the current state of injury from diverse sensory and physiological signals. This drives the various effector control mechanisms of behavioural homeostasis, which span the modulation of ongoing motivation and perception to drive rest and hyper-protective behaviours. However, an inherent problem with this is that these protective behaviours may partially obscure information about whether injury has resolved. Such information restriction may seed a tendency to aberrantly or persistently infer injury, and may thus promote the transition to pathological chronic pain states.
Collapse
Affiliation(s)
- Ben Seymour
- Institute for Biomedical Engineering, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, Headington, Oxford, UK.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| | - Zhe Sage Chen
- Departments of Psychiatry, Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
18
|
Qiu D, Wang W, Mei Y, Tang H, Yuan Z, Zhang P, Zhang Y, Yu X, Yang C, Wang Q, Wang Y. Brain structure and cortical activity changes of new daily persistent headache: multimodal evidence from MEG/sMRI. J Headache Pain 2023; 24:45. [PMID: 37098498 PMCID: PMC10129440 DOI: 10.1186/s10194-023-01581-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND New daily persistent headache (NDPH) is a rare but debilitating primary headache disorder that poses a significant burden on individuals and society. Despite its clinical importance, the underlying pathophysiological mechanisms of NDPH remain unclear. In this study, we aimed to investigate the brain structural changes and neural activity patterns in patients with NDPH using multimodal brain imaging analysis of structural magnetic resonance imaging (sMRI) combined with magnetoencephalography (MEG). METHODS Twenty-eight patients with NDPH and 37 healthy controls (HCs) were recruited for this study, and their structural and resting-state data were collected by 3.0 Tesla MRI and MEG. We analyzed the brain morphology using voxel-based morphometry and source-based morphometry. In each brain region, MEG sensor signals from 1 to 200 Hz were analyzed using an adapted version of Welch's method. MEG source localization was conducted using the dynamic statistical parametric mapping, and the difference of source distribution between patients with NDPH and HCs was examined. RESULTS Our results revealed significant differences in the regional grey matter volume, cortical thickness, and cortical surface area between the two groups. Specifically, compared with HCs, patients with NDPH showed a significant decrease in cortical thickness of the left rostral cortex in the middle frontal gyrus, decreased cortical surface area of the left fusiform gyrus, decreased grey matter volume of the left superior frontal gyrus and the left middle frontal gyrus, and increased grey matter volume of the left calcarine. Furthermore, the power of the whole brain, bilateral frontal lobes, and right temporal lobe in the NDPH group were higher than that in HCs in the ripple frequency band (80-200 Hz). Functional and structural analysis suggested that there were structural changes and abnormal high frequency cortical activity in both frontal and temporal lobes in patients with NDPH. CONCLUSION Our findings indicated that patients with NDPH have abnormalities in brain morphology, such as cortical area, cortical thickness, and grey matter volume, accompanied by abnormal cortical neural activity. Brain structural changes in the frontotemporal cortex and abnormalities in cortical ripple activity may be involved in the pathogenesis of NDPH.
Collapse
Affiliation(s)
- Dong Qiu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Yanliang Mei
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Chunqing Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China.
| |
Collapse
|
19
|
Darmani G, Arora T, Drummond NM, Cortez Grippe T, Saha U, Munhoz RP, Hutchison WD, Hodaie M, Fasano A, Chen R. Thalamocortical spectral and coherence characteristics for clinically effective and ineffective spinal cord stimulation in chronic pain: A case study. Clin Neurophysiol 2023; 146:18-20. [PMID: 36481499 DOI: 10.1016/j.clinph.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, Canada.
| | - Tarun Arora
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Neil M Drummond
- Krembil Research Institute, University Health Network, Toronto, Canada
| | | | - Utpal Saha
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Renato P Munhoz
- Krembil Research Institute, University Health Network, Toronto, Canada; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Mojgan Hodaie
- Krembil Research Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Canada; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Canada; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Takeuchi N. Pain control based on oscillatory brain activity using transcranial alternating current stimulation: An integrative review. Front Hum Neurosci 2023; 17:941979. [PMID: 36742359 PMCID: PMC9892942 DOI: 10.3389/fnhum.2023.941979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Developing effective tools and strategies to relieve chronic pain is a high-priority scientific and clinical goal. In particular, the brain regions related to pain processing have been investigated as potential targets to relieve pain by non-invasive brain stimulation (NIBS). In addition to elucidating the relationship between pain and oscillatory brain activity, transcranial alternating current stimulation (tACS), which can non-invasively entrain oscillatory brain activity and modulate oscillatory brain communication, has attracted scientific attention as a possible technique to control pain. This review focuses on the use of tACS to relieve pain through the manipulation of oscillatory brain activity and its potential clinical applications. Several studies have reported that tACS on a single brain reduces pain by normalizing abnormal oscillatory brain activity in patients with chronic pain. Interpersonal tACS approaches based on inter-brain synchrony to manipulate inter-brain communication may result in pain relief via prosocial effects. Pain is encoded by the spatiotemporal neural communication that represents the integration of cognitive, emotional-affective, and sensorimotor aspects of pain. Therefore, future studies should seek to identify the pathological oscillatory brain communication in chronic pain as a therapeutic target for tACS. In conclusion, tACS could be effective for re-establishing oscillatory brain activity and assisting social interaction, and it might help develop novel approaches for pain control.
Collapse
|
21
|
Fauchon C, Kim JA, El-Sayed R, Osborne NR, Rogachov A, Cheng JC, Hemington KS, Bosma RL, Dunkley BT, Oh J, Bhatia A, Inman RD, Davis KD. A Hidden Markov Model reveals magnetoencephalography spectral frequency-specific abnormalities of brain state power and phase-coupling in neuropathic pain. Commun Biol 2022; 5:1000. [PMID: 36131088 PMCID: PMC9492713 DOI: 10.1038/s42003-022-03967-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronal populations in the brain are engaged in a temporally coordinated manner at rest. Here we show that spontaneous transitions between large-scale resting-state networks are altered in chronic neuropathic pain. We applied an approach based on the Hidden Markov Model to magnetoencephalography data to describe how the brain moves from one activity state to another. This identified 12 fast transient (~80 ms) brain states including the sensorimotor, ascending nociceptive pathway, salience, visual, and default mode networks. Compared to healthy controls, we found that people with neuropathic pain exhibited abnormal alpha power in the right ascending nociceptive pathway state, but higher power and coherence in the sensorimotor network state in the beta band, and shorter time intervals between visits of the sensorimotor network, indicating more active time in this state. Conversely, the neuropathic pain group showed lower coherence and spent less time in the frontal attentional state. Therefore, this study reveals a temporal imbalance and dysregulation of spectral frequency-specific brain microstates in patients with neuropathic pain. These findings can potentially impact the development of a mechanism-based therapeutic approach by identifying brain targets to stimulate using neuromodulation to modify abnormal activity and to restore effective neuronal synchrony between brain states.
Collapse
Affiliation(s)
- Camille Fauchon
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rima El-Sayed
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Benjamin T Dunkley
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, M5T 1W7, Canada
| | - Jiwon Oh
- Div of Neurology, Dept of Medicine, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Anuj Bhatia
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Department of Anesthesia and Pain Medicine, Toronto Western Hospital, and University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Robert D Inman
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, M5T 1P5, Canada.
| |
Collapse
|
22
|
Heitmann H, Gil Ávila C, Nickel MM, Ta Dinh S, May ES, Tiemann L, Hohn VD, Tölle TR, Ploner M. Longitudinal resting-state electroencephalography in patients with chronic pain undergoing interdisciplinary multimodal pain therapy. Pain 2022; 163:e997-e1005. [PMID: 35050961 PMCID: PMC9393803 DOI: 10.1097/j.pain.0000000000002565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Chronic pain is a major healthcare issue posing a large burden on individuals and society. Converging lines of evidence indicate that chronic pain is associated with substantial changes of brain structure and function. However, it remains unclear which neuronal measures relate to changes of clinical parameters over time and could thus monitor chronic pain and treatment responses. We therefore performed a longitudinal study in which we assessed clinical characteristics and resting-state electroencephalography data of 41 patients with chronic pain before and 6 months after interdisciplinary multimodal pain therapy. We specifically assessed electroencephalography measures that have previously been shown to differ between patients with chronic pain and healthy people. These included the dominant peak frequency; the amplitudes of neuronal oscillations at theta, alpha, beta, and gamma frequencies; as well as graph theory-based measures of brain network organization. The results show that pain intensity, pain-related disability, and depression were significantly improved after interdisciplinary multimodal pain therapy. Bayesian hypothesis testing indicated that these clinical changes were not related to changes of the dominant peak frequency or amplitudes of oscillations at any frequency band. Clinical changes were, however, associated with an increase in global network efficiency at theta frequencies. Thus, changes in chronic pain might be reflected by global network changes in the theta band. These longitudinal insights further the understanding of the brain mechanisms of chronic pain. Beyond, they might help to identify biomarkers for the monitoring of chronic pain.
Collapse
Affiliation(s)
- Henrik Heitmann
- Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany
- TUM, School of Medicine, TUM-Neuroimaging Center, Munich, Germany
- TUM, School of Medicine, Center for Interdisciplinary Pain Medicine, Munich, Germany
| | - Cristina Gil Ávila
- Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany
- TUM, School of Medicine, TUM-Neuroimaging Center, Munich, Germany
| | - Moritz M. Nickel
- Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany
- TUM, School of Medicine, TUM-Neuroimaging Center, Munich, Germany
| | - Son Ta Dinh
- Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany
- TUM, School of Medicine, TUM-Neuroimaging Center, Munich, Germany
| | - Elisabeth S. May
- Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany
- TUM, School of Medicine, TUM-Neuroimaging Center, Munich, Germany
| | - Laura Tiemann
- Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany
- TUM, School of Medicine, TUM-Neuroimaging Center, Munich, Germany
| | - Vanessa D. Hohn
- Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany
- TUM, School of Medicine, TUM-Neuroimaging Center, Munich, Germany
| | - Thomas R. Tölle
- Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany
- TUM, School of Medicine, Center for Interdisciplinary Pain Medicine, Munich, Germany
| | - Markus Ploner
- Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany
- TUM, School of Medicine, TUM-Neuroimaging Center, Munich, Germany
- TUM, School of Medicine, Center for Interdisciplinary Pain Medicine, Munich, Germany
| |
Collapse
|
23
|
Exploring sex differences in alpha brain activity as a potential neuromarker associated with neuropathic pain. Pain 2022; 163:1291-1302. [PMID: 34711764 DOI: 10.1097/j.pain.0000000000002491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT Alpha oscillatory activity (8-13 Hz) is the dominant rhythm in the awake brain and is known to play an important role in pain states. Previous studies have identified alpha band slowing and increased power in the dynamic pain connectome (DPC) of people with chronic neuropathic pain. However, a link between alpha-band abnormalities and sex differences in brain organization in healthy individuals and those with chronic pain is not known. Here, we used resting-state magnetoencephalography to test the hypothesis that peak alpha frequency (PAF) abnormalities are general features across chronic central and peripheral conditions causing neuropathic pain but exhibit sex-specific differences in networks of the DPC (ascending nociceptive pathway [ANP], default mode network, salience network [SN], and subgenual anterior cingulate cortex). We found that neuropathic pain (N = 25 men and 25 women) was associated with increased PAF power in the DPC compared with 50 age- and sex-matched healthy controls, whereas slower PAF in nodes of the SN (temporoparietal junction) and the ANP (posterior insula) was associated with higher trait pain intensity. In the neuropathic pain group, women exhibited lower PAF power in the subgenual anterior cingulate cortex and faster PAF in the ANP and SN than men. The within-sex analyses indicated that women had neuropathic pain-related increased PAF power in the ANP, SN, and default mode network, whereas men with neuropathic pain had increased PAF power restricted to the ANP. These findings highlight neuropathic pain-related and sex-specific abnormalities in alpha oscillations across the DPC that could underlie aberrant neuronal communication in nociceptive processing and modulation.
Collapse
|
24
|
Anil K, Demain S, Burridge J, Simpson D, Taylor J, Cotter I, Vuckovic A. The importance of self-efficacy and negative affect for neurofeedback success for central neuropathic pain after a spinal cord injury. Sci Rep 2022; 12:10949. [PMID: 35768524 PMCID: PMC9243249 DOI: 10.1038/s41598-022-15213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
EEG-based neurofeedback uses mental behaviours (MB) to enable voluntary self-modulation of brain activity, and has potential to relieve central neuropathic pain (CNP) after a spinal cord injury (SCI). This study aimed to understand neurofeedback learning and the relationship between MB and neurofeedback success. Twenty-five non-CNP participants and ten CNP participants received neurofeedback training (reinforcing 9–12 Hz; suppressing 4–8 Hz and 20–30 Hz) on four visits. Participants were interviewed about the MB they used after each visit. Questionnaires examined the following factors: self-efficacy, locus of control, motivation, and workload of neurofeedback. MB were grouped into mental strategies (a goal-directed mental action) and affect (emotional experience during neurofeedback). Successful non-CNP participants significantly used more imagination-related MS and reported more negative affect compared to successful CNP participants. However, no mental strategy was clearly associated with neurofeedback success. There was some association between the lack of success and negative affect. Self-efficacy was moderately correlated with neurofeedback success (r = < 0.587, p = < 0.020), whereas locus of control, motivation, and workload had low, non-significant correlations (r < 0.300, p > 0.05). Affect may be more important than mental strategies for a successful neurofeedback performance. Self-efficacy was associated with neurofeedback success, suggesting that increasing confidence in one’s neurofeedback abilities may improve neurofeedback performance.
Collapse
Affiliation(s)
- Krithika Anil
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK. .,Faculty of Health and Human Sciences, University of Plymouth, Plymouth, UK.
| | - Sara Demain
- Faculty of Health and Human Sciences, University of Plymouth, Plymouth, UK.,School of Health Sciences, University of Southampton, Southampton, UK
| | - Jane Burridge
- School of Health Sciences, University of Southampton, Southampton, UK
| | - David Simpson
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.,Harris Manchester College, University of Oxford, Oxford, UK
| | - Imogen Cotter
- Department of Clinical Psychology, National Spinal Injuries Centre, Stoke Mandeville Hospital, Aylesbury, UK
| | - Aleksandra Vuckovic
- Department of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
25
|
Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage 2022; 258:119351. [PMID: 35659993 DOI: 10.1016/j.neuroimage.2022.119351] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022] Open
Abstract
Diagnosis and management of chronic neuropathic pain are challenging, leading to current efforts to characterize 'objective' biomarkers of pain using imaging or neurophysiological techniques, such as electroencephalography (EEG). A systematic literature review was conducted in PubMed-Medline and Web-of-Science until October 2021 to identify EEG biomarkers of chronic neuropathic pain in humans. The risk of bias was assessed by the Newcastle-Ottawa-Scale. Experimental, provoked, or chronic non-neuropathic pain studies were excluded. We identified 14 studies, in which resting-state EEG spectral analysis was compared between patients with pain related to a neurological disease and patients with the same disease but without pain or healthy controls. From these heterogeneous exploratory studies, some conclusions can be drawn, even if they must be weighted by the fact that confounding factors, such as medication and association with anxio-depressive disorders, are generally not taken into account. Overall, EEG signal power was increased in the θ band (4-7Hz) and possibly in the high-β band (20-30Hz), but decreased in the high-α-low-β band (10-20Hz) in the presence of ongoing neuropathic pain, while increased γ band oscillations were not evidenced, unlike in experimental pain. Consequently, the dominant peak frequency was decreased in the θ-α band and increased in the whole-β band in neuropathic pain patients. Disappointingly, pain intensity correlated with various EEG changes across studies, with no consistent trend. This review also discusses the location of regional pain-related EEG changes in the pain connectome, as the perspectives offered by advanced techniques of EEG signal analysis (source location, connectivity, or classification methods based on artificial intelligence). The biomarkers provided by resting-state EEG are of particular interest for optimizing the treatment of chronic neuropathic pain by neuromodulation techniques, such as transcranial alternating current stimulation or neurofeedback procedures.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Bardel
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France.
| |
Collapse
|
26
|
Zolezzi DM, Alonso-Valerdi LM, Ibarra-Zarate DI. Chronic neuropathic pain is more than a perception: Systems and methods for an integral characterization. Neurosci Biobehav Rev 2022; 136:104599. [PMID: 35271915 DOI: 10.1016/j.neubiorev.2022.104599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
The management of chronic neuropathic pain remains a challenge, because pain is subjective, and measuring it objectively is usually out of question. However, neuropathic pain is also a signal provided by maladaptive neuronal activity. Thus, the integral management of chronic neuropathic pain should not only rely on the subjective perception of the patient, but also on objective data that measures the evolution of neuronal activity. We will discuss different objective and subjective methods for the characterization of neuropathic pain. Additionally, the gaps and proposals for an integral management of chronic neuropathic pain will also be discussed. The current management that relies mostly on subjective measures has not been sufficient, therefore, this has hindered advances in pain management and clinical trials. If an integral characterization is achieved, clinical management and stratification for clinical trials could be based on both questionnaires and neuronal activity. Appropriate characterization may lead to an increased effectiveness for new therapies, and a better quality of life for neuropathic pain sufferers.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Nuevo León, México; Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
| | | | - David I Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Puebla 72453, Puebla, México
| |
Collapse
|
27
|
Alhajri N, Boudreau SA, Graven-Nielsen T. Angular gyrus connectivity at alpha and beta oscillations is reduced during tonic pain - Differential effect of eye state. Neuroimage Clin 2022; 33:102907. [PMID: 34915329 PMCID: PMC8683773 DOI: 10.1016/j.nicl.2021.102907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Tonic pain differentially altered AG connectivity during eyes closed and eyes open. Negative mood and/or sleep quality can influence pain-related connectivity. Eyes closed baseline may allow for a reliable detection of pain-related changes. Eyes-closed-eyes-open sequence is crucial for assessing pain-related connectivity.
The angular gyrus (AG) is a common hub in the pain networks. The role of the AG during pain perception, however, is still unclear. This crossover study examined the effect of tonic pain on resting state functional connectivity (rsFC) of the AG under eyes closed (EC) and eyes open (EO). It included two sessions (placebo/pain) separated by 24 hours. Pain was induced using topical capsaicin (or placebo as control) on the right forearm. Electroencephalographic rsFC assessed by Granger causality was acquired from 28 healthy participants (14 women) before (baseline) and 1-hour following the application of placebo/capsaicin. Subjects were randomly assigned and balanced to groups of recording sequence (EC-EO, EO-EC). Decreased rsFC at alpha-1 and beta, but not alpha-2, oscillations was found during pain compared to baseline during EC only. For alpha-1, EC-EO group showed a pain-induced decrease only among connections between the right AG and each of the posterior cingulate cortex (PCC, P = 0.002), medial prefrontal cortex (mPFC, P = 0.005), and the left AG (P = 0.023). For beta rsFC, the EC-EO group showed a bilateral decrease in rsFC spanning the connections between the right AG and mPFC (P = 0.015) and between the left AG and each of PCC (P = 0.004) and mPFC (P = 0.026). In contrast, the EO-EC group showed an increase in beta rsFC only among connections between the left AG and each of PCC (P = 0.012) and mPFC (P = 0.036). No significant change in the AG rsFC was found during EO. These results provide insight into the involvement of the AG in pain perception and reveal methodological considerations when assessing rsFC during EO and EC.
Collapse
Affiliation(s)
- Najah Alhajri
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Shellie Ann Boudreau
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
28
|
McLain NJ, Yani MS, Kutch JJ. Analytic consistency and neural correlates of peak alpha frequency in the study of pain. J Neurosci Methods 2022; 368:109460. [PMID: 34958820 PMCID: PMC9236562 DOI: 10.1016/j.jneumeth.2021.109460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several studies have found evidence of reduced resting-state peak alpha frequency (PAF) in populations with pain. However, the stability of PAF from different analytic pipelines used to study pain has not been determined and underlying neural correlates of PAF have not been validated in humans. NEW METHOD For the first time we compare analytic pipelines and the relationship of PAF to activity in the whole brain and thalamus, a hypothesized generator of PAF. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data and subsequently 64 channel resting-state electroencephalographic (EEG) from 47 healthy men, controls from an ongoing study of chronic prostatitis (a pain condition affecting men). We identified important variations in EEG processing for PAF from a review of 17 papers investigating the relationship between pain and PAF. We tested three progressively complex pre-processing pipelines and varied four postprocessing variables (epoch length, alpha band, calculation method, and region-of-interest [ROI]) that were inconsistent across the literature. RESULTS We found a single principal component, well-represented by the average PAF across all electrodes (grand-average PAF), explained > 95% of the variance across participants. We also found the grand-average PAF was highly correlated among the pre-processing pipelines and primarily impacted by calculation method and ROI. Across methods, interindividual differences in PAF were correlated with rs-fMRI-estimated activity in the thalamus, insula, cingulate, and sensory cortices. CONCLUSIONS These results suggest PAF is a relatively stable marker with respect to common pre and post-processing methods used in pain research and reflects interindividual differences in thalamic and salience network function.
Collapse
Affiliation(s)
| | | | - Jason J. Kutch
- Correspondence to: University of Southern California, 1540 E. Alcazar Street, CHP 155, Los Angeles, CA 90033, USA. (J.J. Kutch)
| |
Collapse
|
29
|
Simis M, Imamura M, Pacheco-Barrios K, Marduy A, de Melo PS, Mendes AJ, Teixeira PEP, Battistella L, Fregni F. EEG theta and beta bands as brain oscillations for different knee osteoarthritis phenotypes according to disease severity. Sci Rep 2022; 12:1480. [PMID: 35087082 PMCID: PMC8795380 DOI: 10.1038/s41598-022-04957-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
This study aims to investigate the multivariate relationship between different sociodemographic, clinical, and neurophysiological variables with resting-state, high-definition, EEG spectral power in subjects with chronic knee osteoarthritis (OA) pain. This was a cross-sectional study. Sociodemographic and clinical data were collected from 66 knee OA subjects. To identify associated factors, we performed independent univariate and multivariate regression models by frequency bands (delta, theta, alpha, beta, low-beta, and high-beta) and by pre-defined regions (frontal, central, and parietal). From adjusted multivariate models, we found that: (1) increased frontocentral high-beta power and reduced central theta activity are positively correlated with pain intensity (β = 0.012, 95% CI 0.004-0.020; and β = - 0.008; 95% CI 0.014 to - 0.003; respectively); (2) delta and alpha oscillations have a direct relationship with higher cortical inhibition; (3) diffuse increased power at low frequencies (delta and theta) are associated with poor cognition, aging, and depressive symptoms; and (4) higher alpha and beta power over sensorimotor areas seem to be a maladaptive compensatory mechanism to poor motor function and severe joint degeneration. Subjects with higher pain intensity and higher OA severity (likely subjects with maladaptive compensatory mechanisms to severe OA) have higher frontocentral beta power and lower theta activity. On the other hand, subjects with less OA severity and less pain have higher theta oscillations power. These associations showed the potential role of brain oscillations as a marker of pain intensity and clinical phenotypes in chronic knee OA patients. Besides, they suggest a potential compensatory mechanism of these two brain oscillators according to OA severity.
Collapse
Affiliation(s)
- Marcel Simis
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Imamura
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA
| | - Paulo S de Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA
| | - Augusto J Mendes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Paulo E P Teixeira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA
| | - Linamara Battistella
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA.
| |
Collapse
|
30
|
Wilhelm RA, Threadgill AH, Gable PA. Motor Preparation and Execution for Performance Difficulty: Centroparietal Beta Activation during the Effort Expenditure for Rewards Task as a Function of Motivation. Brain Sci 2021; 11:brainsci11111442. [PMID: 34827441 PMCID: PMC8615645 DOI: 10.3390/brainsci11111442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Debate exists as to the effects of anxiety in performance-based studies. However, no studies have examined the influence of motivation both in preparation of a motor movement and during movement performance. The present study measured beta activation in preparation for and during execution of the effort expenditure for rewards task (EEfRT), a button-pressing task consisting of easy and hard trials. Results indicated that motor preparation (i.e., reduced beta activation) was greater in preparation for hard trials than for easy trials. Additionally, motor preparation decreased (i.e., beta activation increased) over the course of hard trial execution. These results suggest that motor preparation is enhanced prior to more challenging tasks but that motor preparation declines as participants become closer to completing their goal in each challenging trial. These results provide insight into how beta activation facilitates effort expenditure for motor tasks varying in difficulty and motivation. The impact of these results on models of anxiety and performance is discussed.
Collapse
Affiliation(s)
- Ricardo A. Wilhelm
- Department of Psychology, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - A. Hunter Threadgill
- Departments of Biomedical Sciences and Psychology, Florida State University, Tallahassee, FL 32306, USA;
| | - Philip A. Gable
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| |
Collapse
|
31
|
Chen ZS. Decoding pain from brain activity. J Neural Eng 2021; 18. [PMID: 34608868 DOI: 10.1088/1741-2552/ac28d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Pain is a dynamic, complex and multidimensional experience. The identification of pain from brain activity as neural readout may effectively provide a neural code for pain, and further provide useful information for pain diagnosis and treatment. Advances in neuroimaging and large-scale electrophysiology have enabled us to examine neural activity with improved spatial and temporal resolution, providing opportunities to decode pain in humans and freely behaving animals. This topical review provides a systematical overview of state-of-the-art methods for decoding pain from brain signals, with special emphasis on electrophysiological and neuroimaging modalities. We show how pain decoding analyses can help pain diagnosis and discovery of neurobiomarkers for chronic pain. Finally, we discuss the challenges in the research field and point to several important future research directions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY 10016, United States of America
| |
Collapse
|
32
|
Pathan EMI, Inman RD. Pain in Axial Spondyloarthritis: Insights from Immunology and Brain Imaging. Rheum Dis Clin North Am 2021; 47:197-213. [PMID: 33781490 DOI: 10.1016/j.rdc.2020.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inflammatory back pain is characteristic of spondyloarthritis (SpA); however, this pain may not respond to treatment with NSAIDs or biologics. Pain is multifactorial and a combination of mechanical and inflammatory factors. A growing body of literature examines the impact of emotions on pain in SpA; many patients with this condition suffer from depression and fibromyalgia. Advanced imaging techniques can investigate the interplay of various brain networks in pain perception. Animal models have helped understand the interplay between the immune and nervous systems in pain generation and have highlighted differences in pain perception between the sexes.
Collapse
Affiliation(s)
- Ejaz M I Pathan
- Rheumatology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Road, High Heaton, Newcastle upon Tyne NE7 7DN, UK.
| | - Robert D Inman
- Spondylitis Program, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada; Schroeder Arthritis Institute, University Health Network; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Kim JA, Davis KD. Magnetoencephalography: physics, techniques, and applications in the basic and clinical neurosciences. J Neurophysiol 2021; 125:938-956. [PMID: 33567968 DOI: 10.1152/jn.00530.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnetoencephalography (MEG) is a technique used to measure the magnetic fields generated from neuronal activity in the brain. MEG has a high temporal resolution on the order of milliseconds and provides a more direct measure of brain activity when compared with hemodynamic-based neuroimaging methods such as magnetic resonance imaging and positron emission tomography. The current review focuses on basic features of MEG such as the instrumentation and the physics that are integral to the signals that can be measured, and the principles of source localization techniques, particularly the physics of beamforming and the techniques that are used to localize the signal of interest. In addition, we review several metrics that can be used to assess functional coupling in MEG and describe the advantages and disadvantages of each approach. Lastly, we discuss the current and future applications of MEG.
Collapse
Affiliation(s)
- Junseok A Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Sun G, Wen Z, Ok D, Doan L, Wang J, Chen ZS. Detecting acute pain signals from human EEG. J Neurosci Methods 2021; 347:108964. [PMID: 33010301 PMCID: PMC7744433 DOI: 10.1016/j.jneumeth.2020.108964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Advances in human neuroimaging has enabled us to study functional connections among various brain regions in pain states. Despite a wealth of studies at high anatomic resolution, the exact neural signals for the timing of pain remain little known. Identifying the onset of pain signals from distributed cortical circuits may reveal the temporal dynamics of pain responses and subsequently provide important feedback for closed-loop neuromodulation for pain. NEW METHOD Here we developed an unsupervised learning method for sequential detection of acute pain signals based on multichannel human EEG recordings. Following EEG source localization, we used a state-space model (SSM) to detect the onset of acute pain signals based on the localized regions of interest (ROIs). RESULTS We validated the SSM-based detection strategy using two human EEG datasets, including one public EEG recordings of 50 subjects. We found that the detection accuracy varied across tested subjects and detection methods. We also demonstrated the feasibility for cross-subject and cross-modality prediction of detecting the acute pain signals. COMPARISON WITH EXISTING METHODS In contrast to the batch supervised learning analysis based on a support vector machine (SVM) classifier, the unsupervised learning method requires fewer number of training trials in the online experiment, and shows comparable or improved performance than the supervised method. CONCLUSIONS Our unsupervised SSM-based method combined with EEG source localization showed robust performance in detecting the onset of acute pain signals.
Collapse
Affiliation(s)
- Guanghao Sun
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Zhenfu Wen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Lisa Doan
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States; The Neuroscience Institute, New York University School of Medicine, New York, NY, United States.
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States; The Neuroscience Institute, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
35
|
Abstract
Neural oscillations play an important role in the integration and segregation of brain regions that are important for brain functions, including pain. Disturbances in oscillatory activity are associated with several disease states, including chronic pain. Studies of neural oscillations related to pain have identified several functional bands, especially alpha, beta, and gamma bands, implicated in nociceptive processing. In this review, we introduce several properties of neural oscillations that are important to understand the role of brain oscillations in nociceptive processing. We also discuss the role of neural oscillations in the maintenance of efficient communication in the brain. Finally, we discuss the role of neural oscillations in healthy and chronic pain nociceptive processing. These data and concepts illustrate the key role of regional and interregional neural oscillations in nociceptive processing underlying acute and chronic pains.
Collapse
Affiliation(s)
- Junseok A. Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen D. Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|