1
|
Puig-Davi A, Franch-Marti C, Ruiz-Barrio I, Sampedro F, Perez-Perez J, Matias-Guiu JA, Cuetos F, Olmedo-Saura G, Perez-Carasol L, Horta-Barba A, Aracil-Bolaños I, Pagonabarraga J, Kulisevsky J, Martinez-Horta S. Early Language Impairment as an Integral Part of the Cognitive Phenotype in Huntington's Disease. Ann Clin Transl Neurol 2025. [PMID: 40244831 DOI: 10.1002/acn3.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVE Huntington's disease (HD) speech/language disorders have typically been attributed to motor and executive impairment due to striatal dysfunction. In-depth study of linguistic skills and the role of extrastriatal structures in HD is scarce. This study aimed to explore the profile of language compromise in HD and identify the structural neuroimaging correlates. METHODS Language and structural correlates were assessed using the Mini Linguistic State Examination (MLSE) in 81 participants (20 HD-ISS 0-1, 40 HD-ISS 2-3 and 21 controls). Clinical and global cognition measures were also obtained. Imaging data included computed gray matter volume (GMV) and cortical thickness (CTh) values extracted from a general linear model with the MLSE. Correlation analyses were performed with the language components of the MLSE. Multivariate regression analyses were used to explore the predictive ability of the language components on GMV and CTh loss. RESULTS HD individuals showed impaired MLSE performance (84.5 ± 12.8), particularly in syntax, motor speech, and to a lesser extent, semantics and phonology. Significant associations were found between linguistic performance and the structural integrity of nodes within the temporo-parietal, fronto-parietal, and fronto-striatal lexical-semantic and syntactic networks. Correlation analyses linked motor speech and syntax with predominantly left fronto-striatal GMV and CTh clusters, while semantics had a bilateral fronto-parietal topography. Multivariate regression analyses showed language domains as independent contributing factors of GMV and CTh loss in classical language-related regions. INTERPRETATION Language impairment is an integral part of the HD cognitive phenotype, with severity associated with structural disintegration in extensive cortico-subcortical territories involved in language production and processing.
Collapse
Affiliation(s)
- Arnau Puig-Davi
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Carla Franch-Marti
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Iñigo Ruiz-Barrio
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesus Perez-Perez
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Institute for Health Research (IdiSSC). Universidad Complutense, Madrid, Spain
| | | | - Gonzalo Olmedo-Saura
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Laura Perez-Carasol
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jaime Kulisevsky
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Saul Martinez-Horta
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
2
|
Moreu-Valls A, Puig-Davi A, Martinez-Horta S, Kulisevsky G, Sampedro F, Perez-Perez J, Horta-Barba A, Olmedo-Saura G, Pagonabarraga J, Kulisevsky J. A randomized clinical trial to evaluate the efficacy of cognitive rehabilitation and music therapy in mild cognitive impairment in Huntington's disease. J Neurol 2025; 272:202. [PMID: 39934473 DOI: 10.1007/s00415-025-12927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Cognitive impairment is a core feature of Huntington's disease (HD), yet no disease-modifying or symptomatic interventions have demonstrated efficacy in addressing these deficits. Non-pharmacological interventions, particularly cognitive training (CT), are promising options for maintaining neural plasticity, enhancing cognition, and improving emotional well-being. METHODS This 24-week, single-center, randomized, single-blind study evaluated the safety and efficacy of two cognitive rehabilitation strategies in early-to-middle-stage HD patients. Participants were randomized into a computerized cognitive training (CT; n = 13) intervention or a music therapy (MT; n = 16) intervention. A standard of care (SoC; n = 15) group with no active intervention was also involved. Weekly 45-min sessions were conducted. Baseline and endpoint assessments included measures of global cognition, functional, motor, and neuropsychiatric assessments, along with structural and functional neuroimaging. RESULTS Both CT and MT groups demonstrated significant improvements in primary and secondary cognitive endpoints, including global cognition an composite measures of disease severity. Regression analysis identified longitudinal cognitive score changes as independent predictors of the rate of atrophy in the caudate, putamen, and inferior frontal gyrus. Functional connectivity analysis showed distinct intervention-related effects: CT group exhibited increased connectivity between the central executive and sensorymotor networks, while MT group reduced aberrant connectivity between the central executive and the default-mode network. CONCLUSION This is the first randomized-controlled trial to evaluate two cognitive rehabilitation strategies in HD using multimodal neuroimaging. Both interventions were effective in improving cognition and modulating structural and functional brain changes in regions critical to HD. Trial Registration ClinicalTrials.gov (ID: NCT05769972).
Collapse
Affiliation(s)
- Andrea Moreu-Valls
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gabriel Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesus Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gonzalo Olmedo-Saura
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain.
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain.
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Martinez-Horta S, Perez-Perez J, Kulisevsky J. Koro-like syndrome in Huntington's disease. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2025; 18:58-59. [PMID: 37852879 DOI: 10.1016/j.rpsm.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 10/20/2023]
Affiliation(s)
- Saul Martinez-Horta
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu Sant Pau, Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain; Autonomous University of Barcelona, Department of Medicine, Spain; Centro de Investigación Biomédica en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Jesus Perez-Perez
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu Sant Pau, Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain; Autonomous University of Barcelona, Department of Medicine, Spain; Centro de Investigación Biomédica en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu Sant Pau, Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain; Autonomous University of Barcelona, Department of Medicine, Spain; Centro de Investigación Biomédica en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
4
|
Mukherjee U, Sehar U, Brownell M, Reddy PH. Sleep deprivation in dementia comorbidities: focus on cardiovascular disease, diabetes, anxiety/depression and thyroid disorders. Aging (Albany NY) 2024; 16:13409-13429. [PMID: 39571101 PMCID: PMC11719105 DOI: 10.18632/aging.206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024]
Abstract
Sleep disturbances are a significant concern in individuals with dementia, affecting their overall health and quality of life, as well as that of their family members and caregivers. Dementia, a progressive neurodegenerative condition marked by cognitive decline, often coexists with various comorbidities such as cardiovascular disease, diabetes, obesity, anxiety/depression and thyroid disorders. These comorbidities can further impair cognitive function and complicate the clinical management of dementia, making it essential to address them in a holistic manner. This review critically examines the complex interplay between dementia and its associated comorbidities, with a special focus on the prevalence and impact of sleep disturbances. Sleep problems in dementia patients are not only common but also contribute to a faster progression of cognitive decline and increased burden on caregivers. The article explores the mechanisms by which these comorbidities, including cardiovascular conditions and metabolic disorders, exacerbate sleep disturbances and cognitive impairment in dementia patients. By synthesizing recent research findings, the review highlights the importance of identifying and managing modifiable risk factors for sleep disturbances in dementia. Integrated treatment approaches that address both cognitive and sleep-related challenges are essential for improving patient outcomes. The review also underscores the need for further research to develop targeted interventions that can effectively manage sleep disturbances in dementia, thereby enhancing the quality of life for both patients and caregivers. Understanding the relationship between dementia, comorbidities, and sleep disturbances is crucial for the development of comprehensive care strategies. This review aims to inform healthcare professionals about the current state of knowledge and encourage the implementation of evidence-based practices in dementia care.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Malcolm Brownell
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Nutritional Sciences, College Human Sciences, Texas Tech University, Lubbock, TX 79415, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
5
|
Horne K, Carmichael A, Mercieca EC, Glikmann-Johnston Y, Stout JC, Irish M. Delineating the neural substrates of autobiographical memory impairment in Huntington's disease. Eur J Neurosci 2024; 60:6509-6524. [PMID: 39419578 DOI: 10.1111/ejn.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Emerging evidence suggests that autobiographical memory (ABM) is altered in Huntington's disease (HD). While these impairments are typically attributed to frontostriatal dysfunction, the neural substrates of ABM impairment in HD remain unexplored. To this end, we assessed ABM in 30 participants with genetically confirmed HD (18 premanifest, 12 manifest) and 24 age-matched healthy controls. Participants completed the Autobiographical Interview to assess free and probed ABM recall and underwent structural brain imaging. Whole-brain voxel-based morphometry (VBM) was used to explore voxel-wise associations between ABM performance and grey matter intensity (False Discovery Rate corrected at q = 0.05). Relative to controls, HD participants displayed significantly less detailed ABM retrieval across free and probed recall conditions, irrespective of disease stage. Recall performance did not differ significantly between manifest and premanifest HD groups. VBM analyses indicated that poorer ABM performance was associated with atrophy of a distributed cortico-subcortical network. Key regions implicated irrespective of ABM condition included the bilateral occipital cortex, left precuneus, right parahippocampal gyrus and right caudate nucleus. In addition, probed ABM recall was associated with the superior and inferior frontal gyri, frontal pole, right hippocampus, nucleus accumbens, paracingulate gyrus and cerebellum. Overall, our findings indicate that ABM impairments in HD reflect the progressive degeneration of a distributed cortico-subcortical brain network comprising medial temporal, frontal, striatal and posterior parietal cortices. Our findings advance our understanding of the neurocognitive profile of HD, providing an important foundation for future interventions to support memory function in this population.
Collapse
Affiliation(s)
- Kristina Horne
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Anna Carmichael
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Emily-Clare Mercieca
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Yifat Glikmann-Johnston
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Julie C Stout
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Muireann Irish
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Wang X, Li Y, Li B, Shang H, Yang J. Gray matter alterations in Huntington's disease: A meta-analysis of VBM neuroimaging studies. J Neurosci Res 2024; 102:e25366. [PMID: 38953592 DOI: 10.1002/jnr.25366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Increasing neuroimaging studies have attempted to identify biomarkers of Huntington's disease (HD) progression. Here, we conducted voxel-based meta-analyses of voxel-based morphometry (VBM) studies on HD to investigate the evolution of gray matter volume (GMV) alterations and explore the effects of genetic and clinical features on GMV changes. A systematic review was performed to identify the relevant studies. Meta-analyses of whole-brain VBM studies were performed to assess the regional GMV changes in all HD mutation carriers, in presymptomatic HD (pre-HD), and in symptomatic HD (sym-HD). A quantitative comparison was performed between pre-HD and sym-HD. Meta-regression analyses were used to explore the effects of genetic and clinical features on GMV changes. Twenty-eight studies were included, comparing a total of 1811 HD mutation carriers [including 1150 pre-HD and 560 sym-HD] and 969 healthy controls (HCs). Pre-HD showed decreased GMV in the bilateral caudate nuclei, putamen, insula, anterior cingulate/paracingulate gyri, middle temporal gyri, and left dorsolateral superior frontal gyrus compared with HCs. Compared with pre-HD, GMV decrease in sym-HD extended to the bilateral median cingulate/paracingulate gyri, Rolandic operculum and middle occipital gyri, left amygdala, and superior temporal gyrus. Meta-regression analyses found that age, mean lengths of CAG repeats, and disease burden were negatively associated with GMV atrophy of the bilateral caudate and right insula in all HD mutation carriers. This meta-analysis revealed the pattern of GMV changes from pre-HD to sym-HD, prompting the understanding of HD progression. The pattern of GMV changes may be biomarkers for disease progression in HD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuming Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Boyi Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Martinez‐Horta S, Perez‐Perez J, Perez‐Gonzalez R, Sampedro F, Horta‐Barba A, Campolongo A, Rivas‐Asensio E, Puig‐Davi A, Pagonabarraga J, Kulisevsky J. Cognitive phenotype and neurodegeneration associated with Tau in Huntington's disease. Ann Clin Transl Neurol 2024; 11:1160-1171. [PMID: 38544341 PMCID: PMC11093246 DOI: 10.1002/acn3.52031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 05/15/2024] Open
Abstract
OBJECTIVE The clinical phenotype of Huntington's disease (HD) can be very heterogeneous between patients, even when they share equivalent CAG repeat length, age, or disease burden. This heterogeneity is especially evident in terms of the cognitive profile and related brain changes. To shed light on the mechanisms participating in this heterogeneity, the present study delves into the association between Tau pathology and more severe cognitive phenotypes and brain damage in HD. METHODS We used a comprehensive neuropsychological examination to characterize the cognitive phenotype of a sample of 30 participants with early-to-middle HD for which we also obtained 3 T structural magnetic resonance image (MRI) and cerebrospinal fluid (CSF). We quantified CSF levels of neurofilament light chain (NfL), total Tau (tTau), and phosphorylated Tau-231 (pTau-231). Thanks to the cognitive characterization carried out, we subsequently explored the relationship between different levels of biomarkers, the cognitive phenotype, and brain integrity. RESULTS The results confirmed that more severe forms of cognitive deterioration in HD extend beyond executive dysfunction and affect processes with clear posterior-cortical dependence. This phenotype was in turn associated with higher CSF levels of tTau and pTau-231 and to a more pronounced pattern of posterior-cortical atrophy in specific brain regions closely linked to the cognitive processes affected by Tau. INTERPRETATION Our findings reinforce the association between Tau pathology, cognition, and neurodegeneration in HD, emphasizing the need to explore the role of Tau in the cognitive heterogeneity of the disease.
Collapse
Affiliation(s)
- Saul Martinez‐Horta
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Jesús Perez‐Perez
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Rocío Perez‐Gonzalez
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) and Instituto de Neurociencias UMH‐CSICAlicanteSpain
| | - Frederic Sampedro
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Neuroradiology unit, Radiology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Andrea Horta‐Barba
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- European Huntington's Disease Network (EHDN)
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
| | - Elisa Rivas‐Asensio
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Arnau Puig‐Davi
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| |
Collapse
|
8
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
9
|
Mondal S, Prieto S, Rangasamy SB, Dutta D, Pahan K. Nebulization of low-dose aspirin ameliorates Huntington's pathology in N171-82Q transgenic mice. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:47-59. [PMID: 38532785 PMCID: PMC10961486 DOI: 10.1515/nipt-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 03/28/2024]
Abstract
Huntington Disease (HD), a devastating hereditary neurodegenerative disorder, is caused by expanded CAG trinucleotide repeats in the huntingtin gene (Htt) on chromosome 4. Currently, there is no effective therapy for HD. Although aspirin, acetylsalicylic acid, is one of the most widely-used analgesics throughout the world, it has some side effects. Even at low doses, oral aspirin can cause gastrointestinal symptoms, such as heartburn, upset stomach, or pain. Therefore, to bypass the direct exposure of aspirin to stomach, here, we described a new mode of use of aspirin and demonstrated that nebulization of low-dose of aspirin (10 μg/mouse/d=0.4 mg/kg body wt/d roughly equivalent to 28 mg/adult human/d) alleviated HD pathology in N171-82Q transgenic mice. Our immunohistochemical and western blot studies showed that daily aspirin nebulization significantly reduced glial activation, inflammation and huntingtin pathology in striatum and cortex of N171-82Q mice. Aspirin nebulization also protected transgenic mice from brain volume shrinkage and improved general motor behaviors. Collectively, these results highlight that nebulization of low-dose aspirin may have therapeutic potential in the treatment of HD.
Collapse
Affiliation(s)
- Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Shelby Prieto
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Suresh B. Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| |
Collapse
|
10
|
Horta-Barba A, Martinez-Horta S, Pérez-Pérez J, Puig-Davi A, de Lucia N, de Michele G, Salvatore E, Kehrer S, Priller J, Migliore S, Squitieri F, Castaldo A, Mariotti C, Mañanes V, Lopez-Sendon JL, Rodriguez N, Martinez-Descals A, Júlio F, Januário C, Delussi M, de Tommaso M, Noguera S, Ruiz-Idiago J, Sitek EJ, Wallner R, Nuzzi A, Pagonabarraga J, Kulisevsky J. Measuring cognitive impairment and monitoring cognitive decline in Huntington's disease: a comparison of assessment instruments. J Neurol 2023; 270:5408-5417. [PMID: 37462754 PMCID: PMC10576674 DOI: 10.1007/s00415-023-11804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Progressive cognitive decline is an inevitable feature of Huntington's disease (HD) but specific criteria and instruments are still insufficiently developed to reliably classify patients into categories of cognitive severity and to monitor the progression of cognitive impairment. METHODS We collected data from a cohort of 180 positive gene-carriers: 33 with premanifest HD and 147 with manifest HD. Using a specifically developed gold-standard for cognitive status we classified participants into those with normal cognition, those with mild cognitive impairment, and those with dementia. We administered the Parkinson's Disease-Cognitive Rating Scale (PD-CRS), the MMSE and the UHDRS cogscore at baseline, and at 6-month and 12-month follow-up visits. Cutoff scores discriminating between the three cognitive categories were calculated for each instrument. For each cognitive group and instrument we addressed cognitive progression, sensitivity to change, and the minimally clinical important difference corresponding to conversion from one category to another. RESULTS The PD-CRS cutoff scores for MCI and dementia showed excellent sensitivity and specificity ratios that were not achieved with the other instruments. Throughout follow-up, in all cognitive groups, PD-CRS captured the rate of conversion from one cognitive category to another and also the different patterns in terms of cognitive trajectories. CONCLUSION The PD-CRS is a valid and reliable instrument to capture MCI and dementia syndromes in HD. It captures the different trajectories of cognitive progression as a function of cognitive status and shows sensitivity to change in MCI and dementia.
Collapse
Affiliation(s)
- Andrea Horta-Barba
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Saul Martinez-Horta
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jesús Pérez-Pérez
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Natascia de Lucia
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Giuseppe de Michele
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Elena Salvatore
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Stefanie Kehrer
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neuropsychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Josef Priller
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neuropsychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Anna Castaldo
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Mañanes
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Hospital Universitario Ramon Y Cajal, Madrid, Spain
| | - Jose Luis Lopez-Sendon
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Hospital Universitario Ramon Y Cajal, Madrid, Spain
| | - Noelia Rodriguez
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Asunción Martinez-Descals
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Filipa Júlio
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, Coimbra, Portugal
- Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Cristina Januário
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, Coimbra, Portugal
- Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Marianna Delussi
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Applied Neurophysiology and Pain Unit, Apulian Center for Huntington's Disease SMBNOS Department, "Aldo Moro" University, Bari, Italy
| | - Marina de Tommaso
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Applied Neurophysiology and Pain Unit, Apulian Center for Huntington's Disease SMBNOS Department, "Aldo Moro" University, Bari, Italy
| | - Sandra Noguera
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Hospital Mare de Deu de La Mercè, Barcelona, Spain
| | - Jesús Ruiz-Idiago
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Hospital Mare de Deu de La Mercè, Barcelona, Spain
| | - Emilia J Sitek
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurological and Psychiatric Nursing, Faculty of Health Science Medical, University of Gdansk, Gdańsk, Poland
- Department of Neurology, St. Adalbert Hospital, Copernicus, Gdańsk, Poland
| | - Renata Wallner
- Department of Psychiatry, Medical University of Wroclaw, Wroclaw, Poland
| | - Angela Nuzzi
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Javier Pagonabarraga
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jaime Kulisevsky
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain.
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain.
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- European Huntington's Disease Network (EHDN), Ulm, Germany.
| |
Collapse
|
11
|
Browning S, Holland S, Wellwood I, Bilney B. Spatiotemporal Gait Parameters in Adults With Premanifest and Manifest Huntington's Disease: A Systematic Review. J Mov Disord 2023; 16:307-320. [PMID: 37558234 PMCID: PMC10548085 DOI: 10.14802/jmd.23111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/15/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE To systematically review and critically evaluate literature on spatiotemporal gait deviations in individuals with premanifest and manifest Huntington's Disease (HD) in comparison with healthy cohorts. METHODS We conducted a systematic review, guided by the Joanna Briggs Institute's Manual for Evidence Synthesis and pre-registered with the International Prospective Register of Systematic Reviews. Eight electronic databases were searched. Studies comparing spatiotemporal footstep parameters in adults with premanifest and manifest HD to healthy controls were screened, included and critically appraised by independent reviewers. Data on spatiotemporal gait changes and variability were extracted and synthesised. Meta-analysis was performed on gait speed, cadence, stride length and stride length variability measures. RESULTS We screened 2,721 studies, identified 1,245 studies and included 25 studies (total 1,088 participants). Sample sizes ranged from 14 to 96. Overall, the quality of the studies was assessed as good, but reporting of confounding factors was often unclear. Meta-analysis found spatiotemporal gait deviations in participants with HD compared to healthy controls, commencing in the premanifest stage. Individuals with premanifest HD walk significantly slower (-0.17 m/s; 95% confidence interval [CI] [-0.22, -0.13]), with reduced cadence (-6.63 steps/min; 95% CI [-10.62, -2.65]) and stride length (-0.09 m; 95% CI [-0.13, -0.05]). Stride length variability was also increased in premanifest cohorts by 2.18% (95% CI [0.69, 3.68]), with these changes exacerbated in participants with manifest disease. CONCLUSION Findings suggest individuals with premanifest and manifest HD display significant spatiotemporal footstep deviations. Clinicians could monitor individuals in the premanifest stage of disease for gait changes to identify the onset of Huntington's symptoms.
Collapse
Affiliation(s)
- Sasha Browning
- Faculty of Health Sciences, Australian Catholic University, Ballarat, Australia
| | - Stephanie Holland
- Faculty of Health Sciences, Australian Catholic University, Ballarat, Australia
| | - Ian Wellwood
- Faculty of Health Sciences, Australian Catholic University, Ballarat, Australia
| | - Belinda Bilney
- Faculty of Health Sciences, Australian Catholic University, Ballarat, Australia
| |
Collapse
|
12
|
Lunven M, Hernandez Dominguez K, Youssov K, Hamet Bagnou J, Fliss R, Vandendriessche H, Bapst B, Morgado G, Remy P, Schubert R, Reilmann R, Busse M, Craufurd D, Massart R, Rosser A, Bachoud-Lévi AC. A new approach to digitized cognitive monitoring: validity of the SelfCog in Huntington's disease. Brain Commun 2023; 5:fcad043. [PMID: 36938527 PMCID: PMC10018460 DOI: 10.1093/braincomms/fcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Cognitive deficits represent a hallmark of neurodegenerative diseases, but evaluating their progression is complex. Most current evaluations involve lengthy paper-and-pencil tasks which are subject to learning effects dependent on the mode of response (motor or verbal), the countries' language or the examiners. To address these limitations, we hypothesized that applying neuroscience principles may offer a fruitful alternative. We thus developed the SelfCog, a digitized battery that tests motor, executive, visuospatial, language and memory functions in 15 min. All cognitive functions are tested according to the same paradigm, and a randomization algorithm provides a new test at each assessment with a constant level of difficulty. Here, we assessed its validity, reliability and sensitivity to detect decline in early-stage Huntington's disease in a prospective and international multilingual study (France, the UK and Germany). Fifty-one out of 85 participants with Huntington's disease and 40 of 52 healthy controls included at baseline were followed up for 1 year. Assessments included a comprehensive clinical assessment battery including currently standard cognitive assessments alongside the SelfCog. We estimated associations between each of the clinical assessments and SelfCog using Spearman's correlation and proneness to retest effects and sensitivity to decline through linear mixed models. Longitudinal effect sizes were estimated for each cognitive score. Voxel-based morphometry and tract-based spatial statistics analyses were conducted to assess the consistency between performance on the SelfCog and MRI 3D-T1 and diffusion-weighted imaging in a subgroup that underwent MRI at baseline and after 12 months. The SelfCog detected the decline of patients with Huntington's disease in a 1-year follow-up period with satisfactory psychometric properties. Huntington's disease patients are correctly differentiated from controls. The SelfCog showed larger effect sizes than the classical cognitive assessments. Its scores were associated with grey and white matter damage at baseline and over 1 year. Given its good performance in longitudinal analyses of the Huntington's disease cohort, it should likely become a very useful tool for measuring cognition in Huntington's disease in the future. It highlights the value of moving the field along the neuroscience principles and eventually applying them to the evaluation of all neurodegenerative diseases.
Collapse
Affiliation(s)
- Marine Lunven
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Karen Hernandez Dominguez
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Katia Youssov
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Jennifer Hamet Bagnou
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Rafika Fliss
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Henri Vandendriessche
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Blanche Bapst
- Department of Neuroradiology, AP-HP, Henri Mondor University Hospital, 94010 Créteil, France
- Faculty of Medicine, Université Paris Est Créteil, F-94010 Créteil, France
| | - Graça Morgado
- Inserm, Centre d’Investigation Clinique 1430, APHP, Hôpital Henri Mondor, 94010 Créteil, France
| | - Philippe Remy
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Robin Schubert
- George Huntington Institute, Technology-Park, 48149 Muenster, Germany
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Ralf Reilmann
- George Huntington Institute, Technology-Park, 48149 Muenster, Germany
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Clinical Radiology, University of Muenster, 48149 Muenster, Germany
| | - Monica Busse
- Centre for Trials Research, Cardiff University, Cardiff CF14 4EP, UK
- Wales Brain Research And Intracranial Neurotherapeutics (BRAIN) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
| | - David Craufurd
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Renaud Massart
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Anne Rosser
- Wales Brain Research And Intracranial Neurotherapeutics (BRAIN) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
- Cardiff School of Medicine, Neuroscience and Mental Health Institute, Cardiff CF24 4HQ, UK
- School of Biosciences, Cardiff University Brain Repair Group, Cardiff CF10 3AX, UK
| | - Anne-Catherine Bachoud-Lévi
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| |
Collapse
|
13
|
Horta-Barba A, Martinez-Horta S, Sampedro F, Pérez-Pérez J, Pagonabarraga J, Kulisevsky J. Structural and metabolic brain correlates of arithmetic word-problem solving in Huntington's disease. J Neurosci Res 2023; 101:990-999. [PMID: 36807154 DOI: 10.1002/jnr.25174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Individuals with pre-manifest and early symptomatic Huntington's disease (HD) have shown deficits in solving arithmetic word-problems. However, the neural correlates of these deficits in HD are poorly understood. We explored the structural (gray-matter volume; GMV) and metabolic (18F-FDG PET; SUVr) brain correlates of arithmetic performance using the recently developed HD-word problem arithmetic task (HD-WPA) in seventeen preHD and sixteen HD individuals. Symptomatic participants showed significantly lower scores in the HD-WPA than preHD participants. Lower performance in the HD-WPA was associated with reduced GMV in subcortical, medial frontal, and several posterior-cortical clusters in HD participants. No significant GMV loss was found in preHD participants. 18F-FDG data revealed a widespread pattern of hypometabolism in association with lower arithmetic performance in all participants. In preHD participants, this pattern was restricted to the ventrolateral and orbital prefrontal cortex, the insula, and the precentral gyrus. In HD participants, the pattern extended to several parietal-temporal regions. Word-problem solving arithmetic deficits in HD is subserved by a pattern of asynchronous metabolic and structural compromise across the cerebral cortex as a function of disease stage. In preHD individuals, arithmetic deficits were associated with prefrontal alterations, whereas in symptomatic HD patients, more severe arithmetic deficits are associated with the compromise of several frontal-subcortical and temporo-parietal regions. Our results support the hypothesis that cognitive deficits in HD are not exclusively dominated by frontal-striatal dysfunctions but also involve fronto-temporal and parieto-occipital damage.
Collapse
Affiliation(s)
- Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| |
Collapse
|
14
|
Junca E, Pino M, Santamaría-García H, Baez S. Brain, cognitive, and physical disability correlates of decreased quality of life in patients with Huntington's disease. Qual Life Res 2023; 32:171-182. [PMID: 35978062 PMCID: PMC9829572 DOI: 10.1007/s11136-022-03220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE Following a case-control design, as a primary objective, this study aimed to explore the relationship between quality of life (QoL) scores and gray matter (GM) volumes in patients with Huntington's disease (HD). As a secondary objective, we assessed the relationship between QoL scores and other important behavioral, clinical and demographical variables in patients with HD and HD patients' caregivers. METHODS We recruited 75 participants (25 HD patients, 25 caregivers, and 25 controls) and assessed their QoL using the World Health Organization Quality of Life scale-Brief Version (WHOQOL-BREF). Participants were also assessed with general cognitive functioning tests and clinical scales. In addition, we acquired MRI scans from all participants. RESULTS Our results showed that patients exhibited significantly lower scores in all four QoL domains (physical health, psychological wellbeing, social relationships, and relationship with the environment) compared to caregivers and controls. Caregivers showed lower scores than controls in the physical health and the environmental domains. In HD patients, lower scores in QoL domains were associated with lower GM volumes, mainly in the precuneus and the cerebellum. Moreover, in HD patients, physical disability and GM volume reduction were significant predictors of QoL decrease in all domains. For caregivers, years of formal education was the most important predictor of QoL. CONCLUSIONS HD patients exhibit greater GM volume loss as well as lower QoL scores compared to caregivers and controls. However, caregivers displayed lower scores in QoL scores than controls, with years of education being a significant predictor. Our results reflect a first attempt to investigate the relationships among QoL, GM volumes, and other important factors in an HD and HD caregiver sample.
Collapse
Affiliation(s)
| | - Mariana Pino
- Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Hernando Santamaría-García
- Pontificia Universidad Javeriana. PhD program of Neuroscience, Bogotá, Colombia
- Centro de Memoria y Cognición intellectus, Bogotá, Colombia
| | | |
Collapse
|
15
|
Plasma TDP-43 Reflects Cortical Neurodegeneration and Correlates with Neuropsychiatric Symptoms in Huntington's Disease. Clin Neuroradiol 2022; 32:1077-1085. [PMID: 35238950 DOI: 10.1007/s00062-022-01150-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Huntington's disease (HD) is a monogenic neurodegenerative disease with no effective treatment currently available. The pathological hallmark of HD is the aggregation of mutant huntingtin in the medium spiny neurons of the striatum, leading to severe subcortical atrophy. Cortical degeneration also occurs in HD from its very early stages, although its biological origin is poorly understood. Among the possible pathological mechanisms that could promote cortical damage in HD, the in vivo study of TDP-43 pathology remains to be explored, which was the main objective of this work. METHODS We investigated the clinical and structural brain correlates of plasma TDP-43 levels in a sample of 36 HD patients. Neuroimaging alterations were assessed both at the macrostructural (cortical thickness) and microstructural (intracortical diffusivity) levels. Importantly, we controlled for mutant huntingtin and tau biomarkers in order to assess the independent role of TDP-43 in HD neurodegeneration. RESULTS Plasma TDP-43 levels in HD specifically correlated with the presence and severity of apathy (p = 0.003). The TDP-43 levels also reflected cortical thinning and microstructural degeneration, especially in frontal and anterior-temporal regions (p < 0.05 corrected). These TDP-43-related brain alterations correlated, in turn, with the severity of cognitive, motor and behavioral symptoms. CONCLUSION Our results suggest that the presence of TDP-43 pathology in HD has an independent contribution to the severity of neuropsychiatric symptoms and frontotemporal degeneration. These findings point out the importance of TDP-43 as an additional pathological process to be taken into consideration in this devastating disorder.
Collapse
|
16
|
Blount GS, Coursey L, Kocerha J. MicroRNA Networks in Cognition and Dementia. Cells 2022; 11:cells11121882. [PMID: 35741010 PMCID: PMC9221254 DOI: 10.3390/cells11121882] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
The change from viewing noncoding RNA as “junk” in the genome to seeing it as a critical epigenetic regulator in almost every human condition or disease has forced a paradigm shift in biomedical and clinical research. Small and long noncoding RNA transcripts are now routinely evaluated as putative diagnostic or therapeutic agents. A prominent role for noncoding microRNAs in the central nervous system has uncovered promising new clinical candidates for dementia-related disorders, treatments for which currently remain elusive even as the percentage of diagnosed patients increases significantly. Cognitive decline is a core neurodegenerative process in Alzheimer’s Disease, Frontotemporal Dementia, Lewy body dementia, vascular dementia, Huntington’s Disease, Creutzfeldt–Jakob disease, and a significant portion of Parkinson’s Disease patients. This review will discuss the microRNA-associated networks which influence these pathologies, including inflammatory and viral-mediated pathways (such as the novel SARS-CoV-2 virus implicated in COVID-19), and their current status in clinical trials.
Collapse
|
17
|
Ramirez-Garcia G, Galvez V, Diaz R, Campos-Romo A, Fernandez-Ruiz J. Montreal Cognitive Assessment (MoCA) performance in Huntington's disease patients correlates with cortical and caudate atrophy. PeerJ 2022; 10:e12917. [PMID: 35402100 PMCID: PMC8988933 DOI: 10.7717/peerj.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Huntington's Disease (HD) is an autosomal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Cognitive impairment develops gradually in HD patients, progressing later into a severe cognitive dysfunction. The Montreal Cognitive Assessment (MoCA) is a brief screening test commonly employed to detect mild cognitive impairment, which has also been useful to assess cognitive decline in HD patients. However, the relationship between MoCA performance and brain structural integrity in HD patients remains unclear. Therefore, to explore this relationship we analyzed if cortical thinning and subcortical nuclei volume differences correlated with HD patients' MoCA performance. Twenty-two HD patients and twenty-two healthy subjects participated in this study. T1-weighted images were acquired to analyze cortical thickness and subcortical nuclei volumes. Group comparison analysis showed a significantly lower score in the MoCA global performance of HD patients. Also, the MoCA total score correlated with cortical thinning of fronto-parietal and temporo-occipital cortices, as well as with bilateral caudate volume differences in HD patients. These results provide new insights into the effectiveness of using the MoCA test to detect cognitive impairment and the brain atrophy pattern associated with the cognitive status of prodromal/early HD patients.
Collapse
Affiliation(s)
- Gabriel Ramirez-Garcia
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Victor Galvez
- Escuela de Psicología, Universidad Panamericana, Ciudad de Mexico, Mexico
| | - Rosalinda Diaz
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Aurelio Campos-Romo
- Facultad de Medicina, Unidad Periférica de Neurociencias, Universidad Nacional Autónoma de México/Instituto Nacional de Neurologia y Neurocirugia, Ciudad de Mexico, Mexico
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
18
|
Mehan S, Bhalla S, Siddiqui EM, Sharma N, Shandilya A, Khan A. Potential Roles of Glucagon-Like Peptide-1 and Its Analogues in Dementia Targeting Impaired Insulin Secretion and Neurodegeneration. Degener Neurol Neuromuscul Dis 2022; 12:31-59. [PMID: 35300067 PMCID: PMC8921673 DOI: 10.2147/dnnd.s247153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Dementia is a chronic, irreversible condition marked by memory loss, cognitive decline, and mental instability. It is clinically related to various progressive neurological diseases, including Parkinson’s disease, Alzheimer’s disease, and Huntington’s. The primary cause of neurological disorders is insulin desensitization, demyelination, oxidative stress, and neuroinflammation accompanied by various aberrant proteins such as amyloid-β deposits, Lewy bodies accumulation, tau formation leading to neurofibrillary tangles. Impaired insulin signaling is directly associated with amyloid-β and α-synuclein deposition, as well as specific signaling cascades involved in neurodegenerative diseases. Insulin dysfunction may initiate various intracellular signaling cascades, including phosphoinositide 3-kinase (PI3K), c-Jun N-terminal kinases (JNK), and mitogen-activated protein kinase (MAPK). Neuronal death, inflammation, neuronal excitation, mitochondrial malfunction, and protein deposition are all influenced by insulin. Recent research has focused on GLP-1 receptor agonists as a potential therapeutic target. They increase glucose-dependent insulin secretion and are beneficial in neurodegenerative diseases by reducing oxidative stress and cytokine production. They reduce the deposition of abnormal proteins by crossing the blood-brain barrier. The purpose of this article is to discuss the role of insulin dysfunction in the pathogenesis of neurological diseases, specifically dementia. Additionally, we reviewed the therapeutic target (GLP-1) and its receptor activators as a possible treatment of dementia.
Collapse
Affiliation(s)
- Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- Correspondence: Sidharth Mehan, Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India, Tel +91 8059889909; +91 9461322911, Email ;
| | - Sonalika Bhalla
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Nidhi Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ambika Shandilya
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Horta-Barba A, Martínez-Horta S, Pérez-Pérez J, Sampedro F, Puig-Davi A, Pagonabarraga J, Kulisevsky J. Measuring the functional impact of cognitive impairment in Huntington’s disease. J Neurol 2022; 269:3541-3549. [PMID: 35061089 PMCID: PMC9217879 DOI: 10.1007/s00415-021-10955-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022]
Abstract
Background Patients with Huntington’s disease (HD) exhibit a variable predominance of cognitive, behavioral and motor symptoms. A specific instrument focusing on the impact of cognitive impairment in HD over functional capacity is lacking. Objective To address the need for a brief and specifically developed HD questionnaire able to capture functional aspects suspected to be sensitive to cognitive impairment. Methods We developed and validated the “Huntington’s Disease-Cognitive Functional Rating Scale” (HD-CFRS) in 78 symptomatic carriers of the Huntington’s disease mutation. We also administered the HD-CFRS to a knowledgeable informant to measure the level of agreement. To explore the association between HD-CFRS scores and participants’ cognitive status, we administered objective measures of cognition. Participants were classified as cognitively preserved (HD-NC), as having mild cognitive impairment (HD-MCI), or as having dementia (HD-Dem). Results The HD-CFRS showed concurrent validity and internal consistency in the three groups. HD carriers and informants in the HD-NC group obtained similar HD-CFRS scores. However, in patients with mild cognitive impairment and dementia, informers reported greater functional impairment than HD participants. The HD-CFRS total score showed strong correlations with measures assessing cognition. Conclusions These findings support the utility of the HD-CFRS as a brief and reliable instrument to measure functional defects associated with cognitive impairment in HD. We believe this questionnaire could be a useful tool both for clinical practice and research.
Collapse
Affiliation(s)
- Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jesus Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain.
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- European Huntington's Disease Network (EHDN), Ulm, Germany.
| |
Collapse
|
20
|
Aracil-Bolaños I, Martínez-Horta S, González-de-Echávarri JM, Sampedro F, Pérez-Pérez J, Horta A, Campolongo A, Izquierdo C, Gómez-Ansón B, Pagonabarraga J, Kulisevsky J. Structure and Dynamics of Large-Scale Cognitive Networks in Huntington's Disease. Mov Disord 2021; 37:343-353. [PMID: 34752656 DOI: 10.1002/mds.28839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Huntington's disease is a neurodegenerative disorder characterized by clinical alterations in the motor, behavioral, and cognitive domains. However, the structure and disruptions to large-scale brain cognitive networks have not yet been established. OBJECTIVE We aimed to profile changes in large-scale cognitive networks in premanifest and symptomatic patients with Huntington's disease. METHODS We prospectively recruited premanifest and symptomatic Huntington's disease mutation carriers as well as healthy controls. Clinical and sociodemographic data were obtained from all participants, and resting-state functional connectivity data, using both time-averaged and dynamic functional connectivity, was acquired from whole-brain and cognitively oriented brain parcellations. RESULTS A total of 64 gene mutation carriers and 23 healthy controls were included; 21 patients with Huntington's disease were classified as premanifest and 43 as symptomatic Huntington's disease. Compared with healthy controls, patients with Huntington's disease showed decreased network connectivity within the posterior hubs of the default-mode network and the medial prefrontal cortex, changes that correlated with cognitive (t = 2.25, P = 0.01) and disease burden scores (t = -2.42, P = 0.009). The salience network showed decreased functional connectivity between insular and supramarginal cortices and also correlated with cognitive (t = 2.11, P = 0.02) and disease burden scores (t = -2.35, P = 0.01). Dynamic analyses showed that network variability was decreased for default-central executive networks, a feature already present in premanifest mutation carriers (dynamic factor 8, P = 0.02). CONCLUSIONS Huntington's disease shows an early and widespread disruption of large-scale cognitive networks. Importantly, these changes are related to cognitive and disease burden scores, and novel dynamic functional analyses uncovered subtler network changes even in the premanifest stages.
Collapse
Affiliation(s)
- Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jose M González-de-Echávarri
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation and Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Andrea Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Cristina Izquierdo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Beatriz Gómez-Ansón
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain.,Neuroradiology Unit, Sant Pau Hospital, Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
21
|
Sampedro F, Pérez-Pérez J, Martínez-Horta S, Pérez-González R, Horta-Barba A, Campolongo A, Izquierdo C, Pagonabarraga J, Gómez-Ansón B, Kulisevsky J. Cortical microstructural correlates of plasma neurofilament light chain in Huntington's disease. Parkinsonism Relat Disord 2021; 85:91-94. [PMID: 33770670 DOI: 10.1016/j.parkreldis.2021.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is a severe neurodegenerative disorder with no effective treatment. Minimally-invasive biomarkers such as blood neurofilament light chain (NfL) in HD are therefore needed to quantitatively characterize neuronal loss. NfL levels in HD are known to correlate with disease progression and striatal atrophy, but whether they also reflect cortical degeneration remains elusive. METHODS In a sample of 35 HD patients, we characterized the cortical macro (cortical thickness) and microstructural (increased intracortical diffusivity) correlates of plasma NfL levels. We further investigated whether NfL-related cortical alterations correlated with clinical indicators of disease progression. RESULTS Increased plasma NfL levels in HD reflected posterior-cortical microstructural degeneration, but not reduced cortical thickness (p < 0.05, corrected). Importantly, these imaging alterations correlated, in turn, with more severe motor, cognitive and behavioral symptoms. CONCLUSION Plasma NfL levels may be useful for tracking clinically-meaningful cortical deterioration in HD. Additionally, our results further reinforce the role of intracortical diffusivity as a valuable imaging indicator in movement disorders.
Collapse
Affiliation(s)
- Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jesus Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Saul Martínez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Rocío Pérez-González
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Cristina Izquierdo
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Beatriz Gómez-Ansón
- Neuroradiology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|